Residential Links to Air Pollution and School Children with Asthma in Vilnius (Population Study)
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Available online: https://www.who.int/ceh/publications/Advance-copy-Oct24_18150_Air-Pollution-and-Child-Health-merged-compressed.pdf?ua=1 (accessed on 5 May 2020).
- Ranzi, A.; Porta, D.; Badaloni, C.; Cesaroni, G.; Lauriola, P.; Davoli, M.; Forastiere, F. Exposure to air pollution and respiratory symptoms during the first 7 years of life in an Italian birth cohort. Occup. Environ. Med. 2014, 71, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Ou, C.; Chen, J.; Xiang, Y. Particle deposition in tracheobronchial airways of an infant, child and adult. Sci. Total Environ. 2018, 612, 339–346. [Google Scholar] [CrossRef]
- Bateson, T.F.; Schwartz, J. Children’s Response to Air Pollutants. J. Toxicol. Environ. Health Part A 2007, 71, 238–243. [Google Scholar] [CrossRef]
- Choi, H.; Dostal, M.; Pastorkova, A.; Rossner, P.; Šrám, R.; Ho, S.-M. Greater susceptibility of girls to airborne Benzo[a]pyrene for obesity-associated childhood asthma. Environ. Int. 2018, 121, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Almqvist, C.; Worm, M.; Leynaert, B. Impact of gender on asthma in childhood and adolescence: A GA2LEN review. Allergy 2007, 63, 47–57. [Google Scholar] [CrossRef]
- Dijk, F.N.; De Jongste, J.C.; Postma, D.S.; Koppelman, G.H. Genetics of onset of asthma. Curr. Opin. Allergy Clin. Immunol. 2013, 13, 193–202. [Google Scholar] [CrossRef]
- European Environment Agency. Available online: https://www.eea.europa.eu/publications/european-union-emission-inventory-report-1 (accessed on 5 October 2019).
- Kim, J.J.; Huen, K.; Adams, S.; Smorodinsky, S.; Hoats, A.; Malig, B.; Lipsett, M.; Ostro, B.D. Residential Traffic and Children’s Respiratory Health. Environ. Health Perspect. 2008, 116, 1274–1279. [Google Scholar] [CrossRef]
- Farrell, W.J.; Cavellin, L.D.; Weichenthal, S.; Goldberg, M.; Hatzopoulou, M. Capturing the urban canyon effect on particle number concentrations across a large road network using spatial analysis tools. Build Environ. 2015, 92, 328–334. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Chen, Q. Potential of Thirteen Urban Greening Plants to Capture Particulate Matter on Leaf Surfaces across Three Levels of Ambient Atmospheric Pollution. Int. J. Environ. Res. Public Health 2019, 16, 402. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Li, L.; E Hart, J.; Coull, B.A.; Cao, S.-J.; Spengler, J.D.; Adamkiewicz, G. Effect of Residential Greenness and Nearby Parks on Respiratory and Allergic Diseases among Middle School Adolescents in a Chinese City. Int. J. Environ. Res. Public Health 2019, 16, 991. [Google Scholar] [CrossRef] [PubMed]
- Hartley, K.; Ryan, P.; Brokamp, C.; Gillespie, G.L. Effect of greenness on asthma in children: A systematic review. Public Health Nurs. 2020, 37, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Weinberger, K.R.; Robinson, G.; E Sheffield, P.; Lall, R.; Mathes, R.W.; Ross, Z.; Kinney, P.L.; Matte, T. The associations between daily spring pollen counts, over-the-counter allergy medication sales, and asthma syndrome emergency department visits in New York City, 2002–2012. Environ. Health 2015, 14, 71. [Google Scholar] [CrossRef]
- Fuertes, E.; Markevych, I.; Bowatte, G.; Gruzieva, O.; Gehring, U.; Becker, A.; Berdel, D.; Von Berg, A.; Bergström, A.; Brauer, M.; et al. Residential greenness is differentially associated with childhood allergic rhinitis and aeroallergen sensitization in seven birth cohorts. Allergy 2016, 71, 1461–1471. [Google Scholar] [CrossRef]
- Barone-Adesi, F.; Dent, J.E.; Dajnak, D.; Beevers, S.; Anderson, H.R.; Kelly, F.J.; Cook, D.G.; Whincup, P.H. Long-Term Exposure to Primary Traffic Pollutants and Lung Function in Children: Cross-Sectional Study and Meta-Analysis. PLoS ONE 2015, 10, e0142565. [Google Scholar] [CrossRef]
- White, N.; teWaterNaude, J.; Van Der Walt, A.; Ravenscroft, G.; Roberts, W.; Ehrlich, R. Meteorologically estimated exposure but not distance predicts asthma symptoms in schoolchildren in the environs of a petrochemical refinery: A cross-sectional study. Environ. Health 2009, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Khreis, H. Early-Life Exposure to Traffic-Related Air Pollution and Risk of Development of Childhood Asthma. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2018. [Google Scholar]
- Alizadeh, M.; Hashtroodi, L.G.; Chavoshzadeh, Z.; Rezaei, N. Effect of Air Pollution in Frequency of Hospitalizations in Asthmatic Children. Acta Med. Iran. 2016, 54, 542–546. [Google Scholar]
- Pollock, J.; Shi, L.; Gimbel, R.W. Outdoor Environment and Pediatric Asthma: An Update on the Evidence from North America. Can. Respir. J. 2017, 2017, 1–16. [Google Scholar] [CrossRef]
- Liu, L.; Poon, R.; Chen, L.; Frescura, A.-M.; Montuschi, P.; Ciabattoni, G.; Wheeler, A.; Dales, R. Acute Effects of Air Pollution on Pulmonary Function, Airway Inflammation, and Oxidative Stress in Asthmatic Children. Environ. Health Perspect. 2008, 117, 668–674. [Google Scholar] [CrossRef]
- Choi, H.; Tabashidze, N.; Rossner, P.; Dostal, M.; Pastorkova, A.; Kong, S.W.; Gmuender, H.; Šrám, R. Altered vulnerability to asthma at various levels of ambient Benzo[a]Pyrene by CTLA4, STAT4 and CYP2E1 polymorphisms. Environ. Pollut. 2017, 231, 1134–1144. [Google Scholar] [CrossRef]
- Kim, J.J.; Smorodinsky, S.; Lipsett, M.; Singer, B.C.; Hodgson, A.T.; Ostro, B. Traffic-related Air Pollution near Busy Roads. Am. J. Respir. Crit. Care Med. 2004, 170, 520–526. [Google Scholar] [CrossRef]
- Morris, S.; Sale, R.C.; Wakefield, J.C.; Falconer, S.; Elliott, P.; Boucher, B.J. Hospital admissions for asthma and chronic obstructive airways disease in East London hospitals and proximity of residence to main roads. J. Epidemiol. Community Health 2000, 54, 75–76. [Google Scholar] [CrossRef][Green Version]
- Schikowski, T.; Sugiri, D.; Ranft, U.; Gehring, U.; Heinrich, J.; Wichmann, H.E.; Krämer, U. Long-term air pollution exposure and living close to busy roads are associated with COPD in women. Respir. Res. 2005, 6, 152. [Google Scholar] [CrossRef]
- Ciccone, G.; Forastiere, F.; Agabiti, N.; Biggeri, A.; Bisanti, L.; Chellini, E.; Corbo, G.; Dell’Orco, V.; Dalmasso, P.; Volante, T.F.; et al. Road traffic and adverse respiratory effects in children. SIDRIA Collaborative Group. Occup. Environ. Med. 1998, 55, 771–778. [Google Scholar] [CrossRef]
- Lithuanian Environment Protection Agency. Available online: http://oras.gamta.lt/cms/index?rubricId=07c2cc60-2f42-4afb-8f3b-1e1f6452800f (accessed on 15 October 2018).
- Hesterberg, T.; Bunn, W.B.; McClellan, R.O.; Hamade, A.K.; Long, C.M.; Valberg, P.A. Critical review of the human data on short-term nitrogen dioxide (NO2) exposures: Evidence for NO2 no-effect levels. Crit. Rev. Toxicol. 2009, 39, 743–781. [Google Scholar] [CrossRef]
- Barck, C.; Lundahl, J.; Halldén, G.; Bylin, G. Brief exposures to NO2 augment the allergic inflammation in asthmatics. Environ. Res. 2005, 97, 58–66. [Google Scholar] [CrossRef]
- Chan, T.-C.; Chen, M.-L.; Lin, I.-F.; Lee, C.-H.; Chiang, P.-H.; Wang, D.-W.; Chuang, J.-H. Spatiotemporal analysis of air pollution and asthma patient visits in Taipei, Taiwan. Int. J. Health Geogr. 2009, 8, 26. [Google Scholar] [CrossRef]
- Achakulwisut, P.; Brauer, M.; Hystad, P.; Anenberg, S.C. Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO2 pollution: Estimates from global datasets. Lancet Planet. Health 2019, 3, e166–e178. [Google Scholar] [CrossRef]
- Oftedal, B.; Nystad, W.; Brunekreef, B.; Nafstad, P. Long-Term Traffic-Related Exposures and Asthma Onset in Schoolchildren in Oslo, Norway. Environ. Health Perspect. 2009, 117, 839–844. [Google Scholar] [CrossRef]
- Sheridan, C.E.; Roscoe, C.J.; Gulliver, J.; De Preux, L.; Fecht, D. Inequalities in Exposure to Nitrogen Dioxide in Parks and Playgrounds in Greater London. Int. J. Environ. Res. Public Health 2019, 16, 3194. [Google Scholar] [CrossRef]
- Khreis, H.; De Hoogh, K.; Nieuwenhuijsen, M.J. Full-chain health impact assessment of traffic-related air pollution and childhood asthma. Environ. Int. 2018, 114, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Ádám, L.; Molnar, F.; Izsák, F.; Havasi, Á.; Lagzi, I.; Mészáros, R. Dispersion modeling of air pollutants in the atmosphere: A review. Open Geosci. 2014, 6, 3. [Google Scholar] [CrossRef]
- Wong, D.W.S.; Yuan, L.; A Perlin, S. Comparison of spatial interpolation methods for the estimation of air quality data. J. Expo. Sci. Environ. Epidemiol. 2004, 14, 404–415. [Google Scholar] [CrossRef] [PubMed]
Air Pollutants | Quality in 2017 Year (Data from 4 Air Quality Stations) | Air Quality Limits | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
PM10 (days) | 30 | 9 | 3 | 3 | (35 days) > 50 µg/m3 |
PM10 µg/m3 (annual average) | 35 | 26 | 23 | 19 | 40 µg/m3 |
PM2.5 µg/m3 (annual average) | 17 | - | - | - | 25 µg/m3 |
NO2 µg/m3 (annual average) | 34 | 18 | 14 | 15 | 40 µg/m3 |
SO2 µg/m3 (annual average) | - | 4.5 | 4 | 4.6 | - |
B[a]P ng/m3 (annual average) | 1.14 | - | - | - | 1 ng/m3 (target value) |
Age | N (All Children) | n (Children with Asthma) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Boys | Girls | All | Boys | Girls | All | |||||||
Count | % | Count | % | Count | % | Count | % | Count | % | Count | % | |
7 | 3209 | 6.3 | 3153 | 6.2 | 6362 | 12.4 | 255 | 8.3 | 161 | 5.3 | 416 | 13.6 |
8 | 3097 | 6.0 | 2922 | 5.7 | 6019 | 11.7 | 238 | 7.8 | 149 | 4.9 | 387 | 12.6 |
9 | 2871 | 5.6 | 2737 | 5.3 | 5608 | 10.9 | 246 | 8.0 | 138 | 4.5 | 384 | 12.5 |
10 | 2501 | 4.9 | 2393 | 4.7 | 4894 | 9.6 | 206 | 6.7 | 117 | 3.8 | 323 | 10.5 |
11 | 2363 | 4.6 | 2326 | 4.5 | 4689 | 9.2 | 177 | 5.8 | 100 | 3.3 | 277 | 9.0 |
12 | 2150 | 4.2 | 2072 | 4.0 | 4222 | 8.2 | 174 | 5.7 | 113 | 3.7 | 287 | 9.4 |
13 | 2109 | 4.1 | 1988 | 3.9 | 4097 | 8.0 | 151 | 4.9 | 73 | 2.4 | 224 | 7.3 |
14 | 1988 | 3.9 | 1848 | 3.6 | 3836 | 7.5 | 140 | 4.6 | 55 | 1.8 | 195 | 6.4 |
15 | 1881 | 3.7 | 1804 | 3.5 | 3685 | 7.2 | 125 | 4.1 | 62 | 2.0 | 187 | 6.1 |
16 | 1934 | 3.8 | 1870 | 3.6 | 3804 | 7.4 | 126 | 4.1 | 65 | 2.1 | 191 | 6.2 |
17 | 2058 | 4.0 | 1971 | 3.8 | 4029 | 7.9 | 126 | 4.1 | 68 | 2.2 | 194 | 6.3 |
All | 26,161 | 51 | 25,084 | 49 | 51,245 | 100.0 | 1964 | 64.1 | 1101 | 35.9 | 3065 | 100 |
PM10 | PM2.5 | NO2 | SO2 | CO | B[a]P | |
---|---|---|---|---|---|---|
PM10 | 0.97 | 0.51 | 0.17 | 0.53 | 0.74 | |
PM2.5 | 0.97 | 0.51 | 0.17 | 0.53 | 0.74 | |
NO2 | 0.51 | 0.51 | 0.19 | 0.85 | 0.73 | |
SO2 | 0.17 | 0.17 | 0.19 | 0.68 | 0.22 | |
CO | 0.53 | 0.53 | 0.85 | 0.68 | 0.65 | |
B[a]P | 0.74 | 0.74 | 0.73 | 0.22 | 0.65 | |
Proximity to Intensive Roads | −0.18 | −0.18 | −0.28 | −0.19 | −0.30 | −0.29 |
Proximity to Green Spaces | 0.24 | 0.23 | 0.22 | 0.13 | 0.14 | 0.28 |
β coef. | OR | CI 95% | p-Value | |
---|---|---|---|---|
Age | −0.03623 | 0.964 | (0.953 to 0.975) | <0.001 * |
Gender (male = 1) | 0.56988 | 1.768 | (1.639 to 1.907) | <0.001 * |
PM10 | 0.01198 | 1.012 | (1.003 to 1.021) | 0.008 * |
PM2.5 | 0.03655 | 1.037 | (1.010 to 1.064) | 0.006 * |
SO2 | 0.07612 | 1.079 | (0.984 to 1.184) | 0.107 |
NO2 | 0.01635 | 1.165 | (1.005 to 1.027) | 0.003 * |
CO | 0.44336 | 1.558 | (0.687 to 3.519) | 0.287 |
B[a]P | 0.21984 | 1.246 | (1075 to 1.440) | 0.003 * |
Proximity to Roads | −0.10100 | 0.904 | (0.723 to 1.123) | 0.368 |
Proximity to Green Spaces | 0.33120 | 1.393 | (1.121 to 1.742) | 0.002 * |
β coef. | OR | CI 95% | p-Value | |
---|---|---|---|---|
Age | −0.03672 | 0.964 | (0.953 to 0.975) | <0.001 * |
Gender (male = 1) | 0.57130 | 1.770 | (1.641 to 1.911) | <0.001 * |
NO2 | 0.01347 | 1.013 | (1.002 to 1.025) | 0.018 * |
Proximity to Green Spaces | 0.22038 | 1.336 | (1.060 to 1.653) | 0.013 * |
PM10 | 0.00015 | 1.0002 | (0.998 to 1.002) | 0.860 |
PM2.5 | 0.00012 | 1.0001 | (0.998 to 1.003) | 0.925 |
B[a]P | 0.00620 | 1.006 | (0.955 to 1.059) | 0.815 |
β coef. | OR | CI 95% | p-Value | |
---|---|---|---|---|
Age | −0.05200 | 0.949 | (0.931 to 0.968) | <0.001 * |
Gender (male = 1) | 0.30535 | 1.357 | (1.029 to 1.791) | 0.003 * |
NO2 | 0.01340 | 1.013 | (1.002 to 1.025) | 0.019 * |
Proximity to Green Spaces | 0.28264 | 1.327 | (1.061 to 1.654) | 0.013 * |
Age × Gender (male = 1) | 0.02402 | 1.024 | (1.000 to 1.050) | 0.051 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alasauskas, S.; Ustinaviciene, R.; Kavaliauskas, M. Residential Links to Air Pollution and School Children with Asthma in Vilnius (Population Study). Medicina 2020, 56, 346. https://doi.org/10.3390/medicina56070346
Alasauskas S, Ustinaviciene R, Kavaliauskas M. Residential Links to Air Pollution and School Children with Asthma in Vilnius (Population Study). Medicina. 2020; 56(7):346. https://doi.org/10.3390/medicina56070346
Chicago/Turabian StyleAlasauskas, Sarunas, Ruta Ustinaviciene, and Mindaugas Kavaliauskas. 2020. "Residential Links to Air Pollution and School Children with Asthma in Vilnius (Population Study)" Medicina 56, no. 7: 346. https://doi.org/10.3390/medicina56070346
APA StyleAlasauskas, S., Ustinaviciene, R., & Kavaliauskas, M. (2020). Residential Links to Air Pollution and School Children with Asthma in Vilnius (Population Study). Medicina, 56(7), 346. https://doi.org/10.3390/medicina56070346