Valorizing the Unexplored Filtration Waste of Brewing Industry for Green Silver Nanocomposite Synthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Nanoparticles
2.3. Analysis of Brewery By-Product and Product
2.4. Analysis of Nanocomposites
2.5. Bacterial Susceptibility Tests
3. Results
3.1. Characterization of Brewery By-Product and Product
3.2. Characterization of Nanocomposites
3.2.1. Crystallography and Phase Analysis
3.2.2. Elemental and Morphological Analysis
3.2.3. Chemical Analysis
3.2.4. Bacterial Susceptibility Testing
4. Discussion
5. Conclusions
- Nanocomposites with AgCl as the major phase and Ag metal were synthesized using BW9 and B. Additionally, the Ag3PO4 phase was also present in B nanocomposites.
- Increasing synthesis temperature aided the growth of minor phases into the composite.
- The nanocomposites’ surface is composed of organic groups present in the brewery products BW9 and B. The resulting overlayer thickness was ~23–30 Å. The surface of B nanocomposites is enriched in oxygen compared to BW9 nanocomposites.
- Nanocomposites showed antibacterial activity towards Gram-negative strain Escherichia coli (E. coli ATCC 25922).
- Better antibacterial activity was exhibited by BW9 nanocomposite due to the larger AgCl, Ag oxides content, and smaller content of C–OH and C = O groups on the surface than in B nanocomposite.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Patent
References
- Chavda, R. 10 Most Consumed Beverages in the World. Available online: https://www.toptenslist.com/worlds-most-consumed-beverages.html (accessed on 15 May 2021).
- Arthur, R. Unprecedented Boom’ in Microbreweries Helps Boost European Beer Volumes and Variety. Available online: https://www.beveragedaily.com/Article/2018/12/06/EU-beer-statistics-Microbreweries-and-craft-beer-provide-big-boost#:~:targetText=The%20latest%20statistics%20from%20trade,beer%20take%20a%206%25%20share (accessed on 15 May 2021).
- Beer Statistics; The Brewers of Europe: Brussels, Belgium, 2018.
- Fillaudeau, L.; Blanpain-Avet, P.; Daufin, G. Water, wastewater and waste management in brewing industries. J. Clean. Prod. 2006, 14, 463–471. [Google Scholar] [CrossRef]
- Fărcaş, A.C.; Socaci, S.A.; Mudura, E.; Dulf, F.V.; Vodnar, D.C.; Tofană, M.; Salanță, L. Exploitation of Brewing Industry Wastes to Produce Functional Ingredients. In Brewing Technology; Kanauchi, M., Ed.; IntechOpen Book: London, UK, 2017. [Google Scholar]
- Simate, G.S.; Cluett, J.; Iyuke, S.E.; Musapatika, E.T.; Ndlovu, S.; Walubita, L.F.; Alvarez, A.E. The treatment of brewery wastewater for reuse: State of the art. Desalination 2011, 273, 235–247. [Google Scholar] [CrossRef]
- Ferreira, I.M.P.L.V.O.; Pinho, O.; Vieira, E.; Tavarela, J.G. Brewer’s Saccharomyces yeast biomass: Characteristics and potential applications. Trends Food Sci. Technol. 2010, 21, 77–84. [Google Scholar] [CrossRef]
- Brewing Beer: The Brewing Process. Available online: https://www.braeuamberg.at/en/brewing-process/ (accessed on 20 May 2021).
- Eßlinger, H.M.; Narziß, L. Beer; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009. [Google Scholar] [CrossRef]
- Silva, F.; Nogueira, L.C.; Gonçalves, C.; Ferreira, A.A.; Ferreira, I.M.P.L.V.O.; Teixeira, N. Electrophoretic and HPLC methods for comparative study of the protein fractions of malts, worts and beers produced from Scarlett and Prestige barley (Hordeum vulgare L.) varieties. Food Chem. 2008, 106, 820–829. [Google Scholar] [CrossRef]
- Jaskula, B.; Goiris, K.; Rouck, G.D.; Aerts, G.; Cooman, L.D. Enhanced Quantitative Extraction and HPLC Determination of Hop and Beer Bitter Acids. J. Inst. Brew. 2007, 113, 381–390. [Google Scholar] [CrossRef]
- Whittle, N.; Eldridge, H.; Bartley, J. Identification of the Polyphenols in Barley and Beer by HPLC/MS and HPLC/Electrochemical Detection. J. Inst. Brew. 1999, 105, 89–99. [Google Scholar] [CrossRef]
- Duarte, I.F.; Barros, A.; Almeida, C.; Spraul, M.; Gil, A.M. Multivariate Analysis of NMR and FTIR Data as a Potential Tool for the Quality Control of Beer. J. Agric. Food Chem. 2004, 52, 1031–1038. [Google Scholar] [CrossRef]
- Saratale, R.G.; Saratale, G.D.; Shin, H.S.; Jacob, J.M.; Pugazhendhi, A.; Bhaisare, M.; Kumar, G. New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: Current knowledge, their agricultural and environmental applications. Environ. Sci. Pollut. Res. Int. 2018, 25, 10164–10183. [Google Scholar] [CrossRef]
- Bastos-Arrieta, J.; Florido, A.; Perez-Rafols, C.; Serrano, N.; Fiol, N.; Poch, J.; Villaescusa, I. Green Synthesis of Ag Nanoparticles Using Grape Stalk Waste Extract for the Modification of Screen-Printed Electrodes. Nanomaterials 2018, 8, 946. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.R.; Fawcett, D.; Sharma, S.B.; Poinern, G.E.J. Production of High-Value Nanoparticles via Biogenic Processes Using Aquacultural and Horticultural Food Waste. Materials 2017, 10, 852. [Google Scholar] [CrossRef] [Green Version]
- Singhal, A.; Gupta, A. Sustainable synthesis of silver nanoparticles using exposed X-ray sheets and forest-industrial waste biomass Assessment of kinetic and catalytic properties for degradation of toxic dyes mixture. J. Environ. Manag. 2019, 247, 698–711. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Sardar, M. Rapid Biosynthesis of Silver Nanoparticles Using Sugarcane Bagasse—An Industrial Waste. J. Nanoeng. Nanomanuf. 2013, 3, 217–219. [Google Scholar] [CrossRef]
- Chaudhuri, D.; Murugan, S. The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf. B Biointerfaces 2012, 98, 112–119. [Google Scholar] [CrossRef]
- Hu, B.; Wang, S.B.; Wang, K.; Zhang, M.; Yu, S.H. Microwave-assisted rapid facile green synthesis of uniform silver nanoparticles self-assembly into multilayered films and their optical properties. J. Phys. Chem. C 2008, 112, 11169–11174. [Google Scholar] [CrossRef]
- Jeon, E.K.; Seo, E.; Lee, E.; Lee, W.; Um, M.K.; Kim, B.S. Mussel-inspired green synthesis of silver nanoparticles on graphene oxide nanosheets for enhanced catalytic applications. Chem. Commun. 2013, 49, 3392–3394. [Google Scholar] [CrossRef] [Green Version]
- Khan, Z.U.H.; Khan, A.; Chen, Y.M.; Shah, N.S.; Khan, A.U.; Muhammad, N.; Tahir, K.; Shah, H.U.; Khan, Z.U.; Shakeel, M.; et al. Enhanced antimicrobial, anti-oxidant applications of green synthesized AgNPs- an acute chronic toxicity study of phenolic azo dyes & study of materials surface using X-ray photoelectron spectroscopy. J. Photochem. Photobiol. B 2018, 180, 208–217. [Google Scholar] [CrossRef]
- Sudagar, A.J.; Rangam, N.V.; Ruszczak, A.; Borowicz, P.; Tóth, J.; Kövér, L.; Michałowska, D.; Roszko, M.Ł.; Noworyta, K.R.; Lesiak, B. Valorization of Brewery Wastes for the Synthesis of Silver Nanocomposites Containing Orthophosphate. Nanomaterials 2021, 11, 2659. [Google Scholar] [CrossRef]
- ISO 1871:2009. Food and Feed Products—General Guidelines for the Determination of Nitrogen by the Kjeldahl Method. Available online: https://www.iso.org/standard/41320.html (accessed on 2 October 2021).
- Grubesic, R.J.; Vukovic, J.; Kremer, D.; Vladimir-Knezevic, S. Spectrophotometric method for polyphenols analysis: Prevalidation and application on Plantago L. species. J. Pharm. Biomed. Anal. 2005, 39, 837–842. [Google Scholar] [CrossRef]
- Hewitt, B.R. Spectrophotometric Determination of Total Carbohydrate. Nature 1958, 182, 246–247. [Google Scholar] [CrossRef]
- Petkova, N.; Vrancheva, R.; Denev, P.; Ivanov, I.; Pavlov, A. HPLC-RID method for determination of inulin and fructooligosaccharides. Acta Nat. Sci. 2014, 1, 99–107. [Google Scholar]
- Cendejas-Bueno, E.; Rodriguez-Tudela, J.L.; Cuenca-Estrella, M.; Gomez-Lopez, A. Development and validation of a fast HPLC/photodiode array detection method for the measurement of voriconazole in human serum samples. A reference laboratory experience. Enferm. Infecc. Microbiol. Clin. 2013, 31, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Bisutti, I.; Hilke, I.; Raessler, M. Determination of total organic carbon—An overview of current methods. TrAC Trends Anal. Chem. 2004, 23, 716–726. [Google Scholar] [CrossRef]
- Kover, L.; Varga, D.; Cserny, I.; Toth, J.; Tokesi, K. Some applications of high-energy, high-resolution Auger-electron spectroscopy using Bremsstrahlung radiation. Surf. Interface Anal. 1992, 19, 9–15. [Google Scholar] [CrossRef]
- Tougaard, S. Background Analysis of XPS/AES QUASES Simple Backgrounds; Version 4.1; Copyright 1994–2010; QUASES—Tougaard Inc.: Odense, Denmark, 2010. [Google Scholar]
- Kwok, R.W.M. XPS Peak Fitting Program for WIN95/98 XPSPEAK; Version 4.1; Copyright: R.W.M. Kwok 2000; Department of Chemistry, The Chinese University of Hong Kong: Hong Kong, China, 2000. [Google Scholar]
- Mohai, M. (Ed.) Multimodel of X-ray photoelectron spectroscopy quantification program for 32-bitWindows. In XPSMuliQuant; ver. 7.5; Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences: Budapest, Hungary, 1999. [Google Scholar]
- Mohai, M. XPS MultiQuant: Multimodel XPS Quantification Software. Surf. Interface Anal. 2004, 36, 828–832. [Google Scholar] [CrossRef]
- Infrared Spectroscopy MSU Chemistry. Available online: https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/spectrpy/infrared/infrared.htm (accessed on 25 May 2021).
- Wen, S.; Chen, L.; Li, W.; Ren, H.; Li, K.; Wu, B.; Hu, H.; Xu, K. Insight into the characteristics, removal, and toxicity of effluent organic matter from a pharmaceutical wastewater treatment plant during catalytic ozonation. Sci. Rep. 2018, 8, 9581. [Google Scholar] [CrossRef]
- Georget, D.M.R.; Belton, P.S. Effects of Temperature and Water Content on the Secondary Structure of Wheat Gluten Studied by FTIR Spectroscopy. Biomacromolecules 2006, 7, 469–475. [Google Scholar] [CrossRef]
- Zhbankov, R.G.; Firsov, S.P.; Buslov, D.K.; Nikonenko, N.A.; Marchewka, M.K.; Ratajczak, H. Structural physico-chemistry of cellulose macromolecules. Vibrational spectra and structure of cellulose. J. Mol. Struct. 2002, 614, 117–125. [Google Scholar] [CrossRef]
- Edelmann, A.; Lendl, B. Toward the Optical Tongue: Flow-Through Sensing of Tannin−Protein Interactions Based on FTIR Spectroscopy. J. Am. Chem. Soc. 2002, 124, 14741–14747. [Google Scholar] [CrossRef]
- Talari, A.C.S.; Martinez, M.A.G.; Movasaghi, Z.; Rehman, S.; Rehman, I.U. Advances in Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2016, 52, 456–506. [Google Scholar] [CrossRef]
- Zhou, C.; Jiang, W.; Via, B.K.; Fasina, O.; Han, G. Prediction of mixed hardwood lignin and carbohydrate content using ATR-FTIR and FT-NIR. Carbohydr. Polym. 2015, 121, 336–341. [Google Scholar] [CrossRef] [Green Version]
- Farhat, I.A.; Orset, S.; Moreau, P.; Blanshard, J.M.V. FTIR Study of Hydration Phenomena in Protein–Sugar Systems. J. Colloid Interface Sci. 1998, 207, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, C.R.; Snyder, R.L. RIR—Measurement and use in quantitative XRD. Powder Diffr. 1988, 3, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Paschalis, E.P.; DiCarlo, E.; Betts, F.; Sherman, P.; Mendelsohn, R.; Boskey, A.L. FTIR microspectroscopic analysis of human osteonal bone. Calcif. Tissue Int. 1996, 59, 8. [Google Scholar] [CrossRef]
- Padmanabhan, S.K.; Pal, S.; Licciulli, A. Diatomite/silver phosphate composite for efficient degradation of organic dyes under solar radiation. Bull. Mater. Sci. 2020, 43, 295. [Google Scholar] [CrossRef]
- Saud, P.S.; Pant, B.; Twari, A.P.; Ghouri, Z.K.; Park, M.; Kim, H.Y. Effective photocatalytic efficacy of hydrothermally synthesized silver phosphate decorated titanium dioxide nanocomposite fibers. J. Colloid Interface Sci. 2016, 465, 225–232. [Google Scholar] [CrossRef]
- Ma, J.; Niu, X.; Wang, J.; Wu, J. Facile synthesis of Ag3PO4 with the assistance of N, N-dimethylformamid and urea for high performance photocatalysis. Catal. Commun. 2016, 77, 55–59. [Google Scholar] [CrossRef]
- Scofield, J.H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron. Spectrosc. Relat. Phenom. 1976, 8, 129–137. [Google Scholar] [CrossRef]
- Sulaeman, U.; Hermawan, D.; Andreas, R.; Abdullah, A.Z.; Yin, S. Native defects in silver orthophosphate and their effects on photocatalytic activity under visible light irradiation. Appl. Surf. Sci. 2018, 428, 1029–1035. [Google Scholar] [CrossRef]
- Sulaeman, U.; Suhendar, S.; Diastuti, H.; Riapanitra, A.; Yin, S. Design of Ag3PO4 for highly enhanced photocatalyst using hydroxyapatite as a source of phosphate ion. Solid State Sci. 2018, 86, 1–5. [Google Scholar] [CrossRef]
- Kaushik, V.K. XPS core level spectra and Auger parameters for some silver compounds. J. Electron. Spectrosc. Relat. Phenom. 1991, 56, 273–277. [Google Scholar] [CrossRef]
- Kibis, L.S.; Stadnichenko, A.I.; Pajetnov, E.M.; Koscheev, S.V.; Zaykovskii, V.I.; Boronin, A.I. The investigation of oxidized silver nanoparticles prepared by thermal evaporation and radio-frequency sputtering of metallic silver under oxygen. Appl. Surf. Sci. 2010, 257, 404–413. [Google Scholar] [CrossRef]
- Rocha, T.C.; Oestereich, A.; Demidov, D.V.; Havecker, M.; Zafeiratos, S.; Weinberg, G.; Bukhtiyarov, V.I.; Knop-Gericke, A.; Schlogl, R. The silver-oxygen system in catalysis: New insights by near ambient pressure X-ray photoelectron spectroscopy. Phys. Chem. Chem. Phys. 2012, 14, 4554–4564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikhlin, Y.L.; Vishnyakova, E.A.; Romanchenko, A.S.; Saikova, S.V.; Likhatski, M.N.; Larichev, Y.V.; Tuzikov, F.V.; Zaikovskii, V.I.; Zharkov, S.M. Oxidation of Ag nanoparticles in aqueous media: Effect of particle size and capping. Appl. Surf. Sci. 2014, 297, 75–83. [Google Scholar] [CrossRef]
- Lesiak, B.; Kövér, L.; Tóth, J.; Zemek, J.; Jiricek, P.; Kromka, A.; Rangam, N. C sp2/sp3 hybridisations in carbon nanomaterials—XPS and (X)AES study. Appl. Surf. Sci. 2018, 452, 223–231. [Google Scholar] [CrossRef]
- Vorobyev, S.; Vishnyakova, E.; Likhatski, M.; Romanchenko, A.; Nemtsev, I.; Mikhlin, Y. Reactivity and Chemical Sintering of Carey Lea Silver Nanoparticles. Nanomaterials 2019, 9, 1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tougaard, S. QUASES-Tougaard Background Analysis of XPS/AES Part1-QUASES-Analyze; Version 5.0; Copyright 1994–2003; QUASES—Tougaard Inc.: Odense, Denmark, 2021. [Google Scholar]
- Tanuma, S.; Powell, C.J.; Penn, D.R. Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50–2000 eV range. Surf. Interface Anal. 1993, 21, 165–176. [Google Scholar] [CrossRef]
- NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20; National Institute of Standards and Technology: Gaithersburg MD, USA, 2000.
- Goldammer, T. The Brewer’s Handbook. Available online: http://www.beer-brewing.com/beer_brewing/about_this_title/introduction.htm (accessed on 2 September 2021).
- Siddiqi, K.S.; Husen, A.; Rao, R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol. 2018, 16, 14. [Google Scholar] [CrossRef]
- Lin, Z.; Wu, J.; Xue, R.; Yang, Y. Spectroscopic characterization of Au3+ biosorption by waste biomass of Saccharomyces cerevisiae. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005, 61, 761–765. [Google Scholar] [CrossRef]
- Ferraris, S.; Miola, M.; Cochis, A.; Azzimonti, B.; Rimondini, L.; Prenesti, E.; Vernè, E. In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols. Appl. Surf. Sci. 2017, 396, 461–470. [Google Scholar] [CrossRef]
- Özyürek, M.; Güngör, N.; Baki, S.; Güçlü, K.; Apak, R. Development of a Silver Nanoparticle-Based Method for the Antioxidant Capacity Measurement of Polyphenols. J. Am. Chem. Soc. 2012, 84, 8052–8059. [Google Scholar] [CrossRef]
- Jacob, J.A.; Mahal, H.S.; Biswas, N.; Mukherjee, T.; Kapoor, S. Role of Phenol Derivatives in the Formation of Silver Nanoparticles. Langmuir 2008, 24, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Stater, E.P.; Sonay, A.Y.; Hart, C.; Grimm, J. The ancillary effects of nanoparticles and their implications for nanomedicine. Nat. Nanotechnol. 2021, 16, 1180–1194. [Google Scholar] [CrossRef] [PubMed]
- Hembram, K.C.; Kumar, R.; Kandha, L.; Parhi, P.K.; Kundu, C.N.; Bindhani, B.K. Therapeutic prospective of plant-induced silver nanoparticles: Application as antimicrobial and anticancer agent. Artif. Cells Nanomed. Biotechnol. 2018, 46, S38–S51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdusel, A.C.; Gherasim, O.; Grumezescu, A.M.; Mogoanta, L.; Ficai, A.; Andronescu, E. Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. Nanomaterials 2018, 8, 681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva Ferreira, V.; ConzFerreira, M.E.; Lima, L.M.; Frases, S.; de Souza, W.; Sant’nna, C. Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria. Enzyme Microb. Technol. 2017, 97, 114–121. [Google Scholar] [CrossRef]
- Dong, Y.; Zhu, H.; Shen, Y.; Zhang, W.; Zhang, L. Antibacterial activity of silver nanoparticles of different particle size against Vibrio Natriegens. PLoS ONE 2019, 14, e0222322. [Google Scholar] [CrossRef] [Green Version]
- Patil, M.P.; Seo, Y.B.; Kim, G.D. Morphological changes of bacterial cells upon exposure of silver-silver chloride nanoparticles synthesized using Agrimonia pilosa. Microb. Pathog. 2018, 116, 84–90. [Google Scholar] [CrossRef]
Analysis | Subtype | Units | Brewery Wastes | |
---|---|---|---|---|
BW9 | B | |||
Total nitrogen | mg L−1 | 443.8 | 782.6 | |
Total polyphenols | 87.75 | 213.65 | ||
Total sulfates | 103.4 | 121.1 | ||
Total carbohydrates | 1200 | 38,500 | ||
Fermentable sugars | Total | 600 | 22,800 | |
Fructose | 100 | 300 | ||
Glucose | 100 | 16,700 | ||
Maltose + sucrose | 200 | 1500 | ||
Maltotriose | 200 | 4300 | ||
Elemental content | K | mg L−1 | 284 ± 48.3 | 558 ± 94.9 |
P | 149 ± 6 | 266 ± 10.6 | ||
Cl | 165 ± 1.0 | 286 ± 2.0 | ||
Mg | 56.1 ± 9.5 | 103.9 ± 17.7 | ||
Ca | 68.0 ± 10.2 | 27.8 ± 4.2 | ||
Na | 42.9 ± 4.3 | 55.8 ± 5.6 | ||
Mn | 0.22 ± 0.02 | 0.14 ± 0.01 | ||
Fe | 6.0 ± 0.84 | 0.2 ± 0.03 | ||
Al | 0.01 ± 0.01 | 0.09 ± 0.01 | ||
Ni | <0.05 | <0.05 | ||
Zn | <0.05 | <0.05 | ||
Cu | <0.05 | <0.05 | ||
Total organic carbon | mg L−1 | 2.84 | 6.43 |
Sample | Synthesis Temperature (°C) | Synthesis Time (min) | PXRD Analysis | |||||
---|---|---|---|---|---|---|---|---|
Ag Phase Content (wt.%) | Nanocrystallites Size (nm) | |||||||
Ag3PO4 | AgCl | Agmet | Ag3PO4 | AgCl | Agmet | |||
BW9Ag1 | 25 | 120 | 100 | - | 5.6 ± 0.5 | - | ||
BW9Ag2 | 50 | 97.0 | 3.0 | 5.6 ± 0.6 | 2.9 | |||
BW9Ag3 | 80 | 73.2 | 26.8 | 19.4 ± 3.1 | 3.6 | |||
BW9Ag4 | 80 | 30 | 75.7 | 24.3 | 15.6 ± 2.7 | 3.2 | ||
BW9Ag5 | 80 | 10 | 92.9 | 7.1 | 16.0 ± 2.7 | 2.5 | ||
BAg1 | 25 | 120 | 4.2 | 94.2 | 1.6 | 4.9 | 6.1 ± 1 | 10.9 |
BAg2 | 50 | 2.0 | 96.7 | 1.3 | 9.2 | 7.9 ± 1.7 | 7.6 | |
BAg3 | 80 | 19.1 | 51.8 | 29.1 | 10.8 ± 5.2 | 10.7 ± 1.2 | 3.0 ± 0.3 | |
BAg4 | 80 | 30 | 15.8 | 61.5 | 22.7 | 11 ± 5.5 | 10.4 ± 2.4 | 3.3 |
BAg5 | 80 | 10 | 33.4 | 63.8 | 2.8 | 9.8 ± 3.9 | 9.8 ± 1.8 | 10.1 |
Sample | Synthesis Temperature (°C) | Synthesis Time (min) | XRF Analysis | |||
---|---|---|---|---|---|---|
Elemental Composition (wt.%) | ||||||
Ag | P | Cl | S | |||
BW9Ag1 | 25 | 120 | 83.1 | 0.1 | 15.1 | 1.6 |
BW9Ag2 | 50 | 83.8 | 0.2 | 14.6 | 1.5 | |
BW9Ag3 | 80 | 89.3 | 0.6 | 9.3 | 0.8 | |
BW9Ag4 | 80 | 30 | 88.0 | 0.4 | 10.7 | 0.9 |
BW9Ag5 | 80 | 10 | 84.4 | 0.3 | 14.5 | 0.8 |
Bag1 | 25 | 120 | 86.4 | 0.5 | 12.0 | 1.1 |
Bag2 | 50 | 85.3 | 0.7 | 13.0 | 1.1 | |
Bag3 | 80 | 91.9 | 1.4 | 6.1 | 0.6 | |
Bag4 | 80 | 30 | 91.1 | 1.3 | 7 | 0.6 |
Bag5 | 80 | 10 | 91.1 | 2.6 | 5.8 | 0.5 |
Sample | Synthesis Temperature (°C) | Synthesis Time (min) | XPS Analysis | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Surface Elemental Composition (wt.%) | ||||||||||
C | O | Ag | N | P | S | B | Cl | |||
BW9Ag1 | 25 | 120 | 35.2 | 10.5 | 38.3 | 5.1 | - | 1.0 | 1.2 | 8.7 |
BW9Ag2 | 50 | 41.4 | 13.8 | 31.4 | 5.4 | 1.1 | 0.7 | 6.2 | ||
BW9Ag3 | 80 | 36.8 | 13.3 | 38.3 | 5.8 | 1.3 | - | 4.5 | ||
BW9Ag4 | 80 | 30 | 37.7 | 12.3 | 39.8 | 5.6 | 0.5 | 4.1 | ||
BW9Ag5 | 80 | 10 | 36.1 | 12.1 | 38.8 | 5.2 | 1.5 | 6.3 | ||
BAg1 | 25 | 120 | 33.8 | 14.1 | 39.4 | 5.4 | 0.4 | 0.9 | 0.7 | 5.3 |
BAg2 | 50 | 29.8 | 13.0 | 39.3 | 5.8 | 0.6 | 1.2 | 5.3 | 5.0 | |
BAg3 | 80 | 26.5 | 13.7 | 51.1 | 5.0 | 0.6 | 0.8 | - | 2.3 | |
BAg4 | 80 | 30 | 26.5 | 12.8 | 49.6 | 4.3 | 1.9 | 1.7 | 3.2 | |
BAg5 | 80 | 10 | 33.3 | 16.6 | 38.8 | 6.5 | 1.6 | 0.4 | 2.8 |
Sample | Synthesis Temperature (°C) | Synthesis Time (min) | Ag Chemical State (wt.%)—Ag 3d5/2–3/2 | |||
---|---|---|---|---|---|---|
AgO-Polymer | Ag2O, AgO, AgOH | Ag3PO4 | AgCl | |||
365.4 ± 0.3 eV (BW9) 364.9 ± 0.4 eV (B) | BE = 367.3 eV | BE = 367.8 eV | BE = 368.1 eV | |||
BW9Ag1 | 25 | 120 | 5.01 | 1.75 | - | 31.54 |
BW9Ag2 | 50 | 3.90 | 1.20 | - | 26.30 | |
BW9Ag3 | 80 | 7.19 | 2.96 | - | 28.15 | |
BW9Ag4 | 80 | 30 | 6.45 | 3.52 | - | 29.83 |
BW9Ag5 | 80 | 10 | 6.03 | 2.17 | - | 30.60 |
BAg1 | 25 | 120 | 3.38 | 0.38 | - | 35.74 |
BAg2 | 50 | 3.19 | 0.75 | - | 36.96 | |
BAg3 | 80 | 4.36 | - | - | 35.64 | |
BAg4 | 80 | 30 | 4.79 | - | - | 37.11 |
BAg5 | 80 | 10 | 3.96 | - | 4.33 | 38.81 |
Sample | Synthesis Temperature (°C) | Synthesis Time (min) | C Chemical State (wt.%)—C 1s | XPS QUASES-TougaardBL Model Overlayer Thickness (Å) | |||
---|---|---|---|---|---|---|---|
C sp2 | C sp3 | C–OH | C=O | ||||
BE = 284.4 ± 0.1 eV | BE = 285.3 ± 0.1 eV | BE = 286.2 ± 0.1 eV | BE = 287.3 ± 0.1 eV | ||||
BW9Ag1 | 25 | 120 | 17.31 | 12.13 | - | 5.76 | 23.5 |
BW9Ag2 | 50 | 22.75 | 12.40 | 1.56 | 4.69 | 28.9 | |
BW9Ag3 | 80 | 20.68 | 6.88 | 6.88 | 2.36 | 27.7 | |
BW9Ag4 | 80 | 30 | 21.93 | 7.19 | 5.83 | 2.75 | 27.3 |
BW9Ag5 | 80 | 10 | 17.75 | 11.40 | 4.37 | 2.58 | 28.0 |
BAg1 | 25 | 120 | 9.06 | 16.31 | 0.88 | 7.55 | 25.9 |
BAg2 | 50 | 8.74 | 13.34 | 1.97 | 5.75 | 24.5 | |
BAg3 | 80 | 11.81 | 35.16 | 2.17 | 12.06 | 26.5 | |
BAg4 | 80 | 30 | 9.04 | 38.61 | - | 11.75 | 24.3 |
BAg5 | 80 | 10 | 6.69 | 15.77 | - | 6.24 | 24.3 |
Sample | Synthesis Temperature (°C) | Synthesis Time (min) | MIC (μg mL−1) |
---|---|---|---|
Escherichia coli | |||
BW9Ag1 | 25 | 120 | 15.625 |
BW9Ag3 | 80 | 18.75 | |
BAg1 | 25 | 15.625 | |
BAg3 | 80 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rangam, N.V.; Sudagar, A.J.; Ruszczak, A.; Borowicz, P.; Tóth, J.; Kövér, L.; Michałowska, D.; Roszko, M.Ł.; Noworyta, K.R.; Lesiak, B. Valorizing the Unexplored Filtration Waste of Brewing Industry for Green Silver Nanocomposite Synthesis. Nanomaterials 2022, 12, 442. https://doi.org/10.3390/nano12030442
Rangam NV, Sudagar AJ, Ruszczak A, Borowicz P, Tóth J, Kövér L, Michałowska D, Roszko MŁ, Noworyta KR, Lesiak B. Valorizing the Unexplored Filtration Waste of Brewing Industry for Green Silver Nanocomposite Synthesis. Nanomaterials. 2022; 12(3):442. https://doi.org/10.3390/nano12030442
Chicago/Turabian StyleRangam, Neha Venkatesh, Alcina Johnson Sudagar, Artur Ruszczak, Paweł Borowicz, József Tóth, László Kövér, Dorota Michałowska, Marek Łukasz Roszko, Krzysztof Robert Noworyta, and Beata Lesiak. 2022. "Valorizing the Unexplored Filtration Waste of Brewing Industry for Green Silver Nanocomposite Synthesis" Nanomaterials 12, no. 3: 442. https://doi.org/10.3390/nano12030442
APA StyleRangam, N. V., Sudagar, A. J., Ruszczak, A., Borowicz, P., Tóth, J., Kövér, L., Michałowska, D., Roszko, M. Ł., Noworyta, K. R., & Lesiak, B. (2022). Valorizing the Unexplored Filtration Waste of Brewing Industry for Green Silver Nanocomposite Synthesis. Nanomaterials, 12(3), 442. https://doi.org/10.3390/nano12030442