Role of Obesogens in the Pathogenesis of Obesity
Abstract
:1. Introduction
2. Sources and Classes of Obesogens
3. Mechanisms of Obesogen Action
3.1. Obesogens Acting as Receptors’ Ligands and Transcription Factors
3.2. Influence of Obesogens on Epigenetic Modifications
4. Influence of Obesogens on Adipose Tissue Development, Metabolism, and Appetite Control
4.1. Adipogenesis
4.2. Adipose Tissue Metabolism
4.3. Regulation of Appetite, Satiety, and Food Preference
5. Susceptibility to Obesogens
6. Final Remarks and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kant, A.K.; Graubard, B.I. Secular trends in patterns of self-reported food consumption of adult Americans: NHANES 1971–1975 to NHANES 1999–2002. Am. J. Clin. Nutr. 2006, 84, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Prentice, A.M.; Jebb, S.A. Fast foods, energy density and obesity: A possible mechanistic link. Obes. Rev. 2003, 4, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Dietz, W.H., Jr.; Gortmaker, S.L. Do we fatten our children at the television set? Obesity and television viewing in children and adolescents. Pediatrics 1985, 75, 807–812. [Google Scholar] [PubMed]
- Holsten, J.E. Obesity and the community food environment: A systematic review. Public Health Nutr. 2009, 12, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Grün, F.; Blumberg, B. Minireview: The case for obesogens. Mol. Endocrinol. 2009, 23, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Gluckman, P.D.; Hanson, M.A. Developmental origins of disease paradigm: A mechanistic and evolutionary perspective. Pediatr. Res. 2004, 56, 311–317. [Google Scholar] [CrossRef]
- Gluckman, P.D.; Hanson, M.A.; Cooper, C.; Thornburg, K.L. Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med. 2008, 359, 61–73. [Google Scholar] [CrossRef]
- Baillie-Hamilton, P.F. Chemical toxins: A hypothesis to explain the global obesity epidemic. J. Altern. Complement. Med. 2002, 8, 185–192. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef]
- Kavlock, R.J.; Daston, G.P.; DeRosa, C.; Fenner-Crisp, P.; Gray, L.E.; Kaattari, S.; Lucier, G.; Luster, M.; Mac, M.J.; Maczka, C.; et al. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: A report of the U.S.EPA-sponsored workshop. Environ. Health Perspect. 1996, 104 (Suppl. 4), 715–740. [Google Scholar]
- Iughetti, L.; Lucaccioni, L.; Predieri, B. Childhood obesity and environmental pollutants: Environmental pollutants: A dual relationship. Acta Biomed. 2015, 86, 5–16. [Google Scholar]
- Grün, F.; Blumberg, B. Environmental obesogens: Organotins and endocrine disruption via nuclear receptor signaling. Endocrinology 2006, 147, S50–S55. [Google Scholar] [CrossRef]
- Janesick, A.; Blumberg, B. Minireview: PPARγ as the target of obesogens. J. Steroid Biochem. Mol. Biol. 2011, 127, 4–8. [Google Scholar] [CrossRef]
- Holtcamp, W. Obesogens: An environmental link to obesity. Environ. Health Perspect. 2012, 120, a62–a68. [Google Scholar] [CrossRef]
- Snedeker, S.M.; Hay, A.G. Do interactions between gut ecology and environmental chemicals contribute to obesity and diabetes? Environ. Health Perspect. 2012, 120, 332–339. [Google Scholar] [CrossRef]
- Ruhlen, R.L.; Howdeshell, K.L.; Mao, J.; Taylor, J.A.; Bronson, F.H.; Newbold, R.R.; Welshons, W.V.; vom Saal, F.S. Low phytoestrogen levels in feed increase fetal serum estradiol resulting in the “fetal estrogenization syndrome” and obesity in CD-1 mice. Environ. Health Perspect. 2008, 116, 322–328. [Google Scholar] [CrossRef]
- Li, X.; Ycaza, J.; Blumberg, B. The environmental obesogen tributyltin chloride acts via peroxisome proliferator activated receptor gamma to induce adipogenesis in murine 3T3-L1 preadipocytes. J. Steroid Biochem. Mol. Biol. 2011, 127, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Zhang, H.; Maher, C.; Arteaga-Solis, E.; Champagne, F.A.; Wu, L.; McDonald, J.D.; Yan, B.; Schwartz, G.J.; Miller, R.L. Prenatal polycyclic aromatic hydrocarbon, adiposity, peroxisome proliferator-activated receptor (PPAR) γ methylation in offspring, grand-offspring mice. PLoS ONE 2014, 9, e110706. [Google Scholar] [CrossRef]
- Ariemma, F.; D’Esposito, V.; Liguoro, D.; Oriente, F.; Cabaro, S.; Liotti, A.; Cimmino, I.; Longo, M.; Beguinot, F.; Formisano, P.; et al. Low-dose bisphenol-a impairs adipogenesis and generates dysfunctional 3T3-L1 adipocytes. PLoS ONE 2016, 11, e0150762. [Google Scholar] [CrossRef]
- Yang, C.; Wong, C.M.; Wei, J.; Chung, A.C.K.; Cai, Z. The brominated flame retardant BDE 47 upregulates purine metabolism and mitochondrial respiration to promote adipocyte differentiation. Sci. Total Environ. 2018, 644, 1312–1322. [Google Scholar] [CrossRef]
- Neier, K.; Cheatham, D.; Bedrosian, L.D.; Dolinoy, D.C. Perinatal exposures to phthalates and phthalate mixtures result in sex-specific effects on body weight, organ weights and intracisternal A-particle (IAP) DNA methylation in weanling mice. J. Dev. Orig. Health Dis. 2019, 10, 176–187. [Google Scholar] [CrossRef]
- Pérez-Albaladejo, E.; Lacorte, S.; Porte, C. Differential toxicity of alkylphenols in JEG-3 human placental cells: Alteration of P450 aromatase and cell lipid composition. Toxicol. Sci. 2019, 167, 336–346. [Google Scholar] [CrossRef]
- Cano-Sancho, G.; Salmon, A.G.; La Merrill, M.A. Association between exposure to p,p’-DDT and its metabolite p,p’-DDE with obesity: Integrated systematic review and meta-analysis. Environ. Health Perspect. 2017, 125, 096002. [Google Scholar] [CrossRef]
- Darbre, P.D.; Harvey, P.W. Parabens can enable hallmarks and characteristics of cancer in human breast epithelial cells: A review of the literature with reference to new exposure data and regulatory status. J. Appl. Toxicol. 2014, 34, 925–938. [Google Scholar] [CrossRef]
- Cooke, G.M. Effect of organotins on human aromatase activity in vitro. Toxicol. Lett. 2002, 126, 121–126. [Google Scholar] [CrossRef]
- Bateman, M.E.; Strong, A.L.; McLachlan, J.A.; Burow, M.E.; Bunnell, B.A. The effects of endocrine disruptors on adipogenesis and osteogenesis in mesenchymal stem cells: A review. Front. Endocrinol. 2017, 7, 171. [Google Scholar] [CrossRef]
- Sargis, R.M.; Johnson, D.N.; Choudhury, R.A.; Brady, M.J. Environmental endocrine disruptors promote adipogenesis in the 3T3-L1 cell line through glucocorticoid receptor activation. Obesity 2010, 18, 1283–1288. [Google Scholar] [CrossRef]
- Boucher, J.G.; Boudreau, A.; Atlas, E. Bisphenol A induces differentiation of human preadipocytes in the absence of glucocorticoid and is inhibited by an estrogen-receptor antagonist. Nutr. Diabetes 2014, 4, e102. [Google Scholar] [CrossRef]
- Cruz, G.; Foster, W.; Paredes, A.; Yi, K.D.; Uzumcu, M. Long-term effects of early-life exposure to environmental oestrogens on ovarian function: Role of epigenetics. J. Neuroendocrinol. 2014, 26, 613–624. [Google Scholar] [CrossRef]
- Rönn, M.; Lind, L.; Örberg, J.; Kullberg, J.; Söderberg, S.; Larsson, A.; Johansson, L.; Ahlström, H.; Lind, P.M. Bisphenol A is related to circulating levels of adiponectin, leptin and ghrelin, but not to fat mass or fat distribution in humans. Chemosphere 2014, 112, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Andra, S.S.; Makris, K.C. Thyroid disrupting chemicals in plastic additives and thyroid health. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2012, 30, 107–151. [Google Scholar] [CrossRef]
- Meeker, J.D.; Ferguson, K.K. Urinary phthalate metabolites are associated with decreased serum testosterone in men, women, and children from NHANES 2011-2012. J. Clin. Endocrinol. Metab. 2014, 99, 4346–4352. [Google Scholar] [CrossRef]
- Sonkar, R.; Powell, C.A.; Choudhury, M. Benzyl butyl phthalate induces epigenetic stress to enhance adipogenesis in mesenchymal stem cells. Mol. Cell Endocrinol. 2016, 431, 109–122. [Google Scholar] [CrossRef]
- Schmidt, J.S.; Schaedlich, K.; Fiandanese, N.; Pocar, P.; Fischer, B. Effects of di(2-ethylhexyl) phthalate (DEHP) on female fertility and adipogenesis in C3H/N mice. Environ. Health Perspect. 2012, 20, 1123–1129. [Google Scholar] [CrossRef]
- Hao, C.; Cheng, X.; Guo, J.; Xia, H.; Ma, X. Perinatal exposure to diethyl-hexyl-phthalate induces obesity in mice. Front. Biosci. 2013, 5, 725–733. [Google Scholar] [CrossRef]
- Evans, R.M.; Barish, G.D.; Wang, Y.X. PPARs and the complex journey to obesity. Nat. Med. 2004, 10, 355–361. [Google Scholar] [CrossRef]
- Hu, P.; Chen, X.; Whitener, R.J.; Boder, E.T.; Jones, J.O.; Porollo, A.; Chen, J.; Zhao, L. Effects of parabens on adipocyte differentiation. Toxicol. Sci. 2013, 131, 56–70. [Google Scholar] [CrossRef]
- Ferrante, M.C.; Amero, P.; Santoro, A.; Monnolo, A.; Simeoli, R.; Di Guida, F.; Mattace Raso, G.; Meli, R. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes. Toxicol. Appl. Pharmacol. 2014, 279, 401–408. [Google Scholar] [CrossRef]
- Zuo, Z.; Chen, S.; Wu, T.; Zhang, J.; Su, Y.; Chen, Y.; Wang, C. Tributyltin causes obesity and hepatic steatosis in male mice. Environ. Toxicol. 2011, 26, 79–85. [Google Scholar] [CrossRef]
- Legler, J.; Hamers, T.; van Eck van der Sluijs-van de Bor, M.; Schoeters, G.; van der Ven, L.; Eggesbo, M.; Koppe, J.; Feinberg, M.; Trnovec, T. The OBELIX project: Early life exposure to endocrine disruptors and obesity. Am. J. Clin. Nutr. 2011, 94 (Suppl. 6), 1933S–1938S. [Google Scholar] [CrossRef]
- Chen, M.Y.; Liu, H.P.; Cheng, J.; Chiang, S.Y.; Liao, W.P.; Lin, W.Y. Transgenerational impact of DEHP on body weight of Drosophila. Chemosphere 2019, 221, 493–499. [Google Scholar] [CrossRef]
- Hatch, E.E.; Nelson, J.W.; Qureshi, M.M.; Weinberg, J.; Moore, L.L.; Singer, M.; Webster, T.F. Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: A cross-sectional study of NHANES data, 1999-2002. Environ. Health 2008, 7, 27. [Google Scholar] [CrossRef]
- Miao, M.; Yuan, W.; He, Y.; Zhou, Z.; Wang, J.; Gao, E.; Li, G.; Li, D.K. In utero exposure to bisphenol-A and anogenital distance of male offspring. Birth Defects Res. A Clin. Mol. Teratol. 2011, 91, 867–872. [Google Scholar] [CrossRef]
- Kanayama, T.; Kobayashi, N.; Mamiya, S.; Nakanishi, T.; Nishikawa, J. Organotin compounds promote adipocyte differentiation as agonists of the peroxisome proliferator-activated receptor gamma/retinoid X receptor pathway. Mol. Pharmacol. 2005, 67, 766–774. [Google Scholar] [CrossRef]
- Inadera, H. Developmental origins of obesity and type 2 diabetes: Molecular aspects and role of chemicals. Environ. Health Prev. Med. 2013, 18, 185–197. [Google Scholar] [CrossRef]
- Regnier, S.M.; El-Hashani, E.; Kamau, W.; Zhang, X.; Massad, N.L.; Sargis, R.M. Tributyltin differentially promotes development of a phenotypically distinct adipocyte. Obesity 2015, 23, 1864–1871. [Google Scholar] [CrossRef] [Green Version]
- Shoucri, B.M.; Hung, V.T.; Chamorro-García, R.; Shioda, T.; Blumberg, B. Retinoid X receptor activation during adipogenesis of female mesenchymal stem cells programs a dysfunctional adipocyte. Endocrinology 2018, 159, 2863–2883. [Google Scholar] [CrossRef]
- Braun, J.M.; Chen, A.; Romano, M.E.; Calafat, A.M.; Webster, G.M.; Yolton, K.; Lanphear, B.P. Prenatal perfluoroalkyl substance exposure and child adiposity at 8 years of age: The HOME study. Obesity 2016, 24, 231–237. [Google Scholar] [CrossRef]
- Lyssimachou, A.; Santos, J.G.; André, A.; Soares, J.; Lima, D.; Guimarães, L.; Almeida, C.M.; Teixeira, C.; Castro, L.F.; Santos, M.M. The mammalian “obesogen” tributyltin targets hepatic triglyceride accumulation and the transcriptional regulation of lipid metabolism in the liver and brain of Zebrafish. PLoS ONE 2015, 10, e0143911. [Google Scholar] [CrossRef]
- Jordão, R.; Casas, J.; Fabrias, G.; Campos, B.; Piña, B.; Lemos, M.F.; Soares, A.M.; Tauler, R.; Barata, C. Obesogens beyond vertebrates: Lipid perturbation by tributyltin in the crustacean Daphnia magna. Environ. Health Perspect. 2015, 123, 813–819. [Google Scholar] [CrossRef]
- Riu, A.; McCollum, C.W.; Pinto, C.L.; Grimaldi, M.; Hillenweck, A.; Perdu, E.; Zalko, D.; Bernard, L.; Laudet, V.; Balaguer, P.; et al. Halogenated bisphenol-A analogs act as obesogens in zebrafish larvae (Danio rerio). Toxicol. Sci. 2014, 139, 48–58. [Google Scholar] [CrossRef]
- Canesi, L.; Fabbri, E. Environmental effects of BPA: Focus on aquatic species. Dose-Response 2015, 13, 1559325815598304. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Xue, W.Y.; Li, Y.Y.; Ma, Y.; Zhu, Y.S.; Huo, W.Q.; Xu, B.; Xia, W.; Xu, S.Q. Perinatal exposure to 4-nonylphenol affects adipogenesis in first and second generation rats offspring. Toxicol. Lett. 2014, 225, 325–332. [Google Scholar] [CrossRef]
- Lassiter, T.L.; Ryde, I.T.; Levin, E.D.; Seidler, F.J.; Slotkin, T.A. Neonatal exposure to parathion alters lipid metabolism in adulthood: Interactions with dietary fat intake and implications for neurodevelopmental deficits. Brain Res. Bull. 2010, 81, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Szabó, E.; Fajka-Boja, R.; Kriston-Pál, É.; Hornung, Á.; Makra, I.; Kudlik, G.; Uher, F.; Katona, R.L.; Monostori, É.; Czibula, Á. Licensing by inflammatory cytokines abolishes heterogeneity of immunosuppressive function of mesenchymal stem cell population. Stem Cells Dev. 2015, 24, 2171–2180. [Google Scholar] [CrossRef]
- MacKay, H.; Patterson, Z.R.; Abizaid, A. Perinatal exposure to low-dose bisphenol-a disrupts the structural and functional development of the hypothalamic feeding circuitry. Endocrinology 2017, 158, 768–777. [Google Scholar] [CrossRef]
- Gluckman, P.D. Epigenetics and metabolism in 2011: Epigenetics, the life-course and metabolic disease. Nat. Rev. Endocrinol. 2011, 8, 74–76. [Google Scholar] [CrossRef]
- Heindel, J.J.; Balbus, J.; Birnbaum, L.; Brune-Drisse, M.N.; Grandjean, P.; Gray, K.; Landrigan, P.J.; Sly, P.D.; Suk, W.; Cory Slechta, D.; et al. Developmental origins of health and disease: Integrating environmental influences. Endocrinology 2015, 156, 3416–3421. [Google Scholar] [CrossRef]
- Kim, H.K.; Nelson-Dooley, C.; Della-Fera, M.A.; Yang, J.Y.; Zhang, W.; Duan, J.; Hartzell, D.L.; Hamrick, M.W.; Baile, C.A. Genistein decreases food intake, body weight, and fat pad weight and causes adipose tissue apoptosis in ovariectomized female mice. J. Nutr. 2006, 136, 409–414. [Google Scholar] [CrossRef]
- Heindel, J.J.; Vom Saal, F.S.; Blumberg, B.; Bovolin, P.; Calamandrei, G.; Ceresini, G.; Cohn, B.A.; Fabbri, E.; Gioiosa, L.; Kassotis, C.; et al. Parma consensus statement on metabolic disruptors. Environ. Health 2015, 14, 54. [Google Scholar] [CrossRef]
Environmental Factors Contributing to Obesity Development |
---|
Prenatal exposure |
Environmental toxins (obesogens) |
Viruses |
Maternal diet with a high glycemic index |
Postnatal exposure |
Environmental toxins (obesogens) |
The increasing glycemic index of food |
Lack of physical activity |
Watching television and playing computer games, which results in:
|
Shortened sleep duration |
Medications, e.g.,
|
Disturbances of gut microbiota |
Group of Substances | Example(s) |
---|---|
Synthetic hormones | Ethynylestradiol |
Plastics | bisphenol A (BPA) phthalates |
Pesticides Fungicides | organotins methoxychlor chlorpyrifos dichlorodiphenyltrichloroethane (DDT) vinclozolin |
Solvents | polychlorinated biphenyls (PCBs) polybrominated biphenyls (PBBs) dioxins |
Pharmaceutical agents | thiazolidinediones atypical antipsychotics antihistamines antidepressants |
Personal care products | triclosan |
Phytoestrogens | genistein coumestrol |
Group | Name of the Chemical Compound | Role/Source in the Environment | Mechanism of Action | Endpoints |
---|---|---|---|---|
organotins | tributyltin oxide (TBT) triphenyltin (TPT) | used as a biocide (fungicide and molluscicide), especially as a wood preservative [17] | - peroxisome proliferator-activated receptor gamma (PPARγ) and retinoid X receptor alpha (RXRα) activators [17] - inhibitors of CYP19 [25] | ↑adipogenesis ↑lipids storage ↓synthesis of estrogens |
polycyclic aromatic hydrocarbons (PAHs) | Benzo[a]pyrene | byproducts of fuel burning [18] | - PPARγ activation via epigenetic modifications [18] | ↑adipogenesis ↑lipids storage |
bisphenol A (BPA) and its analogues | tetrabromobisphenol A (TBBPA) tetrachlorobisphenol A (TCBPA) | components of polycarbonate plastics [19] | - PPARγ activators [26] - glucocorticoid and estrogen receptor modulators [27,28] - direct activators of lipogenic genes [26] - epigenetic modifications [29] -↑generation of reactive oxygen species (ROS) [26] - ↑ inflammation [26] - ↑leptin level [19,30] | ↑lipids storage ↑adipogenesis ↑appetite |
polybrominated diphenyl ethers (PBDEs) | lower brominated PBDEs (with 1–4 bromine atoms) | flame retardants [20] | - interference with thyroid function [31,32] and testosterone metabolism [32] | ↑lipids storage |
phthalates | di-(2-ethyl hexyl)phthalate (DEHP), dibutyl phthalate (DBP), mono-benzylphthalate (MBzP), benzyl butyl phthalate (BBP), mono(2-ethylhexyl) phthalate (MEHP) | plasticizing agents present in cosmetics, paints, and medicines [21] | - PPARγ activators [26] - direct activators of lipogenic genes [28] - epigenetic modifications [33] -↑generation of ROS [26] -↑leptin level -↓adiponectin level [34,35] | ↑adipogenesis ↑lipids storage ↑appetite |
alkylphenols | nonylphenol (NP) octylphenol (OP) | surfactants in industrial and consumer products [22] | - PPARγ activators [26] - direct activators of lipogenic genes [26] -estrogen receptor modulators [28] - inhibitors of CYP19 [29] -↑generation of ROS [22] | ↑lipids storage ↑adipogenesis ↓synthesis of estrogens |
DDTDDE | dichlorodiphenyltrichloroethane dichlorodiphenyldichloroethylene | pesticides [23] | - PPARγ activators [26] - direct activator of lipogenic genes [26] - estrogen receptor modulators [28] | ↑lipids storage ↑adipogenesis |
parabens | alkyl esters of p-hydroxybenzoic acid | antimicrobial agents for the preservation of food, paper products, and pharmaceutical products [24] | - PPARγ activators [26] - glucocorticoid and estrogen receptor modulators [28] -↑leptin level [34,35] | ↑lipids storage ↑adipogenesis |
phytoestrogens | isoflavones | components of food (genistein, daidzein in soybeans, legumes, lentils, chickpeas) [16] | - estrogen receptor modulators [16] | ↑lipids storage ↑adipogenesis |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahnazaryan, U.; Wójcik, M.; Bednarczuk, T.; Kuryłowicz, A. Role of Obesogens in the Pathogenesis of Obesity. Medicina 2019, 55, 515. https://doi.org/10.3390/medicina55090515
Shahnazaryan U, Wójcik M, Bednarczuk T, Kuryłowicz A. Role of Obesogens in the Pathogenesis of Obesity. Medicina. 2019; 55(9):515. https://doi.org/10.3390/medicina55090515
Chicago/Turabian StyleShahnazaryan, Urszula, Marta Wójcik, Tomasz Bednarczuk, and Alina Kuryłowicz. 2019. "Role of Obesogens in the Pathogenesis of Obesity" Medicina 55, no. 9: 515. https://doi.org/10.3390/medicina55090515
APA StyleShahnazaryan, U., Wójcik, M., Bednarczuk, T., & Kuryłowicz, A. (2019). Role of Obesogens in the Pathogenesis of Obesity. Medicina, 55(9), 515. https://doi.org/10.3390/medicina55090515