GSTP1 rs1138272 Polymorphism Affects Prostate Cancer Risk
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. GST Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed]
- Mottet, N.; Bellmunt, J.; Bolla, M.; Briers, E.; Cumberbatch, M.G.; De Santis, M.; Fossati, N.; Gross, T.; Henry, A.M.; Joniau, S.; et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2017, 71, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Bostwick, D.G.; Burke, H.B.; Djakiew, D.; Euling, S.; Ho, S.; Landolph, J.; Morrison, H.; Sonawane, B.; Shifflett, T.; Waters, D.J.; et al. Human prostate cancer risk factors. Cancer 2004, 101, 2371–2490. [Google Scholar] [CrossRef]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef]
- Khurana, N.; Sikka, S.C. Targeting Crosstalk between Nrf-2, NF-κB and Androgen Receptor Signaling in Prostate Cancer. Cancers 2018, 10, 352. [Google Scholar] [CrossRef]
- Thimmulappa, R.K.; Mai, K.H.; Srisuma, S.; Kensler, T.W.; Yamamoto, M.; Biswal, S. Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res. 2002, 62, 5196–5203. [Google Scholar]
- Hayes, J.D.; Strange, R.C. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology 2000, 61, 154–166. [Google Scholar] [CrossRef]
- Singh, S. Cytoprotective and regulatory functions of glutathione S-transferases in cancer cell proliferation and cell death. Cancer Chemother. Pharmacol. 2015, 75, 1–15. [Google Scholar] [CrossRef]
- Martignano, F.; Gurioli, G.; Salvi, S.; Calistri, D.; Costantini, M.; Gunelli, R. GSTP1 Methylation and Protein Expression in Prostate Cancer: Diagnostic Implications. Dis. Markers 2016, 2016, 4358292. [Google Scholar] [CrossRef]
- Wang, X.-X.; Jia, H.-T.; Yang, H.; Luo, M.-H.; Sun, T. Overexpression of Glutathione S-transferase P1 Inhibits the Viability and Motility of Prostate Cancer via Targeting MYC and Inactivating the MEK/ERK1/2 Pathways. Oncol. Res. 2017. [CrossRef] [PubMed]
- Hokaiwado, N.; Takeshita, F.; Naiki-Ito, A.; Asamoto, M.; Ochiya, T.; Shirai, T. Glutathione S-transferase Pi mediates proliferation of androgen-independent prostate cancer cells. Carcinogenesis 2008, 29, 1134–1138. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Liu, Y.; Ran, L.; Shang, H.; Li, D. GSTT1 and GSTM1 polymorphisms and prostate cancer risk in Asians: A systematic review and meta-analysis. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 2013, 34, 2539–2544. [Google Scholar] [CrossRef] [PubMed]
- Safarinejad, M.R.; Shafiei, N.; Safarinejad, S.H. Glutathione S-transferase gene polymorphisms (GSTM1, GSTT1, GSTP1) and prostate cancer: A case-control study in Tehran, Iran. Prostate Cancer Prostatic Dis. 2011, 14, 105–113. [Google Scholar] [CrossRef][Green Version]
- Malik, S.S.; Kazmi, Z.; Fatima, I.; Shabbir, R.; Perveen, S.; Masood, N. Genetic Polymorphism of GSTM1 and GSTT1 and Risk of Prostatic Carcinoma—A Meta-analysis of 7,281 Prostate Cancer Cases and 9,082 Healthy Controls. Asian Pac. J. Cancer Prev. APJCP 2016, 17, 2629–2635. [Google Scholar]
- Cowell, I.G.; Dixon, K.H.; Pemble, S.E.; Ketterer, B.; Taylor, J.B. The structure of the human glutathione S-transferase pi gene. Biochem. J. 1988, 255, 79–83. [Google Scholar] [CrossRef]
- Huang, G.Z.; Shan, W.; Zeng, L.; Huang, L.G. The GSTP1 A1578G polymorphism and the risk of childhood acute lymphoblastic leukemia: Results from an updated meta-analysis. Genet. Mol. Res. GMR 2013, 12, 2481–2491. [Google Scholar] [CrossRef]
- Xie, P.; Liang, Y.; Liang, G.; Liu, B. Association between GSTP1 Ile105Val polymorphism and glioma risk: A systematic review and meta-analysis. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 2014, 35, 493–499. [Google Scholar] [CrossRef]
- Tan, X.; Chen, M. Association between glutathione S-transferases P1 Ile105Val polymorphism and susceptibility to esophageal cancer: Evidence from 20 case-control studies. Mol. Biol. Rep. 2015, 42, 399–408. [Google Scholar] [CrossRef]
- Zhou, C.-F.; Ma, T.; Zhou, D.-C.; Shen, T.; Zhu, Q.-X. Association of glutathione S-transferase pi (GSTP1) Ile105Val polymorphism with the risk of skin cancer: A meta-analysis. Arch. Dermatol. Res. 2015, 307, 505–513. [Google Scholar] [CrossRef]
- Yan, F.; Wang, R.; Geng, L. The 341C/T polymorphism in the GSTP1 gene and lung cancer risk: A meta-analysis. Genet. Mol. Res. GMR 2016, 15. [Google Scholar] [CrossRef] [PubMed]
- Ali-Osman, F.; Akande, O.; Antoun, G.; Mao, J.-X.; Buolamwini, J. Molecular Cloning, Characterization, and Expression in Escherichia coli of Full-length cDNAs of Three Human Glutathione S-Transferase Pi Gene Variants evidence for differential catalytic activity of the encoded proteins. J. Biol. Chem. 1997, 272, 10004–10012. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yuan, Y.; Chen, Y.; Wang, Z.; Li, F.; Zhao, Q. Association between GSTP1 Ile105Val polymorphism and urinary system cancer risk: Evidence from 51 studies. OncoTargets Ther. 2016, 9, 3565–3569. [Google Scholar] [CrossRef]
- Wei, B.; Zhou, Y.; Xu, Z.; Ruan, J.; Cheng, H.; Zhu, M.; Hu, Q.; Jin, K.; Yan, Z.; Zhou, D.; et al. GSTP1 Ile105Val polymorphism and prostate cancer risk: Evidence from a meta-analysis. PloS ONE 2013, 8, e71640. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, S.Z.; el-Zein, R.A.; Anwar, W.A.; Au, W.W. A multiplex PCR procedure for polymorphic analysis of GSTM1 and GSTT1 genes in population studies. Cancer Lett. 1996, 107, 229–233. [Google Scholar] [CrossRef]
- Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinforma. Oxf. Engl. 2006, 22, 1928–1929. [Google Scholar] [CrossRef]
- Mo, Z.; Gao, Y.; Cao, Y.; Gao, F.; Jian, L. An updating meta-analysis of the GSTM1, GSTT1, and GSTP1 polymorphisms and prostate cancer: A HuGE review. The Prostate 2009, 69, 662–688. [Google Scholar] [CrossRef]
- Cai, Q.; Wu, T.; Zhang, W.; Guo, X.; Shang, Z.; Jiang, N.; Tian, J.; Niu, Y. Genetic polymorphisms in glutathione S-transferases P1 (GSTP1) Ile105Val and prostate cancer risk: A systematic review and meta-analysis. Tumour Biol. 2013, 34, 3913–3922. [Google Scholar] [CrossRef]
- Ding, F.; Li, J.-P.; Zhang, Y.; Qi, G.-H.; Song, Z.-C.; Yu, Y.-H. Comprehensive Analysis of the Association Between the rs1138272 Polymorphism of the GSTP1 Gene and Cancer Susceptibility. Front. Physiol. 2018, 9, 1897. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, J.; Zhao, Y.; Gajalakshmi, V.; Kuriki, K.; Suzuki, S.; Nagaya, T.; Nakamura, S.; Akasaka, S.; Ishikawa, H.; et al. Genetic polymorphisms of glutathione S-transferase genes and susceptibility to colorectal cancer: A case-control study in an Indian population. Cancer Epidemiol. 2011, 35, 66–72. [Google Scholar] [CrossRef]
- Wang, Y.; Spitz, M.R.; Schabath, M.B.; Ali-Osman, F.; Mata, H.; Wu, X. Association between glutathione S-transferase p1 polymorphisms and lung cancer risk in Caucasians: A case-control study. Lung Cancer Amst. Neth. 2003, 40, 25–32. [Google Scholar] [CrossRef]
- Cornu, J.-N.; Audet-Walsh, E.; Drouin, S.; Bigot, P.; Valeri, A.; Fournier, G.; Azzouzi, A.-R.; Roupret, M.; Cormier, L.; Chanock, S.; et al. Correlation between prostate volume and single nucleotide polymorphisms implicated in the steroid pathway. World J. Urol. 2017, 35, 293–298. [Google Scholar] [CrossRef]
- Oskina, N.A.; Еrmolenko, N.A.; Boyarskih, U.A.; Lazarev, A.F.; Petrova, V.D.; Ganov, D.I.; Tonacheva, O.G.; Lifschitz, G.I.; Filipenko, M.L. Associations between SNPs within antioxidant genes and the risk of prostate cancer in the Siberian region of Russia. Pathol. Oncol. Res. POR 2014, 20, 635–640. [Google Scholar] [CrossRef]
- Moyer, A.M.; Salavaggione, O.E.; Wu, T.-Y.; Moon, I.; Eckloff, B.W.; Hildebrandt, M.A.T.; Schaid, D.J.; Wieben, E.D.; Weinshilboum, R.M. Glutathione s-transferase p1: Gene sequence variation and functional genomic studies. Cancer Res. 2008, 68, 4791–4801. [Google Scholar] [CrossRef] [PubMed]
- Lavender, N.A.; Benford, M.L.; VanCleave, T.T.; Brock, G.N.; Kittles, R.A.; Moore, J.H.; Hein, D.W.; Kidd, L.C.R. Examination of polymorphic glutathione S-transferase (GST) genes, tobacco smoking and prostate cancer risk among Men of African Descent: A case-control study. BMC Cancer 2009, 9, 397. [Google Scholar] [CrossRef] [PubMed]
- Sritharan, J.; MacLeod, J.S.; McLeod, C.B.; Peter, A.; Demers, P.A. Prostate cancer risk by occupation in the Occupational Disease Surveillance System (ODSS) in Ontario, Canada. Health Promot. Chronic Dis. Prev. Can. Res. Policy Pract. 2019, 39, 178–186. [Google Scholar] [CrossRef]
- Matic, M.G.; Coric, V.M.; Savic-Radojevic, A.R.; Bulat, P.V.; Pljesa-Ercegovac, M.S.; Dragicevic, D.P.; Djukic, T.I.; Simic, T.P.; Pekmezovic, T.D. Does occupational exposure to solvents and pesticides in association with glutathione S-transferase A1, M1, P1, and T1 polymorphisms increase the risk of bladder cancer? The Belgrade case-control study. PLoS ONE 2014, 9, e99448. [Google Scholar] [CrossRef][Green Version]
- Waalkes, M.P.; Rehm, S. Cadmium and prostate cancer. J. Toxicol. Environ. Health 1994, 43, 251–269. [Google Scholar] [CrossRef]
- Lacorte, L.M.; Rinaldi, J.C.; Justulin, L.A.; Delella, F.K.; Moroz, A.; Felisbino, S.L. Cadmium exposure inhibits MMP2 and MMP9 activities in the prostate and testis. Biochem. Biophys. Res. Commun. 2015, 457, 538–541. [Google Scholar] [CrossRef]
- Arriazu, R.; Pozuelo, J.M.; Martín, R.; Rodríguez, R.; Santamaría, L. Quantitative and immunohistochemical evaluation of PCNA, androgen receptors, apoptosis, and Glutathione-S-Transferase P1 on preneoplastic changes induced by cadmium and zinc chloride in the rat ventral prostate. The Prostate 2005, 63, 347–357. [Google Scholar] [CrossRef]
- Chang, W.-H.; Lee, C.-C.; Yen, Y.-H.; Chen, H.-L. Oxidative damage in patients with benign prostatic hyperplasia and prostate cancer co-exposed to phthalates and to trace elements. Environ. Int. 2018, 121, 1179–1184. [Google Scholar] [CrossRef] [PubMed]
- Custodio, H.M.; Broberg, K.; Wennberg, M.; Jansson, J.-H.; Vessby, B.; Hallmans, G.; Stegmayr, B.; Skerfving, S. Polymorphisms in glutathione-related genes affect methylmercury retention. Arch. Environ. Health 2004, 59, 588–595. [Google Scholar] [CrossRef]
- Gundacker, C.; Wittmann, K.J.; Kukuckova, M.; Komarnicki, G.; Hikkel, I.; Gencik, M. Genetic background of lead and mercury metabolism in a group of medical students in Austria. Environ. Res. 2009, 109, 786–796. [Google Scholar] [CrossRef]
- Marcos, R.; Martínez, V.; Hernández, A.; Creus, A.; Sekaran, C.; Tokunaga, H.; Quinteros, D. Metabolic profile in workers occupationally exposed to arsenic: Role of GST polymorphisms. J. Occup. Environ. Med. 2006, 48, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Goodrich, J.M.; Basu, N. Variants of glutathione s-transferase pi 1 exhibit differential enzymatic activity and inhibition by heavy metals. Toxicol. Vitro Int. J. Publ. Assoc. BIBRA 2012, 26, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Laborde, E. Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death. Cell Death Differ. 2010, 17, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Thévenin, A.F.; Zony, C.L.; Bahnson, B.J.; Colman, R.F. GST pi modulates JNK activity through a direct interaction with JNK substrate, ATF2. Protein Sci. Publ. Protein Soc. 2011, 20, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Hu, J. The role of JNK in prostate cancer progression and therapeutic strategies. Biomed. Pharmacother. 2020, 121, 109679. [Google Scholar] [CrossRef] [PubMed]
- Di Francesco, S.; Caruso, R.; Giambuzzi, G.; Ferri, D.; Militello, A.; Toniato, E. Metabolic Alterations, Aggressive Hormone-Naïve Prostate Cancer and Cardiovascular Disease: A Complex Relationship. Medicina (Kaunas) 2019, 55, 62. [Google Scholar] [CrossRef] [PubMed]
- Ge, B.; Song, Y.; Zhang, Y.; Liu, X.; Wen, Y.; Guo, X. Glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) null polymorphisms and the risk of hypertension: A meta-analysis. PLoS ONE 2015, 10, e0118897. [Google Scholar] [CrossRef]
- Tabrez, S.; Priyadarshini, M.; Priyamvada, S.; Khan, M.S.; Na, A.; Zaidi, S.K. Gene-environment interactions in heavy metal and pesticide carcinogenesis. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014, 760, 1–9. [Google Scholar] [CrossRef] [PubMed]
Patients, n (%) | Controls, n (%) | p | |
---|---|---|---|
Age * | 68.81 ± 6.91 | 67.35 ± 9.18 | 0.052 |
BMI * | 26.98 ± 3.48 | 26.52 ± 3.71 | 0.203 |
Hypertension (Y/N) | 125 (58)/92 (42) | 87 (39)/135 (61) | <0.001 |
Diabetes mellitus type 2 (Y/N) | 37 (16)/188 (84) | 12 (7)/174 (93) | 0.002 |
Smoking (Y/N) | 111 (48)/119 (52) | 104 (46)/124 (54) | 0.570 |
Prostate-specific antigen (PSA) at diagnosis (ng/mL) | |||
<10 | 78 (34) | ||
10–20 | 69 (30) | / | / |
>20 | 82 (36) | / | / |
PSA at diagnosis * (ng/mL) | 23.41 ± 27.48 | / | / |
Gleason score# | |||
≤ 6 | 56 (27) | / | / |
7 (3 + 4) | 62 (30) | / | / |
7 (4 + 3) | 38 (18) | / | / |
8 | 28 (14) | / | / |
9/10 | 22 (11) | / | / |
Genotype | Patients, n (%) | Controls, n (%) | OR (95% CI) a | p |
---|---|---|---|---|
GSTM1 | ||||
GSTM1-active | 147 (62) | 131 (56) | 1.0 | |
GSTM1-null | 90 (38) | 104 (44) | 0.77 (0.51–1.15) | 0.203 |
GSTT1 | ||||
GSTT1-active | 148 (62) | 156 (66) | 1.0 | |
GSTT1-null | 89 (38) | 79 (34) | 1.11 (0.73–1.70) | 0.625 |
GSTM1/GSTT1 | ||||
M1/T1-active | 86 (36) | 85 (36) | 1.0 | |
M1-null/T1-active | 62 (26) | 71 (30) | 0.85 (0.51–1.41) | 0.525 |
M1-active/T1-null | 61 (26) | 46 (20) | 1.23 (0.71–2.13) | 0.453 |
M1/T1-null | 28 (12) | 33 (14) | 0.79 (0.41–1.49) | 0.461 |
GSTP1 rs1695 | ||||
*IleIle | 83 (35) | 107 (46) | 1.0 | |
*IleVal | 114 (48) | 95 (40) | 1.74 (1.12–2.72) | 0.014 |
*ValVal | 40 (17) | 32 (14) | 1.99 (1.08-3.68) | 0.028 |
*IleVal + ValVal | 154 (65) | 127 (54) | 1.80 (1.19–2.73) | 0.006 |
GSTP1 rs1138272 | ||||
*AlaAla | 135 (57) | 184 (87) | 1.0 | |
*AlaVal | 89 (38) | 26 (12) | 4.71 (2.70–8.20) | <0.001 |
*ValVal | 11 (5) | 2 (1) | 7.16 (1.54–33.26) | 0.012 |
*AlaVal + ValVal | 100 (43) | 28 (13) | 4.93 (2.89–8.40) | <0.001 |
Haplotype | GSTP1 rs1695 | GSTP1 rs1138272 | Controls (%) | Patients (%) | OR (95% CI) a | p |
---|---|---|---|---|---|---|
A | *A | *C | 64 | 51 | 1.00 | |
B | *G | *C | 29 | 25 | 1.33 (0.89–1.99) | 0.170 |
C | *G | *T | 5 | 16 | 5.46 (2.56–11.65) | <0.001 |
D | *A | *T | 2 | 8 | 2.40 (1.08–5.34) | 0.033 |
Genotype | Patients, n (%) | Controls, n (%) | OR (95%CI) a | p |
---|---|---|---|---|
GSTM1-active, GSTT1-null, GSTP1*Val rs1695 and GSTP1*Val rs1138272 | ||||
0 risk alleles | 11 (5) | 25 (12) | 1.0 | |
1 risk allele | 63 (27) | 81 (39) | 2.06 (0.87–4.89) | 0.100 |
2 risk alleles | 82 (35) | 66 (31) | 3.65 (1.55–8.61) | 0.003 |
3 risk alleles | 57 (24) | 34 (16) | 4.30 (1.74–10.59) | 0.002 |
4 risk alleles | 22 (9) | 4 (2) | 11.71 (3.05–44.93) | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santric, V.; Djokic, M.; Suvakov, S.; Pljesa-Ercegovac, M.; Nikitovic, M.; Radic, T.; Acimovic, M.; Stankovic, V.; Bumbasirevic, U.; Milojevic, B.; et al. GSTP1 rs1138272 Polymorphism Affects Prostate Cancer Risk. Medicina 2020, 56, 128. https://doi.org/10.3390/medicina56030128
Santric V, Djokic M, Suvakov S, Pljesa-Ercegovac M, Nikitovic M, Radic T, Acimovic M, Stankovic V, Bumbasirevic U, Milojevic B, et al. GSTP1 rs1138272 Polymorphism Affects Prostate Cancer Risk. Medicina. 2020; 56(3):128. https://doi.org/10.3390/medicina56030128
Chicago/Turabian StyleSantric, Veljko, Milica Djokic, Sonja Suvakov, Marija Pljesa-Ercegovac, Marina Nikitovic, Tanja Radic, Miodrag Acimovic, Vesna Stankovic, Uros Bumbasirevic, Bogomir Milojevic, and et al. 2020. "GSTP1 rs1138272 Polymorphism Affects Prostate Cancer Risk" Medicina 56, no. 3: 128. https://doi.org/10.3390/medicina56030128
APA StyleSantric, V., Djokic, M., Suvakov, S., Pljesa-Ercegovac, M., Nikitovic, M., Radic, T., Acimovic, M., Stankovic, V., Bumbasirevic, U., Milojevic, B., Babic, U., Dzamic, Z., Simic, T., Dragicevic, D., & Savic-Radojevic, A. (2020). GSTP1 rs1138272 Polymorphism Affects Prostate Cancer Risk. Medicina, 56(3), 128. https://doi.org/10.3390/medicina56030128