Association of Nrf2 Single Nucleotide Polymorphism rs35652124 and FABP4 Levels with Peripheral Artery Disease Among Type 2 Diabetes Mellitus Pakistani Population
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Sample Collection
2.3. Lower Extremity Arterial Duplex Ultrasonography
2.4. Enzyme-Linked Immunosorbent Assay (ELISA)
2.5. Extraction of DNA from Blood and Nrf2 SNP Detection by Restriction Fragment Length Polymorphism
3. Results
3.1. Clinical Characteristics of the Study Groups
3.2. Association and Genotype Distribution Analysis of Nrf2 SNP rs35652124
3.3. Measurement of FABP4 Levels Among Study Groups
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spracklen, C.N.; Horikoshi, M.; Kim, Y.J.; Lin, K.; Bragg, F.; Moon, S.; Suzuki, K.; Tam, C.H.; Tabara, Y.; Kwak, S.-H. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature 2020, 582, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Bonnefond, A.; Froguel, P. Rare and common genetic events in type 2 diabetes: What should biologists know? Cell Metab. 2015, 21, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Tian, J.; Wang, Y.; Niu, P.; Zhang, Y.; Zhang, Y.; Fang, X.; Miao, R.; Yin, R.; Tong, X. Advances in secondary prevention mechanisms of macrovascular complications in type 2 diabetes mellitus patients: A comprehensive review. Eur. J. Med. Res. 2024, 29, 152. [Google Scholar] [CrossRef]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef] [PubMed]
- Maamoun, H.; Benameur, T.; Pintus, G.; Munusamy, S.; Agouni, A. Crosstalk between oxidative stress and endoplasmic reticulum (ER) stress in endothelial dysfunction and aberrant angiogenesis associated with diabetes: A focus on the protective roles of heme oxygenase (HO)-1. Front. Physiol. 2019, 10, 70. [Google Scholar] [CrossRef]
- Aday, A.W.; Matsushita, K. Epidemiology of peripheral artery disease and polyvascular disease. Circ. Res. 2021, 128, 1818–1832. [Google Scholar] [CrossRef]
- Kuznetsova, T.; Prange, K.H.; Glass, C.K.; De Winther, M.P. Transcriptional and epigenetic regulation of macrophages in atherosclerosis. Nat. Rev. Cardiol. 2020, 17, 216–228. [Google Scholar] [CrossRef]
- De Winther, M.P.; Bäck, M.; Evans, P.; Gomez, D.; Goncalves, I.; Jørgensen, H.F.; Koenen, R.R.; Lutgens, E.; Norata, G.D.; Osto, E. Translational opportunities of single-cell biology in atherosclerosis. Eur. Heart J. 2023, 44, 1216–1230. [Google Scholar] [CrossRef]
- Souilhol, C.; Serbanovic-Canic, J.; Fragiadaki, M.; Chico, T.J.; Ridger, V.; Roddie, H.; Evans, P.C. Endothelial responses to shear stress in atherosclerosis: A novel role for developmental genes. Nat. Rev. Cardiol. 2020, 17, 52–63. [Google Scholar] [CrossRef]
- Xu, S.; Ilyas, I.; Little, P.J.; Li, H.; Kamato, D.; Zheng, X.; Luo, S.; Li, Z.; Liu, P.; Han, J. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: From mechanism to pharmacotherapies. Pharmacol. Rev. 2021, 73, 924–967. [Google Scholar] [CrossRef]
- Schorr, E.N.; Treat-Jacobson, D.; Lindquist, R. The relationship between peripheral artery disease symptomatology and ischemia. Nurs. Res. 2017, 66, 378–387. [Google Scholar] [CrossRef]
- Nordanstig, J.; Behrendt, C.; Bradbury, A.; de Borst, G.; Fowkes, F.; Golledge, J.; Gottsater, A.; Hinchliffe, R.; Nikol, S.; Norgren, L. Peripheral arterial disease (PAD)–A challenging manifestation of atherosclerosis. Prev. Med. 2023, 171, 107489. [Google Scholar] [CrossRef] [PubMed]
- Bridgwood, B.M.; Nickinson, A.T.; Houghton, J.S.; Pepper, C.J.; Sayers, R.D. Knowledge of peripheral artery disease: What do the public, healthcare practitioners, and trainees know? Vasc. Med. 2020, 25, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Marbach, J.A.; Almufleh, A.S.; So, D.; Chong, A.-Y. Peripheral artery disease: Current diagnosis and management. Br. J. Cardiol. 2020, 27, S9–S14. [Google Scholar]
- Criqui, M.H.; Matsushita, K.; Aboyans, V.; Hess, C.N.; Hicks, C.W.; Kwan, T.W.; McDermott, M.M.; Misra, S.; Ujueta, F. Lower extremity peripheral artery disease: Contemporary epidemiology, management gaps, and future directions: A scientific statement from the American Heart Association. Circulation 2021, 144, e171–e191. [Google Scholar] [CrossRef]
- Fowkes, F.G.R.; Rudan, D.; Rudan, I.; Aboyans, V.; Denenberg, J.O.; McDermott, M.M.; Norman, P.E.; Sampson, U.K.; Williams, L.J.; Mensah, G.A. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: A systematic review and analysis. Lancet 2013, 382, 1329–1340. [Google Scholar] [CrossRef]
- Gerhard-Herman, M.D.; Gornik, H.L.; Barrett, C.; Barshes, N.R.; Corriere, M.A.; Drachman, D.E.; Fleisher, L.A.; Fowkes, F.G.R.; Hamburg, N.M.; Kinlay, S. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2017, 135, e686–e725. [Google Scholar] [CrossRef]
- Song, P.; Fang, Z.; Wang, H.; Cai, Y.; Rahimi, K.; Zhu, Y.; Fowkes, F.G.R.; Fowkes, F.J.; Rudan, I. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: A systematic review, meta-analysis, and modelling study. Lancet Glob. Health 2020, 8, e721–e729. [Google Scholar] [CrossRef]
- Jansen-Chaparro, S.; López-Carmona, M.D.; Cobos-Palacios, L.; Sanz-Cánovas, J.; Bernal-López, M.R.; Gómez-Huelgas, R. Statins and peripheral arterial disease: A narrative review. Front. Cardiovasc. Med. 2021, 8, 777016. [Google Scholar] [CrossRef]
- Parwani, D.; Ahmed, M.A.; Mahawar, A.; Gorantla, V.R. Peripheral arterial disease: A narrative review. Cureus 2023, 15, e40267. [Google Scholar] [CrossRef]
- Xiu, X.; Zhang, H.; Xue, A.; Cooper, D.N.; Yan, L.; Yang, Y.; Yang, Y.; Zhao, H. Genetic evidence for a causal relationship between type 2 diabetes and peripheral artery disease in both Europeans and East Asians. BMC Med. 2022, 20, 300. [Google Scholar] [CrossRef] [PubMed]
- Zamzam, A.; Syed, M.H.; Greco, E.; Wheatcroft, M.; Jain, S.; Khan, H.; Singh, K.K.; Forbes, T.L.; Rotstein, O.; Abdin, R. Fatty acid binding protein 4—A circulating protein associated with peripheral arterial disease in diabetic patients. J. Clin. Med. 2020, 9, 2843. [Google Scholar] [CrossRef] [PubMed]
- Cabré, A.; Lázaro, I.; Girona, J.; Manzanares, J.M.; Marimón, F.; Plana, N.; Heras, M.; Masana, L. Plasma fatty acid binding protein 4 is associated with atherogenic dyslipidemia in diabetes. J. Lipid Res. 2008, 49, 1746–1751. [Google Scholar] [CrossRef] [PubMed]
- Furuhashi, M.; Saitoh, S.; Shimamoto, K.; Miura, T. Fatty acid-binding protein 4 (FABP4): Pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin. Med. Insights Cardiol. 2014, 8, S17067. [Google Scholar] [CrossRef]
- Nakamura, R.; Okura, T.; Fujioka, Y.; Sumi, K.; Matsuzawa, K.; Izawa, S.; Ueta, E.; Kato, M.; Taniguchi, S.-I.; Yamamoto, K. Serum fatty acid-binding protein 4 (FABP4) concentration is associated with insulin resistance in peripheral tissues, A clinical study. PLoS ONE 2017, 12, e0179737. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, H.; Wang, Y.; Yang, A.; Dong, X.; Gu, L.; Liu, D.; Ding, N.; Jiang, Y. FABP4 activates the JAK2/STAT2 pathway via Rap1a in the homocysteine-induced macrophage inflammatory response in ApoE−/− mice atherosclerosis. Lab. Investig. 2022, 102, 25–37. [Google Scholar] [CrossRef]
- Peeters, W.; de Kleijn, D.P.; Vink, A.; van de Weg, S.; Schoneveld, A.H.; Sze, S.K.; van der Spek, P.J.; de Vries, J.-P.P.; Moll, F.L.; Pasterkamp, G. Adipocyte fatty acid binding protein in atherosclerotic plaques is associated with local vulnerability and is predictive for the occurrence of adverse cardiovascular events. Eur. Heart J. 2011, 32, 1758–1768. [Google Scholar] [CrossRef]
- Lee, K.; Santibanez-Koref, M.; Polvikoski, T.; Birchall, D.; Mendelow, A.; Keavney, B. Increased expression of fatty acid binding protein 4 and leptin in resident macrophages characterises atherosclerotic plaque rupture. Atherosclerosis 2013, 226, 74–81. [Google Scholar] [CrossRef]
- Umbarawan, Y.; Enoura, A.; Ogura, H.; Sato, T.; Horikawa, M.; Ishii, T.; Sunaga, H.; Matsui, H.; Yokoyama, T.; Kawakami, R. FABP5 is a sensitive marker for lipid-rich macrophages in the luminal side of atherosclerotic lesions. Int. Heart J. 2021, 62, 666–676. [Google Scholar] [CrossRef]
- van der Ark-Vonk, E.M.; Puijk, M.V.; Pasterkamp, G.; van der Laan, S.W. The Effects of FABP4 on Cardiovascular Disease in the Aging Population. Curr. Atheroscler. Rep. 2024, 26, 163–175. [Google Scholar] [CrossRef]
- Boß, M.; Kemmerer, M.; Brüne, B.; Namgaladze, D. FABP4 inhibition suppresses PPARγ activity and VLDL-induced foam cell formation in IL-4-polarized human macrophages. Atherosclerosis 2015, 240, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Calvo, R.; Girona, J.; Rodríguez, M.; Samino, S.; Barroso, E.; de Gonzalo-Calvo, D.; Guaita-Esteruelas, S.; Heras, M.; van der Meer, R.W.; Lamb, H.J. Fatty acid binding protein 4 (FABP4) as a potential biomarker reflecting myocardial lipid storage in type 2 diabetes. Metabolism 2019, 96, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrova, K.; Drogan, D.; Weikert, C.; Schulze, M.B.; Fritsche, A.; Boeing, H.; Pischon, T. Fatty Acid–Binding protein 4 and risk of type 2 diabetes, myocardial infarction, and stroke: A prospective cohort study. J. Clin. Endocrinol. Metab. 2019, 104, 5991–6002. [Google Scholar] [CrossRef]
- Hsu, B.-G.; Mah, C.-Y.; Wu, D.-A.; Chen, M.-C. Serum adipocyte fatty-acid binding protein as an independent marker of peripheral artery disease in patients with type-2 diabetes mellitus. Int. J. Environ. Res. Public Health 2022, 19, 9459. [Google Scholar] [CrossRef]
- Tso, A.W.; Xu, A.; Sham, P.C.; Wat, N.M.; Wang, Y.; Fong, C.H.; Cheung, B.M.; Janus, E.D.; Lam, K.S. Serum adipocyte fatty acid–binding protein as a new biomarker predicting the development of type 2 diabetes: A 10-year prospective study in a Chinese cohort. Diabetes Care 2007, 30, 2667–2672. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Xiao, R.; Li, C.-P.; Huangfu, J.; Mao, J.-F. Increased plasma levels of FABP4 and PTEN are associated with more severe insulin resistance in women with gestational diabetes mellitus. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2015, 21, 426. [Google Scholar]
- Li, L.; Lee, S.J.; Kook, S.Y.; Ahn, T.G.; Lee, J.Y.; Hwang, J.Y. Serum from pregnant women with gestational diabetes mellitus increases the expression of FABP4 mRNA in primary subcutaneous human pre-adipocytes. Obstet. Gynecol. Sci. 2017, 60, 274–282. [Google Scholar] [CrossRef]
- Martínez-Micaelo, N.; Rodríguez-Calvo, R.; Guaita-Esteruelas, S.; Heras, M.; Girona, J.; Masana, L. Extracellular FABP4 uptake by endothelial cells is dependent on cytokeratin 1 expression. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2019, 1864, 234–244. [Google Scholar] [CrossRef]
- Trojnar, M.; Patro-Małysza, J.; Kimber-Trojnar, Ż.; Leszczyńska-Gorzelak, B.; Mosiewicz, J. Associations between fatty acid-binding protein 4–A proinflammatory adipokine and insulin resistance, gestational and type 2 diabetes mellitus. Cells 2019, 8, 227. [Google Scholar] [CrossRef]
- Lu, X.; Xie, Q.; Pan, X.; Zhang, R.; Zhang, X.; Peng, G.; Zhang, Y.; Shen, S.; Tong, N. Type 2 diabetes mellitus in adults: Pathogenesis, prevention and therapy. Signal Transduct. Target. Ther. 2024, 9, 262. [Google Scholar] [CrossRef]
- Qiao, S.; Liu, R.; Lv, C.; Miao, Y.; Yue, M.; Tao, Y.; Wei, Z.; Xia, Y.; Dai, Y. Bergenin impedes the generation of extracellular matrix in glomerular mesangial cells and ameliorates diabetic nephropathy in mice by inhibiting oxidative stress via the mTOR/β-TrcP/Nrf2 pathway. Free Radic. Biol. Med. 2019, 145, 118–135. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zhai, X.; Qiu, Y.; Lu, X.; Jiao, Y. The Nrf2 in obesity: A friend or foe? Antioxidants 2022, 11, 2067. [Google Scholar] [CrossRef] [PubMed]
- Glass, C.K.; Witztum, J.L. Atherosclerosis: The road ahead. Cell 2001, 104, 503–516. [Google Scholar] [CrossRef]
- Ruotsalainen, A.-K.; Inkala, M.; Partanen, M.E.; Lappalainen, J.P.; Kansanen, E.; Mäkinen, P.I.; Heinonen, S.E.; Laitinen, H.M.; Heikkilä, J.; Vatanen, T. The absence of macrophage Nrf2 promotes early atherogenesis. Cardiovasc. Res. 2013, 98, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Cruz Cisneros, L.; Cho, E.J.; Alexander, M.; Kimelman, F.A.; Swentek, L.; Ferrey, A.; Tantisattamo, E.; Ichii, H. Nrf2 pathway and oxidative stress as a common target for treatment of diabetes and its comorbidities. Int. J. Mol. Sci. 2024, 25, 821. [Google Scholar] [CrossRef]
- Yagishita, Y.; Fukutomi, T.; Sugawara, A.; Kawamura, H.; Takahashi, T.; Pi, J.; Uruno, A.; Yamamoto, M. Nrf2 protects pancreatic β-cells from oxidative and nitrosative stress in diabetic model mice. Diabetes 2014, 63, 605–618. [Google Scholar] [CrossRef]
- Glund, S.; Deshmukh, A.; Long, Y.C.; Moller, T.; Koistinen, H.A.; Caidahl, K.; Zierath, J.R.; Krook, A. Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle. Diabetes 2007, 56, 1630–1637. [Google Scholar] [CrossRef]
- Uruno, A.; Yagishita, Y.; Katsuoka, F.; Kitajima, Y.; Nunomiya, A.; Nagatomi, R.; Pi, J.; Biswal, S.S.; Yamamoto, M. Nrf2-mediated regulation of skeletal muscle glycogen metabolism. Mol. Cell. Biol. 2016, 36, 1655–1672. [Google Scholar] [CrossRef]
- Akram, J.; Aamir, A.; Basit, A.; Qureshi, M.S.; Mehmood, T.; Shahid, S.K.; Khoso, I.A.; Ebrahim, M.A.; Omair, A. Prevalence of peripheral arterial disease in type 2 diabetics in Pakistan. JPMA J. Pak. Med. Assoc. 2011, 61, 644–648. [Google Scholar]
- Su, K.; Zhao, S.-L.; Yang, W.-X.; Lo, C.-S.; Chenier, I.; Liao, M.-C.; Pang, Y.-C.; Peng, J.-Z.; Miyata, K.N.; Cailhier, J.-F. NRF2 deficiency attenuates diabetic kidney disease in Db/Db mice via Down-regulation of angiotensinogen, SGLT2, CD36, and FABP4 expression and lipid accumulation in renal proximal tubular cells. Antioxidants 2023, 12, 1715. [Google Scholar] [CrossRef]
- Care, D. 2. Classification and diagnosis of diabetes: Standards of care in. Diabetes Care 2023, 46, S19. [Google Scholar]
- World Health Organization. Report of a World Health Organization Consultation. Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus. Diabetes Res. Clin. Pract. 2011, 93, 299. [Google Scholar] [CrossRef]
- Felício, J.S.; de Melo, F.T.C.; Vieira, G.M.; de Aquino, V.T.; de Souza Parente, F.; da Silva, W.M.; Said, N.M.; da Silva, E.R.; de Souza, A.C.C.B.; de Oliveira, M.C.N.I. Peripheral arterial disease progression and ankle brachial index: A cohort study with newly diagnosed patients with type 2 diabetes. BMC Cardiovasc. Disord. 2022, 22, 294. [Google Scholar] [CrossRef]
- Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity: Implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes. Res. Clin. Pract. 2013, 7, e330–e341. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.; Huang, J.; Harzand, A. The pink tax: Sex and gender disparities in peripheral artery disease. US Cardiol. Rev. 2024, 18, e04. [Google Scholar] [CrossRef]
- Masroor, M.; Ali, Q.; Shafique, S.; Imran, A.; Ullah, H.; Khan, R.; Masroor, A. Frequency of Peripheral Arterial Disease in Patients with Type-2 Diabetes Mellitus: A single center experience from a Private Healthcare Facility of South Punjab, Pakistan. Pakistan J. Pak. Soc. Intern. Med. 2024, 5, 388–392. [Google Scholar]
- Khan, A.M.; Lohana, P.; Anvekar, P.; Mustafa, S.H.; Kumar, R.; Adnan, L.; Bhimani, P.; Ali, S.R.; Arti, L.; Shah, S.H.A. Risk factors of peripheral vascular disease in diabetes mellitus in Abbottabad, Pakistan: A cross-sectional study. Cureus 2021, 13, e17556. [Google Scholar]
- ul Islam, U.; Din, S.U.; Mumtaz, A.; Qasim, M. Frequency of Peripheral Arterial Disease in Type-II Diabetic Patients presenting with Diabetic Retinopathy. Ann. Punjab Med. Coll. 2022, 16, 326–329. [Google Scholar] [CrossRef]
- Ali, Z.; Ahmed, S.M.; Bhutto, A.R.; Chaudhry, A.; Munir, S. Peripheral artery disease in type II diabetes. J. Coll. Physicians Surg. Pak. 2012, 22, 686–689. [Google Scholar]
- Umer, A.; Khan, K.A.; Naz, S.; Mushtaq, S.; Khan, S.N.; Raza, T.; Khan, Z.A. frequency of peripheral arterial disease in high risk type 2 diabetes mellitus using ankle-brachial index and its association with the risk factors among patients presenting in Jinnah hospital, Lahore. Pak. Armed Forces Med. J. 2018, 68, 761–766. [Google Scholar]
- Agboghoroma, O.F.; Akemokwe, F.M.; Puepet, F.H. Peripheral arterial disease and its correlates in patients with type 2 diabetes mellitus in a teaching hospital in northern Nigeria: A cross-sectional study. BMC Cardiovasc. Disord. 2020, 20, 102. [Google Scholar] [CrossRef] [PubMed]
- Marchio, P.; Guerra-Ojeda, S.; Vila, J.M.; Aldasoro, M.; Victor, V.M.; Mauricio, M.D. Targeting early atherosclerosis: A focus on oxidative stress and inflammation. Oxidative Med. Cell. Longev. 2019, 2019, 8563845. [Google Scholar] [CrossRef] [PubMed]
- Abu Khadra, K.M.; Bataineh, M.I.; Khalil, A.; Saleh, J. Oxidative stress and type 2 diabetes: The development and the pathogenesis, Jordanian cross-sectional study. Eur. J. Med. Res. 2024, 29, 370. [Google Scholar] [CrossRef]
- Teena, R.; Dhamodharan, U.; Ali, D.; Rajesh, K.; Ramkumar, K.M. Genetic polymorphism of the Nrf2 promoter region (rs35652124) is associated with the risk of diabetic foot ulcers. Oxidative Med. Cell. Longev. 2020, 2020, 9825028. [Google Scholar] [CrossRef]
- Aly, N.M.M.; Younes, T.M.; Ahmed, E.S.A.; Elsayed, B.S. Study of Nuclear Factor Erythroid Related Factor 2 Gene Polymorphism in Patients with Type 2 Diabetes Mellitus. Egypt. J. Hosp. Med. 2023, 91, 4084–4091. [Google Scholar] [CrossRef]
- Deng, Y.; Scherer, P.E. Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann. N. Y. Acad. Sci. 2010, 1212, E1–E19. [Google Scholar] [CrossRef]
- Li, B.; Zamzam, A.; Syed, M.H.; Djahanpour, N.; Jain, S.; Abdin, R.; Qadura, M. Fatty acid binding protein 4 has prognostic value in peripheral artery disease. J. Vasc. Surg. 2023, 78, 719–726. [Google Scholar] [CrossRef]
- Wang, H.; Cao, J.; Su, J.-B.; Wang, X.-Q.; Wang, X.; Zhang, D.-M.; Wang, X.-H. Serum fatty acid-binding protein 4 levels and responses of pancreatic islet β-cells and α-cells in patients with type 2 diabetes. Diabetol. Metab. Syndr. 2021, 13, 70. [Google Scholar] [CrossRef]
- Abdalla, M.A.; Abubaker, J.; Abu-Farha, M.; Al-Khairi, I.; Cherian, P.; Qaddoumi, M.G.; Al-Rashed, F.; Thanaraj, T.A.; Albatineh, A.N.; Al-Mulla, F. Investigating the Role of FABP4 in Diabetes and Obesity and the Influence of Age and Ethnicity: A Comprehensive Analysis of a Cohort from the KEDP-Study. Int. J. Mol. Sci. 2024, 25, 4578. [Google Scholar] [CrossRef]
- Ding, M.; Shi, J.Y.; Xing, Y.Z.; Sun, B.; Fang, Q.H.; Zhang, J.Y.; Zhang, Q.M.; Chen, L.M.; Yu, D.M.; Li, C.J. Serum adipocyte fatty acid-binding protein levels are associated with peripheral arterial disease in women, but not men, with type 2 diabetes mellitus. Diabetes 2018, 10, 478–486. [Google Scholar] [CrossRef]
- Park, S.; Rhee, E.-J.; Lee, W.-Y.; Kim, W.-J.; Yoo, S.-H.; Bae, J.-C.; Choi, E.-S.; Park, C.-Y.; Oh, K.-W.; Park, S.-W. The role of serum adipocyte fatty acid-binding protein on the development of metabolic syndrome is independent of pro-inflammatory cytokines. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 525–532. [Google Scholar] [CrossRef]
- Kaman, D.; Ilhan, N.; Akbulut, M. Adipocyte fatty acid binding protein levels in patients with coronary artery disease and its relationship to alternative biomarkers. Pol. Heart J. (Kardiol. Pol.) 2015, 73, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Hoebaus, C.; Herz, C.T.; Pesau, G.; Wrba, T.; Koppensteiner, R.; Schernthaner, G.-H. FABP4 and cardiovascular events in peripheral arterial disease. Angiology 2018, 69, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Flink, L.; Mochari-Greenberger, H.; Mosca, L. Gender differences in clinical outcomes among diabetic patients hospitalized for cardiovascular disease. Am. Heart J. 2013, 165, 972–978. [Google Scholar] [CrossRef] [PubMed]
HC | T2DM | PAD-T2DM | T2DM vs. PAD-T2DM | ||
---|---|---|---|---|---|
Mean ± SD | p-Value | 95% (CI) | |||
Age (years) | 53.4 ± 7.7 | 58.8 ± 8.9 | 59.8 ± 10.6 | 0.6 | 3.3–5.3 |
Height (cm) | 162.4 ± 4.0 | 165.7 ± 2.7 | 161.8 ± 3.8 | <0.0001 | 2.4–5.4 |
Weight (kg) | 59.5 ± 5.4 | 75.8 ± 8.7 | 75.6 ± 12.5 | 0.9 | 4.5–5.1 |
BMI (kg/m2) | 22.6 ± 1.7 | 27.6 ± 3.0 | 28.8 ± 4.1 | 0.1 | 0.3–2.8 |
FPG (mg/dL) | 97.2 ± 3.0 | 232.5 ± 56.4 | 259.2 ± 49.6 | 0.02 | 3.3–50.1 |
HbA1c (%) | 5.4 ± 0.3 | 8.1 ± 1.7 | 8.7 ± 2.4 | 0.2 | 0.3–1.5 |
Total cholesterol (mg/dL) | 185 ± 22.1 | 253 ± 29.1 | 281 ± 23.7 | <0.0001 | 16.3–39.7 |
HDL-cholesterol (mg/dL) | 53.1 ± 12.8 | 42.3 ± 7.9 | 39.83 ± 8.3 | 0.2 | 1.0–6.0 |
LDL-cholesterol (mg/dL) | 122 ± 23.2 | 162 ± 32.1 | 178.1 ± 22.4 | 0.01 | 4.1–28.3 |
AST | 18.1 ± 3.4 | 54.34 ± 78.1 | 50.8 ± 39.1 | 0.81 | 23.6–30.6 |
ALT | 20.1 ± 4.8 | 32.3 ± 32.2 | 38.5 ± 37.4 | 0.4 | 9.0–21.5 |
Total bilirubin | 0.58 ± 0.24 | 0.78 ± 0.7 | 1.27 ± 2.1 | 0.1 | 0.2–1.2 |
Serum urea | 22.2 ± 7.2 | 52.3 ± 28.5 | 43.6 ± 23.3 | 0.1 | 2.7–20.1 |
Serum creatinine | 0.74 ± 0.14 | 1.07 ± 0.5 | 1.31 ± 1.1 | 0.2 | 0.1–0.6 |
n (%) | Odds Ratio | 95% (CI) | p-Value | ||
---|---|---|---|---|---|
PAD-T2DM | T2DM | ||||
Codominant | |||||
CC | 8 (19.5) | 14 (34.1) | Reference | ||
CT | 11 (26.8) | 17 (41.5) | 1.13 | 0.36–3.59 | 0.83 |
TT | 22 (53.7) | 10 (24.4) | 3.85 | 1.22–12.11 | 0.02 |
Dominant | |||||
CC | 8 (19.5) | 14 (34.1) | Reference | ||
CT + TT | 33 (80.5) | 27 (65.9) | 2.14 | 0.78–5.85 | 0.14 |
Allele | |||||
C | 27 (32.9) | 45 (54.9) | Reference | ||
T | 55 (67.1) | 37 (45.1) | 2.48 | 1.31–4.67 | 0.005 |
HC | PAD-T2DM | ||||
Codominant | |||||
CC | 18 (43.9) | 8 (19.5) | Reference | ||
CT | 7 (17.1) | 11 (26.8) | 3.53 | 1.00–12.48 | 0.04 |
TT | 16 (39.0) | 22 (53.7) | 3.09 | 1.08–8.86 | 0.03 |
Dominant | |||||
CC | 18 (43.9) | 8 (19.5) | Reference | ||
CT + TT | 23 (56.1) | 33 (80.5) | 3.23 | 1.20–8.67 | 0.02 |
Allele | |||||
C | 43 (52.4) | 27 (32.9) | Reference | ||
T | 39 (47.6) | 55 (67.1) | 2.25 | 1.19–4.23 | 0.01 |
HC | T2DM | ||||
Codominant | |||||
CC | 18 (43.9) | 14 (34.1) | Reference | ||
CT | 7 (17.1) | 17 (41.5) | 3.12 | 1.01–9.60 | 0.04 |
TT | 16 (39.0) | 10 (24.4) | 0.80 | 0.28–2.31 | 0.68 |
Dominant | |||||
CC | 18 (43.9) | 14 (34.1) | Reference | ||
CT + TT | 23 (56.1) | 27 (65.9) | 1.51 | 0.62–3.68 | 0.36 |
Allele | |||||
C | 43 (52.4) | 45 (54.9) | Reference | ||
T | 39 (47.6) | 37 (45.1) | 0.91 | 0.49–1.67 | 0.75 |
FABP4 Levels | p-Value 95% (CI) | |||
---|---|---|---|---|
Mean ± SD | HC/T2DM | HC/PAD-T2DM | T2DM/PAD-T2DM | |
HC | 9.45 ± 3.15 | <0.0001 (7.67–10.8) | <0.0001 (13.8–17.7) | <0.0001 (4.64–8.41) |
T2DM | 18.69 ± 3.07 | |||
PAD-T2DM | 25.22 ± 4.48 |
HC | T2DM | PAD-T2DM | T2DM/PAD-T2DM | |
---|---|---|---|---|
Genotypes | FABP4 Levels (Mean ± SD) | p-Value | ||
CC | 9.4 ± 2.84 | 19.7 ± 6.95 | 21.7 ± 4.29 | 0.1 |
TT | 9.8 ± 3.24 | 19.9 ± 2.07 | 25.7 ± 4.79 | <0.001 |
CT | 8.8 ± 2.84 | 19.9 ± 7.95 | 24.2 ± 6.56 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayaz, I.; Choudhry, N.; Ihsan, A.; Zubair, T.; Gondal, A.J.; Yasmin, N. Association of Nrf2 Single Nucleotide Polymorphism rs35652124 and FABP4 Levels with Peripheral Artery Disease Among Type 2 Diabetes Mellitus Pakistani Population. Curr. Issues Mol. Biol. 2025, 47, 530. https://doi.org/10.3390/cimb47070530
Ayaz I, Choudhry N, Ihsan A, Zubair T, Gondal AJ, Yasmin N. Association of Nrf2 Single Nucleotide Polymorphism rs35652124 and FABP4 Levels with Peripheral Artery Disease Among Type 2 Diabetes Mellitus Pakistani Population. Current Issues in Molecular Biology. 2025; 47(7):530. https://doi.org/10.3390/cimb47070530
Chicago/Turabian StyleAyaz, Iqra, Nakhshab Choudhry, Amna Ihsan, Tehreem Zubair, Aamir Jamal Gondal, and Nighat Yasmin. 2025. "Association of Nrf2 Single Nucleotide Polymorphism rs35652124 and FABP4 Levels with Peripheral Artery Disease Among Type 2 Diabetes Mellitus Pakistani Population" Current Issues in Molecular Biology 47, no. 7: 530. https://doi.org/10.3390/cimb47070530
APA StyleAyaz, I., Choudhry, N., Ihsan, A., Zubair, T., Gondal, A. J., & Yasmin, N. (2025). Association of Nrf2 Single Nucleotide Polymorphism rs35652124 and FABP4 Levels with Peripheral Artery Disease Among Type 2 Diabetes Mellitus Pakistani Population. Current Issues in Molecular Biology, 47(7), 530. https://doi.org/10.3390/cimb47070530