Metformin as a Disease-Modifying Agent in Autosomal Dominant Polycystic Kidney Disease: A Systematic Review of Preclinical and Clinical Evidence
Abstract
1. Introduction
2. Materials and Methods (PRISMA Guidelines)
3. Results and Discussion
3.1. Metformin and Mitochondrial Function in ADPKD
3.2. Pathophysiology of ADPKD
3.3. Anti-Inflammatory and Molecular Mechanisms of Metformin in ADPKD
3.4. Effects on Carbohydrate Metabolism in ADPKD
3.5. Progression of Renal Failure in ADPKD
3.6. Mortality in ADPKD: Potential Impact of Metformin
3.7. Potential Variations in Metformin Efficacy by Sex, CKD Stage, and Diabetes Status
3.8. Comparative Section: Metformin Versus Tolvaptan
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Torres, V.E.; Harris, P.C. Autosomal dominant polycystic kidney disease: The last 3 years. Kidney Int. 2009, 76, 149–168. [Google Scholar] [CrossRef] [PubMed]
- Perrone, R.D.; Abebe, K.Z.; Watnick, T.J.; Althouse, A.D.; Hallows, K.R.; Lalama, C.M.; Miskulin, D.C.; Seliger, S.L.; Tao, C.; Harris, P.C.; et al. Primary results of the randomized trial of metformin administration in polycystic kidney disease (TAME PKD). Kidney Int. 2021, 100, 684–696. [Google Scholar] [CrossRef]
- Quiroga, B.; Torra, R. Dietary Aspects and Drug-Related Side Effects in Autosomal Dominant Polycystic Kidney Disease Progression. Nutrients 2022, 14, 4651. [Google Scholar] [CrossRef]
- Cornec-Le Gall, E.; Alam, A.; Perrone, R.D. Autosomal dominant polycystic kidney disease. Lancet 2019, 393, 919–935. [Google Scholar] [CrossRef]
- Tsukamoto, S.; Urate, S.; Yamada, T.; Azushima, K.; Yamaji, T.; Kinguchi, S.; Uneda, K.; Kanaoka, T.; Wakui, H.; Tamura, K. Comparative Efficacy of Pharmacological Treatments for Adults With Autosomal Dominant Polycystic Kidney Disease: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Front. Pharmacol. 2022, 13, 885457. [Google Scholar] [CrossRef]
- Chebib, F.T.; Torres, V.E. Autosomal Dominant Polycystic Kidney Disease: Core Curriculum 2016. Am. J. Kidney Dis. 2016, 67, 792–810. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.; Huang, S.Q.; Cheng, X.S.; Li, K.; Jiang, X.L. Metformin reduces decline in the estimated glomerular filtration rate during progression of autosomal dominant polycystic kidney disease: A systematic review and meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 11904–11912. [Google Scholar] [CrossRef]
- Song, A.; Zhang, C.; Meng, X. Mechanism and application of metformin in kidney diseases: An update. Biomed. Pharmacother. 2021, 138, 111454. [Google Scholar] [CrossRef]
- Kramers, B.J.; Koorevaar, I.W.; van Gastel, M.D.A.; van Goor, H.; Hallows, K.R.; Heerspink, H.L.; Li, H.; Leonhard, W.N.; Peters, D.J.M.; Qiu, J.; et al. Effects of Hydrochlorothiazide and Metformin on Aquaresis and Nephroprotection by a Vasopressin V2 Receptor Antagonist in ADPKD: A Randomized Crossover Trial. Clin. J. Am. Soc. Nephrol. 2022, 17, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Gao, J.; Yu, X. Metabolic Reprogramming in Autosomal Dominant Polycystic Kidney Disease: Role in Cystogenesis and Novel Therapeutic Approaches. Biomedicines 2025, 13, 1596. [Google Scholar] [CrossRef]
- Vial, G.; Detaille, D.; Guigas, B. Role of Mitochondria in the Mechanism(s) of Action of Metformin. Front. Endocrinol. 2019, 10, 294. [Google Scholar] [CrossRef] [PubMed]
- Lian, X.; Wu, X.; Li, Z.; Zhang, Y.; Song, K.; Cai, G.; Li, Q.; Lin, S.; Chen, X.; Bai, X.Y. The combination of metformin and 2-deoxyglucose significantly inhibits cyst formation in miniature pigs with polycystic kidney disease. Br. J. Pharmacol. 2019, 176, 711–724. [Google Scholar] [CrossRef]
- Reiterová, J.; Tesař, V. Autosomal Dominant Polycystic Kidney Disease: From Pathophysiology of Cystogenesis to Advances in the Treatment. Int. J. Mol. Sci. 2022, 23, 3317. [Google Scholar] [CrossRef]
- Sakata, N. The anti-inflammatory effect of metformin: The molecular targets. Genes Cells 2024, 29, 183–191. [Google Scholar] [CrossRef]
- Zhu, H.; Jia, Z.; Li, Y.R.; Danelisen, I. Molecular mechanisms of action of metformin: Latest advances and therapeutic implications. Clin. Exp. Med. 2023, 23, 2941–2951. [Google Scholar] [CrossRef]
- LaMoia, T.E.; Shulman, G.I. Cellular and Molecular Mechanisms of Metformin Action. Endocr. Rev. 2021, 42, 77–96. [Google Scholar] [CrossRef]
- Dachy, A.; Decuypere, J.P.; Vennekens, R.; Jouret, F.; Mekahli, D. Is autosomal dominant polycystic kidney disease an early sweet disease? Pediatr. Nephrol. 2022, 37, 1945–1955. [Google Scholar] [CrossRef] [PubMed]
- Caplan, M.J. AMPK and Polycystic Kidney Disease Drug Development: An Interesting Off-Target Target. Front. Med. 2022, 9, 753418. [Google Scholar] [CrossRef] [PubMed]
- Carullo, N.; Zicarelli, M.T.; Casarella, A.; Nicotera, R.; Castagna, A.; Urso, A.; Presta, P.; Andreucci, M.; Russo, E.; Bolignano, D.; et al. Retarding Progression of Chronic Kidney Disease in Autosomal Dominant Polycystic Kidney Disease with Metformin and Other Therapies: An Update of New Insights. Int. J. Gen. Med. 2021, 14, 5993–6000. [Google Scholar] [CrossRef]
- Nauli, S.M.; Alenghat, F.J.; Luo, Y.; Williams, E.; Vassilev, P.; Li, X.; Elia, A.E.; Lu, W.; Brown, E.M.; Quinn, S.J.; et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 2003, 33, 129–137. [Google Scholar] [CrossRef]
- Zhou, G.; Myers, R.; Li, Y.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Wu, M.; Ventre, J.; Doebber, T.; Fujii, N.; et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Investig. 2001, 108, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Hawley, S.A.; Gadalla, A.E.; Olsen, G.S.; Hardie, D.G. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 2002, 51, 2420–2425. [Google Scholar] [CrossRef] [PubMed]
- Hallows, K.R.; Abebe, K.Z.; Li, H.; Saitta, B.; Althouse, A.D.; Bae, K.T.; Lalama, C.M.; Miskulin, D.C.; Perrone, R.D.; Seliger, S.L.; et al. Association of Longitudinal Urinary Metabolic Biomarkers With ADPKD Severity and Response to Metformin in TAME-PKD Clinical Trial Participants. Kidney Int. Rep. 2023, 8, 467–477. [Google Scholar] [CrossRef]
- Rhee, C.M.; Kalantar-Zadeh, K. Diabetes mellitus: Complex interplay between metformin, AKI and lactic acidosis. Nat. Rev. Nephrol. 2017, 13, 521–522. [Google Scholar] [CrossRef]
- Liang, D.; Song, Z.; Liang, W.; Li, Y.; Liu, S. Metformin inhibits TGF-beta 1-induced MCP-1 expression through BAMBI-mediated suppression of MEK/ERK1/2 signalling. Nephrology 2019, 24, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Devuyst, O.; Ahn, C.; Barten, T.R.M.; Brosnahan, G.; Cadnapaphornchai, M.A.; Chapman, A.B.; Cornec-Le Gall, E.; Drenth, J.P.H.; Gansevoort, R.T.; Harris, P.C.; et al. KDIGO 2025 Clinical Practice Guideline for the Evaluation, Management, and Treatment of Autosomal Dominant Polycystic Kidney Disease (ADPKD). Kidney Int. 2025, 107, S1–S239. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, Y.; Zhang, Y.; Fu, B.; Wu, X.; Li, Q.; Cai, G.; Chen, X.; Bai, X.Y. Low-dose 2-deoxyglucose and metformin synergically inhibit proliferation of human polycystic kidney cells by modulating glucose metabolism. Cell Death Discov. 2019, 5, 76. [Google Scholar] [CrossRef]
- Langer, S.; Kreutz, R.; Eisenreich, A. Metformin modulates apoptosis and cell signaling of human podocytes under high glucose conditions. J. Nephrol. 2016, 29, 765–773. [Google Scholar] [CrossRef]
- Foretz, M.; Hébrard, S.; Leclerc, J.; Zarrinpashneh, E.; Soty, M.; Mithieux, G.; Sakamoto, K.; Andreelli, F.; Viollet, B. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Investig. 2010, 120, 2355–2369. [Google Scholar] [CrossRef]
- Takiar, V.; Nishio, S.; Seo-Mayer, P.; King, J.D., Jr.; Li, H.; Zhang, L.; Karihaloo, A.; Hallows, K.R.; Somlo, S.; Caplan, M.J. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc. Natl. Acad. Sci. USA 2011, 108, 2462–2467. [Google Scholar] [CrossRef]
- Doctor, R.B.; Johnson, S.; Brodsky, K.S.; Amura, C.R.; Gattone, V.; Fitz, J.G. Regulated ion transport in mouse liver cyst epithelial cells. Biochim. Biophys. Acta 2007, 1772, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Pastor-Soler, N.M.; Li, H.; Pham, J.; Rivera, D.; Ho, P.Y.; Mancino, V.; Saitta, B.; Hallows, K.R. Metformin improves relevant disease parameters in an autosomal dominant polycystic kidney disease mouse model. Am. J. Physiol. Ren. Physiol. 2022, 322, F27–F41. [Google Scholar] [CrossRef]
- Chang, M.Y.; Ma, T.L.; Hung, C.C.; Tian, Y.C.; Chen, Y.C.; Yang, C.W.; Cheng, Y.C. Metformin Inhibits Cyst Formation in a Zebrafish Model of Polycystin-2 Deficiency. Sci. Rep. 2017, 7, 7161. [Google Scholar] [CrossRef]
- Seliger, S.L.; Abebe, K.Z.; Hallows, K.R.; Miskulin, D.C.; Perrone, R.D.; Watnick, T.; Bae, K.T. A Randomized Clinical Trial of Metformin to Treat Autosomal Dominant Polycystic Kidney Disease. Am. J. Nephrol. 2018, 47, 352–360. [Google Scholar] [CrossRef]
- Sorohan, B.M.; Ismail, G.; Andronesi, A.; Micu, G.; Obrișcă, B.; Jurubiță, R.; Sinescu, I.; Baston, C. A single-arm pilot study of metformin in patients with autosomal dominant polycystic kidney disease. BMC Nephrol. 2019, 20, 276. [Google Scholar] [CrossRef]
- Pisani, A.; Riccio, E.; Bruzzese, D.; Sabbatini, M. Metformin in autosomal dominant polycystic kidney disease: Experimental hypothesis or clinical fact? BMC Nephrol. 2018, 19, 282. [Google Scholar] [CrossRef]
- St Pierre, K.; Cashmore, B.A.; Bolignano, D.; Zoccali, C.; Ruospo, M.; Craig, J.C.; Strippoli, G.F.; Mallett, A.J.; Green, S.C.; Tunnicliffe, D.J. Interventions for preventing the progression of autosomal dominant polycystic kidney disease. Cochrane Database Syst. Rev. 2024, 10, Cd010294. [Google Scholar] [CrossRef] [PubMed]
- Brosnahan, G.M.; Wang, W.; Gitomer, B.; Struemph, T.; George, D.; You, Z.; Nowak, K.L.; Klawitter, J.; Chonchol, M.B. Metformin Therapy in Autosomal Dominant Polycystic Kidney Disease: A Feasibility Study. Am. J. Kidney Dis. 2022, 79, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Seliger, S.L.; Watnick, T.; Althouse, A.D.; Perrone, R.D.; Abebe, K.Z.; Hallows, K.R.; Miskulin, D.C.; Bae, K.T. Baseline Characteristics and Patient-Reported Outcomes of ADPKD Patients in the Multicenter TAME-PKD Clinical Trial. Kidney360 2020, 1, 1363–1372. [Google Scholar] [CrossRef]
- Roussel, R.; Travert, F.; Pasquet, B.; Wilson, P.W.; Smith, S.C., Jr.; Goto, S.; Ravaud, P.; Marre, M.; Porath, A.; Bhatt, D.L.; et al. Metformin use and mortality among patients with diabetes and atherothrombosis. Arch. Intern. Med. 2010, 170, 1892–1899. [Google Scholar] [CrossRef]
- Ekström, N.; Schiöler, L.; Svensson, A.M.; Eeg-Olofsson, K.; Miao Jonasson, J.; Zethelius, B.; Cederholm, J.; Eliasson, B.; Gudbjörnsdottir, S. Effectiveness and safety of metformin in 51 675 patients with type 2 diabetes and different levels of renal function: A cohort study from the Swedish National Diabetes Register. BMJ Open 2012, 2, e001076. [Google Scholar] [CrossRef]
- Marcum, Z.A.; Forsberg, C.W.; Moore, K.P.; de Boer, I.H.; Smith, N.L.; Boyko, E.J.; Floyd, J.S. Mortality Associated with Metformin Versus Sulfonylurea Initiation: A Cohort Study of Veterans with Diabetes and Chronic Kidney Disease. J. Gen. Intern. Med. 2018, 33, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Charytan, D.M.; Solomon, S.D.; Ivanovich, P.; Remuzzi, G.; Cooper, M.E.; McGill, J.B.; Parving, H.H.; Parfrey, P.; Singh, A.K.; Burdmann, E.A.; et al. Metformin use and cardiovascular events in patients with type 2 diabetes and chronic kidney disease. Diabetes Obes. Metab. 2019, 21, 1199–1208. [Google Scholar] [CrossRef]
- Chang, M.Y.; Tsai, C.Y.; Chou, L.F.; Hsu, S.H.; Yang, H.Y.; Hung, C.C.; Tian, Y.C.; Ong, A.C.M.; Yang, C.W. Metformin induces lactate accumulation and accelerates renal cyst progression in Pkd1-deficient mice. Hum. Mol. Genet. 2022, 31, 1560–1573. [Google Scholar] [CrossRef]
- Froldi, G. View on Metformin: Antidiabetic and Pleiotropic Effects, Pharmacokinetics, Side Effects, and Sex-Related Differences. Pharmaceuticals 2024, 17, 478. [Google Scholar] [CrossRef]
- Zhou, K.; Bellenguez, C.; Spencer, C.C.; Bennett, A.J.; Coleman, R.L.; Tavendale, R.; Hawley, S.A.; Donnelly, L.A.; Schofield, C.; Groves, C.J.; et al. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat. Genet. 2011, 43, 117–120. [Google Scholar] [CrossRef]
- Stanley, I.K.; Palma, A.M.; Viecelli, A.K.; Johnson, D.W.; Hawley, C.M.; Staatz, C.E.; Mallett, A.J. A secondary analysis of concurrent use of metformin and tolvaptan in ADPKD tolvaptan trials. J. Nephrol. 2024, 37, 1417–1419. [Google Scholar] [CrossRef] [PubMed]
- Efe, O.; Klein, J.D.; LaRocque, L.M.; Ren, H.; Sands, J.M. Metformin improves urine concentration in rodents with nephrogenic diabetes insipidus. JCI Insight 2016, 1, e88409. [Google Scholar] [CrossRef]
- Pierre, K.S.; El-Damanawi, R.; Johnson, D.W.; Hawley, C.M.; Viecelli, A.K.; Jha, V.; Green, S.C.; Gesualdo, L.; Kiriwandeniya, C.; Velayudham, P.; et al. Implementation of Metformin Therapy to Ease Decline of Kidney Function in Polycystic Kidney Disease (IMPEDE-PKD): Study protocol for a phase III, multi-centre, randomized, placebo-controlled trial evaluating the long-term efficacy of metformin in slowing the rate of kidney function decline in patients with autosomal dominant polycystic kidney disease. Trials 2025, 26, 302. [Google Scholar]
- Okyere, P.; Ephraim, R.K.D.; Okyere, I.; Attakorah, J.; Serwaa, D.; Essuman, G.; Abaka-Yawson, A.; Adoba, P. Demographic, diagnostic and therapeutic characteristics of autosomal dominant polycystic kidney disease in Ghana. BMC Nephrol. 2021, 22, 156. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; You, Z.; Steele, C.N.; Gitomer, B.; Chonchol, M.; Nowak, K.L. Changes in tubular biomarkers with dietary intervention and metformin in patients with autosomal dominant polycystic kidney disease: A post-hoc analysis of two clinical trials. BMC Nephrol. 2024, 25, 206. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Huang, Y.; Chung, E.J. Combining Metformin and Drug-Loaded Kidney-Targeting Micelles for Polycystic Kidney Disease. Cell Mol. Bioeng. 2023, 16, 55–67. [Google Scholar] [CrossRef] [PubMed]
Study | Model/Participants | Endpoints | Key Findings |
---|---|---|---|
Takiar et al. [31] | In vitro, ex vivo | Cystic growth, CFTR/mTOR activity | AMPK activation via metformin inhibited cyst growth |
Pastor-Soler et al. [33] | Pkd1RC/RC mice | Kidney/body weight ratio, cystic index, GFR, BUN | Reduced cystic index, improved renal function |
Chang et al. [34] | Zebrafish, polycystin-2 deficiency | Cyst formation, autophagy, inflammation | Reduced cystogenesis and inflammation |
Seliger et al. [35] | ADPKD patients (RCT) | eGFR decline | Slower eGFR decline vs. placebo |
Sorohan et al. [36] | 34 ADPKD patients (pilot) | eGFR, BMI | No significant change; confirmed safety |
Pisani et al. [37] | Diabetic ADPKD patients vs. controls | GFR loss | Lower GFR loss in metformin group |
Tsukamoto et al. [5] | Meta-analysis | GFR preservation | Trend toward benefit (SMD = 0.28, p = 0.09) |
St Pierre et al. [38] | RCTs (Brosnahan, TAME-PKD) | eGFR change, failure | Trend toward slower eGFR decline |
Yao et al. [7] | Meta-analysis | eGFR | eGFR benefit (MD = 2.31 mL/min/1.73 m2) |
Lian et al. [13] | Miniature pigs | Cyst formation, renal function | Synergistic effect, improved renal function |
Kramers et al. [9] | ADPKD patients | Urine volume, QOL | Reduced polyuria with tolvaptan |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciejczyk, A.; Niemczyk, M. Metformin as a Disease-Modifying Agent in Autosomal Dominant Polycystic Kidney Disease: A Systematic Review of Preclinical and Clinical Evidence. Curr. Issues Mol. Biol. 2025, 47, 715. https://doi.org/10.3390/cimb47090715
Maciejczyk A, Niemczyk M. Metformin as a Disease-Modifying Agent in Autosomal Dominant Polycystic Kidney Disease: A Systematic Review of Preclinical and Clinical Evidence. Current Issues in Molecular Biology. 2025; 47(9):715. https://doi.org/10.3390/cimb47090715
Chicago/Turabian StyleMaciejczyk, Aleksandra, and Mariusz Niemczyk. 2025. "Metformin as a Disease-Modifying Agent in Autosomal Dominant Polycystic Kidney Disease: A Systematic Review of Preclinical and Clinical Evidence" Current Issues in Molecular Biology 47, no. 9: 715. https://doi.org/10.3390/cimb47090715
APA StyleMaciejczyk, A., & Niemczyk, M. (2025). Metformin as a Disease-Modifying Agent in Autosomal Dominant Polycystic Kidney Disease: A Systematic Review of Preclinical and Clinical Evidence. Current Issues in Molecular Biology, 47(9), 715. https://doi.org/10.3390/cimb47090715