Copper Nanoparticles in Aquatic Environment: Release Routes and Oxidative Stress-Mediated Mechanisms of Toxicity to Fish in Various Life Stages and Future Risks
Abstract
1. Introduction
2. Copper Nanoparticles
3. Sources of Copper Nanoparticles and Their Interactions with Aquatic Environments
4. Concentrations and Monitoring of Cu-NPs in Aquatic Environments
5. Oxidative Stress-Mediated Toxicity Mechanisms of Cu-Based NPs
Nanoparticle Type | Species | Adverse Effects | Source |
---|---|---|---|
Cu-NPs | Pangasianodon hypopthalmus | Acetylcholinesterase inhibition | [110] |
Danio rerio | Intestinal microvilli damages, Intestinal damages Oxidative stress markers Downregulation Mitochondrial damages Endoplasmic reticulum stress marker upregulation | [111] | |
CuO-NPs | A549 cell line | Cell cycle arrest (phase S) | [97] |
Cyprinus carpio | Nucleus damages | [112] | |
Cu2O-NPs | A549 cell line | Mitochondrial fragmentation | [97] |
Danio rerio/ZFL Danio rerio liver cell line | Oxidative stress-related gene upregulation (ZFL cell line), copper transporters induction | [89] | |
Carassius auratus | Hemolysis, Red blood cell membrane damages | [90] | |
CuS-NPs | Danio rerio (embryo) | Embryo coagulation, elevation of MT levels, lipid peroxidation, antioxidant system depletion (with hypochlorite) | [91] |
Oryzias latipes | Length reduction | [92] |
6. Cu-Based NP Toxicity in Fish Mediated by Oxidative Stress
6.1. Cytotoxicity and Histopathological Effects of Copper Nanoparticles
6.2. Cu-NPs Genotoxicity
6.3. Gene Expression Disturbances in Fish and Their Hatchlings
Nanoparticle Type | Species | Disorder Type | NPs Concentration | Adverse Effects | Source |
---|---|---|---|---|---|
Cu-NPs | Oncorhynchus mykiss | Histopathological | 20, 100 µg dm−3 | Intestinal, cerebral, hepatic tissue damages | [119] |
Epinephelus Coioides | Cytotoxic | 20, 100 µg dm−3 | Mitochondrial membrane damages | [114] | |
PLHC-1 cell line (derived from Poeciliopsis lucida) | Cytotoxic | 25 µg dm−3 | Mitochondrial damages | [115] | |
Ctenopharyngodon idella, Clarias gariepinus, Cyprinus carpio | Genotoxic | 40 mg dm−3, 6.25–100.00 mg dm−3, 2.5, 6.25, 10 mg dm−3 | Micronuclei formation | [112,158,159] | |
Oreochromis niloticus | Genotoxic | 1/10, 1/20 of LC50 (150 mg dm−3) | DNA fragmentation in hepatocytes | [127] | |
Salmo trutta | Genotoxic | 1–0.0625 nM (dose-dependent) | Replication inhibition | [126] a | |
Cyprinus carpio | Molecular | 1 mg dm−3 | ROS and free radical generation | [83] a | |
Cyprinus carpio | Molecular | 1 mg dm−3 | gpx, cat, sod expression decrease and cyp1a, hsp70 increase | [83] a | |
Dicentrarchus labrax | Molecular | 0.1 (only CAT), 1 mg dm−3 | CAT and SOD activity increase | [70] | |
Cyprinus carpio | Molecular | 1 mg dm−3 | HSP70 enzymatic activityincrease | [83] a | |
Epinephelus coioides | Molecular | 20, 100 µg dm−3 | hsp70 expression and enzymatic activityincrease (dose-dependent) | [114] | |
CuO-NPs | Oncorhynchus mykiss | Histopathological | 20, 100 µg dm−3 | Multi-organ damages, gill edema, necrotic cells | [119] |
Carassius auratus | Histopathological | 10–100 mg dm−3 | Gill endothelial hyperplasia, nuclei damages, hepatic necrosis | [120,121] | |
Oreochromis niloticus | Histopathological | 25, 50 mg dm−3 | Gill endothelial hyperplasia, nuclei damages, hepatic necrosis | [120,121] | |
Apistogramma agassizii | Cytotoxic | 3 mg dm−3 | Mitochondrial proton leakage | [113] | |
Salmo trutta | Genotoxic | 1–0.0625 nM (dose-dependent) | Replication inhibition | [126] a | |
Hypophthalmichthys nobilis | Genotoxic | 2–20 mg dm−3 (dose-dependent) | DNA damage | [128] | |
Oncorhynchus mykiss | Genotoxic | 50 µg dm−3 | DNA lesions | [130] | |
Cyprinus carpio | Molecular | 1 mg dm−3 | ROS and free radical generation | [83] a | |
Oreochromis niloticus | Molecular | 10, 20, 50 mg dm−3 | ALP, ALT, AST, and creatinine level increase | [140] | |
RTG-2 cell line (derived from Oncorhynchus mykiss gonads) | Molecular | 12.5 µg dm−3 | gpx1a, gpx4b, cat, and sod2 expression increase | [139] | |
Oreochromis niloticus | Molecular | 1, 5, 25 mg dm−3 | CAT activity decrease | [142] | |
Oreochromis niloticus | Molecular | 20, 50 mg dm−3 | sod, cat, gpx hsp70 expression increase | [140] | |
Cyprinus carpio | Molecular | 1 mg dm−3 | gpx, cat, sod expressiondecrease and cyp1a, hsp70 increase | [83] a | |
Cyprinus carpio | Molecular | 1 mg dm−3 | GPX, CYP1A, CAT, SOD enzymatic activitydecrease | [83] a | |
Oreochromis mossambicus | Molecular | 5 mg dm−3 | Liver SOD and CAT decrease | [143] | |
Oreochromis mossambicus | Molecular | 0.5 mg dm−3 | cyp1a expression increase | [143] | |
Cyprinus carpio | Molecular | 1 mg dm−3 | HSP70 enzymatic activityincrease | [83] a | |
Oncorhynchus mykiss | Molecular | 4–256 mg dm−3 | gpx, cyp1a, hsp70 expression increase and sod decrease | [84] a |
Compound Type | Species | Adverse Effects | Source |
---|---|---|---|
CuO-NPs | Oncorhynchus mykiss | gpx, cyp1a, hsp70 expression increase and sod decrease | [84] a |
Oncorhynchus mykiss | Na+/K+-ATPase activity decrease, plasma depletion * | [164] | |
Oncorhynchus mykiss | DNA damage | [165] | |
CuSO4 | Oncorhynchus mykiss | gpx, cyp1a, hsp70, sod * expression increase | [84] a |
Oncorhynchus mykiss | Na+/K+-ATPase activity decrease, Na+ concentration decrease * | [164] |
6.4. Toxicity Towards Juvenile Fish
Disorder | Nanoelement | Developmental Stage | Species | Source |
---|---|---|---|---|
Genotoxicity | Cu-NPs (nanopowder) CuO-NPs CuZnFe2O4-NPs | Hatchlings | Salmo trutta | [126] a |
Immunotoxicity | Cu-NPs | Adult form | Takifugu fasciatus | [178] |
Hepatotoxicity | Cu-NPs | Adult form | Takifugu fasciatus | [179] |
Gill damage | CuO-NPs Cu-NPs | Adult form | Cyprinus carpio Takifugu fasciatus | [180] [179] |
Oxidative stress | Cu-NPs | Adult form | Takifugu fasciatus | [178] |
CuO-NPs CuO-NPs Cu-NPs (colloidal form) Cu-NPs (nanopowder) | Hatchlings | Cyprinus carpio Oncorhynchus mykiss Cyprinus carpio Cyprinus carpio | [83] a, [181] [84] a [83] a [83] a | |
Apoptosis induction | Cu-NPs CuO-NPs | Adult form Hatchlings | Takifugu fasciatus Cyprinus carpio | [178] [181] |
Edema Notochord malformation Delayed hatching Bioaccumulation | CuO-NPs | Embryo Hatchlings | Danio rerio Cyprinus carpio | [173] [181] |
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zalecenie Komisji UE z Dnia 10 Czerwca 2022 r. Dotyczącego Definicji Nanomateriałów. 10 June 2022. Available one: https://eur-lex.europa.eu/legal-content/PL/ALL/?uri=CELEX:32022H0614(01). 2022. (accessed on 3 June 2025).
- ISO 80004-1: 2023 (E) Nanotechnologies—Vocabulary—Part 1: Core Vocabulary. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:80004:-1:ed-1:v1:en:sec:3.1.10 (accessed on 14 March 2024).
- Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and Nanoparticles: Sources and Toxicity. Biointerphases 2007, 2, MR17–MR71. [Google Scholar] [CrossRef] [PubMed]
- Garibo, D.; Borbón-Nuñez, H.A.; de León, J.N.D.; García Mendoza, E.; Estrada, I.; Toledano-Magaña, Y.; Tiznado, H.; Ovalle-Marroquin, M.; Soto-Ramos, A.G.; Blanco, A.; et al. Green Synthesis of Silver Nanoparticles Using Lysiloma Acapulcensis Exhibit High-Antimicrobial Activity. Sci. Rep. 2020, 10, 12805. [Google Scholar] [CrossRef] [PubMed]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on Nanoparticles and Nanostructured Materials: History, Sources, Toxicity and Regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Asmathunisha, N.; Kathiresan, K. A Review on Biosynthesis of Nanoparticles by Marine Organisms. Colloids Surf. B Biointerfaces 2013, 103, 283–287. [Google Scholar] [CrossRef]
- Sharma, V.K.; Filip, J.; Zboril, R.; Varma, R.S. Natural Inorganic Nanoparticles–Formation, Fate, and Toxicity in the Environment. Chem. Soc. Rev. 2015, 44, 8410–8423. [Google Scholar] [CrossRef]
- Strambeanu, N.; Demetrovici, L.; Dragos, D. Lungu, M., Neculae, A., Bunoiu, M., Biris, C., Eds.; Natural Sources of Nanoparticles. In Nanoparticles’ Promises and Risks: Characterization, Manipulation, and Potential Hazards to Humanity and the Environment; Springer International Publishing: Cham, Switzerland, 2015; pp. 9–19. [Google Scholar] [CrossRef]
- Qin, W.; Huang, G.; Chen, Z.; Zhang, Y. Nanomaterials in Targeting Cancer Stem Cells for Cancer Therapy. Front. Pharmacol. 2017, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Gavilán, H.; Posth, O.; Bogart, L.K.; Steinhoff, U.; Gutiérrez, L.; Morales, M.P. How Shape and Internal Structure Affect the Magnetic Properties of Anisometric Magnetite Nanoparticles. Acta Mater. 2017, 125, 416–424. [Google Scholar] [CrossRef]
- Inam, M.; Foster, J.C.; Gao, J.; Hong, Y.; Du, J.; Dove, A.P.; O’Reilly, R.K. Size and Shape Affects the Antimicrobial Activity of Quaternized Nanoparticles. J. Polym. Sci. A Polym. Chem. 2019, 57, 255–259. [Google Scholar] [CrossRef]
- Pandey, G.; Madhuri, S. Heavy Metals Causing Toxicity in Animals and Fishes. Res. J. Anim. Vet. Fish. Sci. 2014, 2, 17–23. [Google Scholar]
- Ali, M.M.; Hossain, D.; Khan, M.S.; Begum, M.; Osman, M.H. Nazal, M.K., Zhao, H., Eds.; Environmental Pollution with Heavy Metals: A Public Health Concern. In Heavy Metals; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar] [CrossRef]
- Williams, J.E.; Isaak, D.J.; Imhof, J.; Hendrickson, D.A.; McMillan, J.R. Cold-Water Fishes and Climate Change in North America. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Solokas, M.A.; Feiner, Z.S.; Al-Chokachy, R.; Budy, P.; DeWeber, J.T.; Sarvala, J.; Sass, G.G.; Tolentino, S.A.; Walsworth, T.E.; Jensen, O.P. Shrinking Body Size and Climate Warming: Many Freshwater Salmonids Do Not Follow the Rule. Glob. Change Biol. 2023, 29, 2478–2492. [Google Scholar] [CrossRef] [PubMed]
- Kakakhel, M.A.; Wu, F.; Sajjad, W.; Zhang, Q.; Khan, I.; Ullah, K.; Wang, W. Long-Term Exposure to High-Concentration Silver Nanoparticles Induced Toxicity, Fatality, Bioaccumulation, and Histological Alteration in Fish (Cyprinus carpio). Environ. Sci. Eur. 2021, 33, 14. [Google Scholar] [CrossRef]
- Senze, M.; Kowalska-Góralska, M.; Czyż, K. Effect of Aluminum Concentration in Water on Its Toxicity and Bioaccumulation in Zooplankton (Chaoborus and Chironomus) and Carp (Cyprinus carpio L.) Roe. Biol. Trace Elem. Res. 2024, 202, 5259–5275. [Google Scholar] [CrossRef]
- Łuszczek-Trojnar, E.; Nowacki, P. Common Carp (Cyprinus carpio L.) Scales as a Bioindicator Reflecting Its Exposure to Heavy Metals throughout Life. J. Appl. Ichthyol. 2021, 37, 235–245. [Google Scholar] [CrossRef]
- Kollár, T.; Kása, E.; Csorbai, B.; Urbányi, B.; Csenki-Bakos, Z.; Horváth, Á. In Vitro Toxicology Test System Based on Common Carp (Cyprinus carpio) Sperm Analysis. Fish. Physiol. Biochem. 2018, 44, 1577–1589. [Google Scholar] [CrossRef] [PubMed]
- Bhat, R.A.; Saoca, C.; Cravana, C.; Fazio, F.; Guerrera, M.C.; Labh, S.N.; Kesbiç, O.S. Effects of Heavy Pollution in Different Water Bodies on Male Rainbow Trout (Oncorhynchus mykiss) Reproductive Health. Environ. Sci. Pollut. Res. 2023, 30, 23467–23479. [Google Scholar] [CrossRef]
- Alhajj, M.; Safwan Abd Aziz, M.; Salim, A.A.; Sharma, S.; Kamaruddin, W.H.A.; Ghoshal, S.K. Customization of Structure, Morphology and Optical Characteristics of Silver and Copper Nanoparticles: Role of Laser Fluence Tuning. Appl. Surf. Sci. 2023, 614, 156176. [Google Scholar] [CrossRef]
- Dang, T.M.D.; Le, T.T.T.; Fribourg-Blanc, E.; Dang, M.C. Synthesis and Optical Properties of Copper Nanoparticles Prepared by a Chemical Reduction Method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 015009. [Google Scholar] [CrossRef]
- Rakshit, S.; Mondal, K.G.; Jana, P.C.; Kamilya, T.; Saha, S. Structural and Optical Properties of Chemically Synthesized Copper Oxide Nanoparticles and Their Photocatalytic Application. J. Mater. Sci. Mater. Electron. 2023, 34, 2141. [Google Scholar] [CrossRef]
- Muhammed Ajmal, C.; Benny, A.P.; Jeon, W.; Kim, S.; Kim, S.W.; Baik, S. In-Situ Reduced Non-Oxidized Copper Nanoparticles in Nanocomposites with Extraordinary High Electrical and Thermal Conductivity. Mater. Today 2021, 48, 59–71. [Google Scholar] [CrossRef]
- Hossain, N.; Mobarak, M.H.; Mimona, M.A.; Islam, M.A.; Hossain, A.; Zohura, F.T.; Chowdhury, M.A. Advances and Significances of Nanoparticles in Semiconductor Applications—A Review. Results Eng. 2023, 19, 101347. [Google Scholar] [CrossRef]
- Rashid, M.I.; Shah, G.A.; Sadiq, M.; Amin, N.U.; Ali, A.M.; Ondrasek, G.; Shahzad, K. Nanobiochar and Copper Oxide Nanoparticles Mixture Synergistically Increases Soil Nutrient Availability and Improves Wheat Production. Plants 2023, 12, 1312. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, M.; Azam, M.; Nawaz Bhatti, H.; Khan, A.; Zafar, L.; Rehan Abbasi, A.M. Green Fabrication of Copper Nano-Fertilizer for Enhanced Crop Yield in Cowpea Cultivar: A Sustainable Approach. Biocatal. Agric. Biotechnol. 2024, 56, 102994. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; El-Hack, M.E.A.; Taha, A.E.; Fouda, M.M.G.; Ajarem, J.S.; Maodaa, S.N.; Allam, A.A.; Elshaer, N. Ecofriendly Synthesis and Insecticidal Application of Copper Nanoparticles against the Storage Pest Tribolium castaneum. Nanomaterials 2020, 10, 587. [Google Scholar] [CrossRef]
- Rahman, A.; Pittarate, S.; Perumal, V.; Rajula, J.; Thungrabeab, M.; Mekchay, S.; Krutmuang, P. Larvicidal and Antifeedant Effects of Copper Nano-Pesticides against Spodoptera Frugiperda (JE Smith) and Its Immunological Response. Insects 2022, 13, 1030. [Google Scholar] [CrossRef]
- Zia, R.; Riaz, M.; Farooq, N.; Qamar, A.; Anjum, S. Antibacterial Activity of Ag and Cu Nanoparticles Synthesized by Chemical Reduction Method: A Comparative Analysis. Mater. Res. Express 2018, 5, 075012. [Google Scholar] [CrossRef]
- Raja, F.N.S.; Worthington, T.; Martin, R.A. The Antimicrobial Efficacy of Copper, Cobalt, Zinc and Silver Nanoparticles: Alone and in Combination. Biomed. Mater. 2023, 18, 045003. [Google Scholar] [CrossRef]
- Vasiliev, G.; Kubo, A.-L.; Vija, H.; Kahru, A.; Bondar, D.; Karpichev, Y.; Bondarenko, O. Synergistic Antibacterial Effect of Copper and Silver Nanoparticles and Their Mechanism of Action. Sci. Rep. 2023, 13, 9202. [Google Scholar] [CrossRef]
- Ali, A.; Petrů, M.; Azeem, M.; Noman, T.; Masin, I.; Amor, N.; Militky, J.; Tomková, B. A Comparative Performance of Antibacterial Effectiveness of Copper and Silver Coated Textiles. J. Ind. Text. 2023, 53, 15280837221134990. [Google Scholar] [CrossRef]
- Sriram, K.; Maheswari, P.U.; Ezhilarasu, A.; Begum, K.M.M.S.; Arthanareeswaran, G. CuO-Loaded Hydrophobically Modified Chitosan as Hybrid Carrier for Curcumin Delivery and Anticancer Activity. Asia-Pac. J. Chem. Eng. 2017, 12, 858–871. [Google Scholar] [CrossRef]
- Al-zharani, M.; Qurtam, A.A.; Daoush, W.M.; Eisa, M.H.; Aljarba, N.H.; Alkahtani, S.; Nasr, F.A. Antitumor Effect of Copper Nanoparticles on Human Breast and Colon Malignancies. Environ. Sci. Pollut. Res. 2021, 28, 1587–1595. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, P.; Shafiee, G.; Ziamajidi, N.; Abbasalipourkabir, R. Copper Nanoparticles Induce Apoptosis and Oxidative Stress in SW480 Human Colon Cancer Cell Line. Biol. Trace Elem. Res. 2023, 201, 3746–3754. [Google Scholar] [CrossRef]
- Ghangrekar, M.M.; Chatterjee, P. Das, R., Ed.; Water Pollutants Classification and Its Effects on Environment. In Carbon Nanotubes for Clean Water; Springer International Publishing: Cham, Switzerland, 2018; pp. 11–26. [Google Scholar] [CrossRef]
- Malakar, A.; Snow, D.D. Devi, P., Singh, P., Kansal, S.K., Eds.; Chapter 17—Nanoparticles as Sources of Inorganic Water Pollutants. In Inorganic Pollutants in Water; Elsevier: Amsterdam, The Netherlands, 2020; pp. 337–370. [Google Scholar] [CrossRef]
- Domercq, P.; Praetorius, A.; Boxall, A.B.A. Emission and Fate Modelling Framework for Engineered Nanoparticles in Urban Aquatic Systems at High Spatial and Temporal Resolution. Environ. Sci. Nano 2018, 5, 533–543. [Google Scholar] [CrossRef]
- Akalin, G.O. Interaction of Copper (II) Oxide Nanoparticles with Aquatic Organisms: Uptake, Accumulation, and Toxicity. Toxicol. Environ. Chem. 2021, 103, 342–381. [Google Scholar] [CrossRef]
- Yalsuyi, A.M.; Vajargah, M.F. Acute Toxicity of Silver Nanoparticles in Roach (Rutilus rutilus) and Goldfish (Carassius auratus). J. Environ. Treat. Tech. 2017, 5, 1–4. [Google Scholar]
- Öztürk, A.E. Öztürk, A.E., Ed.; The Effects of Micro & Nano Pollution on Fish Reproduction. In Nanotechnology in Reproduction; Özgür Publications: Istanbul, Turkey, 2023. [Google Scholar] [CrossRef]
- Tierney, K.B.; Pyle, G.G. Is Salmonid Migration at Risk from Chemical Information Disruption? Aquac. Fish. 2024, 9, 378–387. [Google Scholar] [CrossRef]
- Arenas-Lago, D.; Abdolahpur Monikh, F.; Vijver, M.G.; Peijnenburg, W.J.G.M. Dissolution and Aggregation Kinetics of Zero Valent Copper Nanoparticles in (Simulated) Natural Surface Waters: Simultaneous Effects of PH, NOM and Ionic Strength. Chemosphere 2019, 226, 841–850. [Google Scholar] [CrossRef]
- Abbas, Q.; Yousaf, B.; Amina; Ali, M.U.; Munir, M.A.M.; El-Naggar, A.; Rinklebe, J.; Naushad, M. Transformation Pathways and Fate of Engineered Nanoparticles (ENPs) in Distinct Interactive Environmental Compartments: A Review. Environ. Int. 2020, 138, 105646. [Google Scholar] [CrossRef]
- Bathi, J.R.; Moazeni, F.; Upadhyayula, V.K.K.; Chowdhury, I.; Palchoudhury, S.; Potts, G.E.; Gadhamshetty, V. Behavior of Engineered Nanoparticles in Aquatic Environmental Samples: Current Status and Challenges. Sci. Total Environ. 2021, 793, 148560. [Google Scholar] [CrossRef]
- Klaine, S.J.; Alvarez, P.J.J.; Batley, G.E.; Fernandes, T.F.; Handy, R.D.; Lyon, D.Y.; Mahendra, S.; McLaughlin, M.J.; Lead, J.R. Nanomaterials in the Environment: Behavior, Fate, Bioavailability, and Effects. Environ. Toxicol. Chem. 2008, 27, 1825–1851. [Google Scholar] [CrossRef] [PubMed]
- Conway, J.R.; Adeleye, A.S.; Gardea-Torresdey, J.; Keller, A.A. Aggregation, Dissolution, and Transformation of Copper Nanoparticles in Natural Waters. Environ. Sci. Technol. 2015, 49, 2749–2756. [Google Scholar] [CrossRef] [PubMed]
- Krzyzewska, I.; Kyziol-Komosinska, J.; Rosik-Dulewska, C.; Czupiol, J.; Antoszczyszyn-Szpicka, P. Inorganic Nanomaterials in the Aquatic Environment: Behavior, Toxicity, and Interaction with Environmental Elements. Arch. Environ. Prot. 2016, 42, 87–101. [Google Scholar] [CrossRef]
- Xiao, Y.; Peijnenburg, W.J.G.M.; Chen, G.; Vijver, M.G. Impact of Water Chemistry on the Particle-Specific Toxicity of Copper Nanoparticles to Daphnia Magna. Sci. Total Environ. 2018, 610–611, 1329–1335. [Google Scholar] [CrossRef]
- Baker, T.J.; Tyler, C.R.; Galloway, T.S. Impacts of Metal and Metal Oxide Nanoparticles on Marine Organisms. Environ. Pollut. 2014, 186, 257–271. [Google Scholar] [CrossRef]
- Shang, L.; Nienhaus, K.; Nienhaus, G.U. Engineered Nanoparticles Interacting with Cells: Size Matters. J. Nanobiotechnology 2014, 12, 5. [Google Scholar] [CrossRef]
- Wu, F.; Bortvedt, A.; Harper, B.J.; Crandon, L.E.; Harper, S.L. Uptake and Toxicity of CuO Nanoparticles to Daphnia Magna Varies between Indirect Dietary and Direct Waterborne Exposures. Aquat. Toxicol. 2017, 190, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Perreault, F.; Oukarroum, A.; Melegari, S.P.; Matias, W.G.; Popovic, R. Polymer Coating of Copper Oxide Nanoparticles Increases Nanoparticles Uptake and Toxicity in the Green Alga Chlamydomonas Reinhardtii. Chemosphere 2012, 87, 1388–1394. [Google Scholar] [CrossRef]
- Hanna, S.K.; Miller, R.J.; Lenihan, H.S. Accumulation and Toxicity of Copper Oxide Engineered Nanoparticles in a Marine Mussel. Nanomaterials 2014, 4, 535–547. [Google Scholar] [CrossRef]
- Wan, J.-K.; Chu, W.-L.; Kok, Y.-Y.; Cheong, K.-W. Assessing the Toxicity of Copper Oxide Nanoparticles and Copper Sulfate in a Tropical Chlorella. J. Appl. Phycol. 2018, 30, 3153–3165. [Google Scholar] [CrossRef]
- Arratia, F.; Olivares-Ferretti, P.; García-Rodríguez, A.; Marcos, R.; Carmona, E.R. Comparative Toxic Effects of Copper-Based Nanoparticles and Their Microparticles in Daphnia Magna by Using Natural Freshwater Media. N. Z. J. Mar. Freshw. Res. 2019, 53, 460–469. [Google Scholar] [CrossRef]
- Mahanta, M.; Kaushik, K.K. Malik, J.A., Sadiq Mohamed, M.J., Eds.; Nanoparticles in Aquatic Environment: An Overview with Special Reference to Their Ecotoxicity. In Modern Nanotechnology: Volume 2: Green Synthesis, Sustainable Energy and Impacts; Springer Nature: Cham, Switzerland, 2023; pp. 385–404. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, Z.; Monikh, F.A.; Wu, J.; Wang, Z.; Vijver, M.G.; Bosker, T.; Peijnenburg, W.J.G.M. Trophic transfer of Cu nanoparticles in a simulated aquatic food chain. Ecotoxicol. Environ. Saf. 2022, 242, 113920. [Google Scholar] [CrossRef]
- Feng, S.; Zhu, L.; Zhao, X.; Sui, Q.; Sun, X.; Chen, B.; Qu, K.; Xia, B. Ecological Risk Assessment of Metallic Nanoparticles on the Marine Environments: Species Sensitivity Distributions Analysis. Front. Mar. Sci. 2022, 9, 985195. [Google Scholar] [CrossRef]
- Barreto, D.M.; Tonietto, A.E.; Lombardi, A.T. Environmental Concentrations of Copper Nanoparticles Affect Vital Functions in Ankistrodesmus Densus. Aquat. Toxicol. 2021, 231, 105720. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Z.; Zhao, J.; Lin, M.; Xing, B. Accumulation of Metal-Based Nanoparticles in Marine Bivalve Mollusks from Offshore Aquaculture as Detected by Single Particle ICP-MS. Environ. Pollut. 2020, 260, 114043. [Google Scholar] [CrossRef]
- Chio, C.-P.; Chen, W.-Y.; Chou, W.-C.; Hsieh, N.-H.; Ling, M.-P.; Liao, C.-M. Assessing the Potential Risks to Zebrafish Posed by Environmentally Relevant Copper and Silver Nanoparticles. Sci. Total Environ. 2012, 420, 111–118. [Google Scholar] [CrossRef]
- Wu, F.; Harper, B.J.; Crandon, L.E.; Harper, S.L. Assessment of Cu and CuO Nanoparticle Ecological Responses Using Laboratory Small-Scale Microcosms. Environ. Sci. Nano 2020, 7, 105–115. [Google Scholar] [CrossRef]
- Ghosh, S.; Sadhu, A.; Mandal, A.H.; Biswas, J.K.; Sarkar, D.; Saha, S. Copper Oxide Nanoparticles as an Emergent Threat to Aquatic Invertebrates and Photosynthetic Organisms: A Synthesis of the Known and Exploration of the Unknown. Curr. Pollut. Rep. 2024, 11, 6. [Google Scholar] [CrossRef]
- Parsai, T.; Kumar, A. Setting Guidelines for Co-Occurring Nanoparticles in Water Medium. Sci. Total Environ. 2021, 776, 145175. [Google Scholar] [CrossRef]
- Roubeau Dumont, E.; Elger, A.; Azéma, C.; Castillo Michel, H.; Surble, S.; Larue, C. Cutting-Edge Spectroscopy Techniques Highlight Toxicity Mechanisms of Copper Oxide Nanoparticles in the Aquatic Plant Myriophyllum Spicatum. Sci. Total Environ. 2022, 803, 150001. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Tan, Z.; Lai, Y.; Li, Q.; Liu, J. Nanoparticulate Pollutants in the Environment: Analytical Methods, Formation, and Transformation. Eco-Environ. Health 2023, 2, 61–73. [Google Scholar] [CrossRef]
- Torronteras, R.; Díaz-de-Alba, M.; Granado-Castro, M.D.; Espada-Bellido, E.; Córdoba García, F.; Canalejo, A.; Galindo-Riaño, M.D. Induction of Oxidative Stress by Waterborne Copper and Arsenic in Larvae of European Seabass (Dicentrarchus labrax L.): A Comparison with Their Effects as Nanoparticles. Toxics 2024, 12, 141. [Google Scholar] [CrossRef] [PubMed]
- Farombi, E.O.; Adelowo, O.A.; Ajimoko, Y.R. Biomarkers of Oxidative Stress and Heavy Metal Levels as Indicators of Environmental Pollution in African Cat Fish (Clarias gariepinus) from Nigeria Ogun River. Int. J. Environ. Res. Public. Health 2007, 4, 158–165. [Google Scholar] [CrossRef]
- Kadim, M.K.; Risjani, Y. Biomarker for Monitoring Heavy Metal Pollution in Aquatic Environment: An Overview toward Molecular Perspectives. Emerg. Contam. 2022, 8, 195–205. [Google Scholar] [CrossRef]
- Hook, S.E.; Gallagher, E.P.; Batley, G.E. The Role of Biomarkers in the Assessment of Aquatic Ecosystem Health. Integr. Environ. Assess. Manag. 2014, 10, 327–341. [Google Scholar] [CrossRef]
- Rangaswamy, B.; Kim, W.-S.; Kwak, I.-S. Heat Shock Protein 70 Reflected the State of Inhabited Fish Response to Water Quality within Lake Ecosystem. Int. J. Environ. Sci. Technol. 2024, 21, 643–654. [Google Scholar] [CrossRef]
- Moreira-de-Sousa, C.; de Souza, R.B.; Fontanetti, C.S. HSP70 as a Biomarker: An Excellent Tool in Environmental Contamination Analysis—A Review. Water Air Soil. Pollut. 2018, 229, 264. [Google Scholar] [CrossRef]
- Hardilová, Š.; Havrdová, M.; Panáček, A.; Kvítek, L.; Zbořil, R. Hsp70 as an Indicator of Stress in the Cells after Contact with Nanoparticles. J. Phys. Conf. Ser. 2015, 617, 012023. [Google Scholar] [CrossRef]
- Ahmadzadeh, P.; Naeemi, A.S.; Mansouri, B. Toxicity of Polystyrene Nanoplastic and Copper Oxide Nanoparticle in Artemia Salina: Single and Combined Effects on Stress Responses. Mar. Environ. Res. 2025, 203, 106831. [Google Scholar] [CrossRef]
- Kim, R.-O.; Kim, B.-M.; Hwang, D.-S.; Au, D.W.T.; Jung, J.-H.; Shim, W.J.; Leung, K.M.Y.; Wu, R.S.S.; Rhee, J.-S.; Lee, J.-S. Evaluation of Biomarker Potential of Cytochrome P450 1A (CYP1A) Gene in the Marine Medaka, Oryzias Melastigma Exposed to Water-Accommodated Fractions (WAFs) of Iranian Crude Oil. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2013, 157, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.-J.; Joo, M.-S.; Kim, S.-S.; Yoo, H.-K.; Park, J.-J. Histopathological and Immunohistochemical Features and Expression Patterns of Cytochrome P450 1 Family Genes in Black Rockfish (Sebastes schlegelii): Exposure to 2, 3, 7, 8-Tetrachlorodibenzo-p-Dioxin and β-Naphthoflavone. Fishes 2023, 8, 583. [Google Scholar] [CrossRef]
- Moselhy, W.A.; Ibrahim, M.A.; Khalifa, A.G.; El-Nahass, E.-S.; Hassan, N.E.-H.Y. The Effects of TiO2, ZnO, IONs and Al2O3 Metallic Nanoparticles on the CYP1A1 and NBN Transcripts in Rat Liver. Toxicol. Res. 2024, 13, tfae034. [Google Scholar] [CrossRef] [PubMed]
- Krishnasamy Sekar, R.; Arunachalam, R.; Anbazhagan, M.; Palaniyappan, S.; Veeran, S.; Sridhar, A.; Ramasamy, T. Accumulation, Chronicity, and Induction of Oxidative Stress Regulating Genes Through Allium cepa L. Functionalized Silver Nanoparticles in Freshwater Common Carp (Cyprinus carpio). Biol. Trace Elem. Res. 2023, 201, 904–925. [Google Scholar] [CrossRef]
- Cortés-Miranda, J.; Rojas-Hernández, N.; Muñoz, G.; Copaja, S.; Quezada-Romegialli, C.; Veliz, D.; Vega-Retter, C. Biomarker Selection Depends on Gene Function and Organ: The Case of the Cytochrome P450 Family Genes in Freshwater Fish Exposed to Chronic Pollution. PeerJ 2024, 12, e16925. [Google Scholar] [CrossRef] [PubMed]
- Sielska, A.; Cembrowska-Lech, D.; Kowalska-Góralska, M.; Czerniawski, R.; Krepski, T.; Skuza, L. Effects of Copper Nanoparticles on Oxidative Stress Genes and Their Enzyme Activities in Common Carp (Cyprinus carpio). Eur. Zool. J. 2024, 91, 354–365. [Google Scholar] [CrossRef]
- Sielska, A.; Kowalska-Góralska, M.; Szućko-Kociuba, I.; Skuza, L. Comparison of the Effects of Copper Oxide Nanoparticles (CuO-NPs) and Copper (II) Sulfate on Oxidative Stress Parameters in Rainbow Trout Hatchlings (Oncorhynchus mykiss). Eur. Zool. J. 2024, 91, 897–905. [Google Scholar] [CrossRef]
- Shin, S.W.; Song, I.H.; Um, S.H. Role of Physicochemical Properties in Nanoparticle Toxicity. Nanomaterials 2015, 5, 1351–1365. [Google Scholar] [CrossRef]
- Yang, H.; Liu, C.; Yang, D.; Zhang, H.; Xi, Z. Comparative Study of Cytotoxicity, Oxidative Stress and Genotoxicity Induced by Four Typical Nanomaterials: The Role of Particle Size, Shape and Composition. J. Appl. Toxicol. 2009, 29, 69–78. [Google Scholar] [CrossRef]
- Manke, A.; Wang, L.; Rojanasakul, Y. Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity. Biomed. Res. Int. 2013, 2013, 942916. [Google Scholar] [CrossRef]
- Naz, S.; Gul, A.; Zia, M. Toxicity of Copper Oxide Nanoparticles: A Review Study. IET Nanobiotechnol 2020, 14, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, D.; Yu, J.C.; Chan, K.M. Effects of Cu2O Nanoparticle and CuCl2 on Zebrafish Larvae and a Liver Cell-Line. Aquat. Toxicol. 2011, 105, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.Q.; Kang, B.; Ling, J. Cytotoxicity of Cuprous Oxide Nanoparticles to Fish Blood Cells: Hemolysis and Internalization. J. Nanoparticle Res. 2013, 15, 1507. [Google Scholar] [CrossRef]
- Kong, L.; Wang, X.; Li, X.; Liu, J.; Huang, X.; Qin, Y.; Che, X.; Zhou, H.; Martyniuk, C.J.; Yan, B. Aggravated Toxicity of Copper Sulfide Nanoparticles via Hypochlorite-Induced Nanoparticle Dissolution. Environ. Sci. Nano 2022, 9, 1439–1452. [Google Scholar] [CrossRef]
- Li, L.; Hu, L.; Zhou, Q.; Huang, C.; Wang, Y.; Sun, C.; Jiang, G. Sulfidation as a Natural Antidote to Metallic Nanoparticles Is Overestimated: CuO Sulfidation Yields CuS Nanoparticles with Increased Toxicity in Medaka (Oryzias latipes) Embryos. Environ. Sci. Technol. 2015, 49, 2486–2495. [Google Scholar] [CrossRef]
- Sies, H. Keaney, J.F., Ed.; What Is Oxidative Stress? In Oxidative Stress and Vascular Disease; Springer: Boston, MA, USA, 2000; pp. 1–8. [Google Scholar] [CrossRef]
- Sies, H. Biochemistry of Oxidative Stress. Angew. Chem. Int. Ed. Engl. 1986, 25, 1058–1071. [Google Scholar] [CrossRef]
- Halliwell, B.B.; Poulsen, H.E. Halliwell, B.B., Poulsen, H.E., Eds.; Oxidative Stress. In Cigarette Smoke and Oxidative Stress; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–4. [Google Scholar] [CrossRef]
- Chen, S.; Li, Q.; Shi, H.; Li, F.; Duan, Y.; Guo, Q. New Insights into the Role of Mitochondrial Dynamics in Oxidative Stress-Induced Diseases. Biomed. Pharmacother. 2024, 178, 117084. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.-X. Cu (I)/Cu (II) Released by Cu Nanoparticles Revealed Differential Cellular Toxicity Related to Mitochondrial Dysfunction. Environ. Sci. Technol. 2023, 57, 9548–9558. [Google Scholar] [CrossRef]
- Abdelazeim, S.A.; Shehata, N.I.; Aly, H.F.; Shams, S.G.E. Amelioration of Oxidative Stress-Mediated Apoptosis in Copper Oxide Nanoparticles-Induced Liver Injury in Rats by Potent Antioxidants. Sci. Rep. 2020, 10, 10812. [Google Scholar] [CrossRef]
- Kodali, V.; Thrall, B.D. Roberts, S.M., Kehrer, J.P., Klotz, L.-O., Eds.; Oxidative Stress and Nanomaterial-Cellular Interactions. In Studies on Experimental Toxicology and Pharmacology; Springer International Publishing: Cham, Switzerland, 2015; pp. 347–367. [Google Scholar] [CrossRef]
- Moschini, E.; Colombo, G.; Chirico, G.; Capitani, G.; Dalle-Donne, I.; Mantecca, P. Biological Mechanism of Cell Oxidative Stress and Death during Short-Term Exposure to Nano CuO. Sci. Rep. 2023, 13, 2326. [Google Scholar] [CrossRef]
- Yih, T.C.; Al-Fandi, M. Engineered Nanoparticles as Precise Drug Delivery Systems. J. Cell Biochem. 2006, 97, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, Y.; Shi, G.; Yang, J.; Zhang, J.; Li, W.; Li, A.; Tai, R.; Fang, H.; Fan, C.; et al. Nanodiamonds Act as Trojan Horse for Intracellular Delivery of Metal Ions to Trigger Cytotoxicity. Part. Fibre Toxicol. 2015, 12, 2. [Google Scholar] [CrossRef]
- Gupta, G.; Cappellini, F.; Farcal, L.; Gornati, R.; Bernardini, G.; Fadeel, B. Copper Oxide Nanoparticles Trigger Macrophage Cell Death with Misfolding of Cu/Zn Superoxide Dismutase 1 (SOD1). Part. Fibre Toxicol. 2022, 19, 33. [Google Scholar] [CrossRef]
- Studer, A.M.; Limbach, L.K.; Van Duc, L.; Krumeich, F.; Athanassiou, E.K.; Gerber, L.C.; Moch, H.; Stark, W.J. Nanoparticle Cytotoxicity Depends on Intracellular Solubility: Comparison of Stabilized Copper Metal and Degradable Copper Oxide Nanoparticles. Toxicol. Lett. 2010, 197, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Strauch, B.M.; Hubele, W.; Hartwig, A. Impact of Endocytosis and Lysosomal Acidification on the Toxicity of Copper Oxide Nano-and Microsized Particles: Uptake and Gene Expression Related to Oxidative Stress and the DNA Damage Response. Nanomaterials 2020, 10, 679. [Google Scholar] [CrossRef] [PubMed]
- Kessler, A.; Hedberg, J.; Blomberg, E.; Odnevall, I. Reactive Oxygen Species Formed by Metal and Metal Oxide Nanoparticles in Physiological Media—A Review of Reactions of Importance to Nanotoxicity and Proposal for Categorization. Nanomaterials 2022, 12, 1922. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Galiniak, S.; Bartosz, G. Reakcja Fentona. Kosmos 2014, 63, 309–314. [Google Scholar]
- Ramos-Zúñiga, J.; Bruna, N.; Pérez-Donoso, J.M. Toxicity Mechanisms of Copper Nanoparticles and Copper Surfaces on Bacterial Cells and Viruses. Int. J. Mol. Sci. 2023, 24, 10503. [Google Scholar] [CrossRef]
- Pohanka, M. Copper and Copper Nanoparticles Toxicity and Their Impact on Basic Functions in the Body. Bratisl. Lek. Listy 2019, 120, 397–409. [Google Scholar] [CrossRef]
- Kumar, N.; Gismondi, E.; Reddy, K.S. Copper and Nanocopper Toxicity Using Integrated Biomarker Response in Pangasianodon Hypophthalmus. Environ. Toxicol. 2024, 39, 1581–1600. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Zhang, T.; Sun, H.; Liu, J.-X. Copper Nanoparticles Induce Zebrafish Intestinal Defects via Endoplasmic Reticulum and Oxidative Stress†. Metallomics 2020, 12, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Nikdehghan, N.; Kashiri, H.; Hedayati, A.A. CuO Nanoparticles-Induced Micronuclei and DNA Damage in Cyprinus carpio. Aquac. Aquar. Conserv. Legis.-Int. J. Bioflux Soc. (AACL Bioflux) 2018, 11, 925–936. [Google Scholar]
- Braz-Mota, S.; Campos, D.F.; MacCormack, T.J.; Duarte, R.M.; Val, A.L.; Almeida-Val, V.M.F. Mechanisms of Toxic Action of Copper and Copper Nanoparticles in Two Amazon Fish Species: Dwarf Cichlid (Apistogramma agassizii) and Cardinal Tetra (Paracheirodon axelrodi). Sci. Total Environ. 2018, 630, 1168–1180. [Google Scholar] [CrossRef]
- Wang, T.; Long, X.; Liu, Z.; Cheng, Y.; Yan, S. Effect of Copper Nanoparticles and Copper Sulphate on Oxidation Stress, Cell Apoptosis and Immune Responses in the Intestines of Juvenile Epinephelus coioides. Fish. Shellfish. Immunol. 2015, 44, 674–682. [Google Scholar] [CrossRef]
- Hernández-Moreno, D.; Li, L.; Connolly, M.; Conde, E.; Fernández, M.; Schuster, M.; Navas, J.M.; Fernández-Cruz, M.-L. Mechanisms Underlying the Enhancement of Toxicity Caused by the Coincubation of Zinc Oxide and Copper Nanoparticles in a Fish Hepatoma Cell Line. Environ. Toxicol. Chem. 2016, 35, 2562–2570. [Google Scholar] [CrossRef]
- Malhotra, N.; Ger, T.-R.; Uapipatanakul, B.; Huang, J.-C.; Chen, K.H.-C.; Hsiao, C.-D. Review of Copper and Copper Nanoparticle Toxicity in Fish. Nanomaterials 2020, 10, 1126. [Google Scholar] [CrossRef]
- Riaz, A.; Riaz, M.A.; Shahzad, K.; Ijaz, B.; Khan, M.S. Deposition Trend of Subchronic Exposure of Copper Oxide Nanoparticles (CuO-NPs) and Its Effect on the Antioxidant System of Labeo Rohita. Int. Nano Lett. 2020, 10, 279–285. [Google Scholar] [CrossRef]
- Khan, S.K.; Dutta, J.; Rather, M.A.; Ahmad, I.; Nazir, J.; Shah, S.; Ballal, S.; Garg, A.; Imam, F.; Kumar, A. Assessing the Combined Toxicity of Silver and Copper Nanoparticles in Rainbow Trout (Oncorhynchus mykiss) Fingerlings. Biol. Trace Elem. Res. 2025. [Google Scholar] [CrossRef]
- Al-Bairuty, G.A.; Shaw, B.J.; Handy, R.D.; Henry, T.B. Histopathological Effects of Waterborne Copper Nanoparticles and Copper Sulphate on the Organs of Rainbow Trout (Oncorhynchus mykiss). Aquat. Toxicol. 2013, 126, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Badran, S.R.; Hamed, A. Is the Trend toward a Sustainable Green Synthesis of Copper Oxide Nanoparticles Completely Safe for Oreochromis niloticus When Compared to Chemical Ones?: Using Oxidative Stress, Bioaccumulation, and Histological Biomarkers. Environ. Sci. Pollut. Res. 2024, 31, 9477–9494. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, S.; Mousavi-Sabet, H.; Hedayati, A.; Zargari, A.; Multisanti, C.R.; Faggio, C. Copper-Oxide Nanoparticles Effects on Goldfish (Carassius auratus): Lethal Toxicity, Haematological, and Biochemical Effects. Vet. Res. Commun. 2024, 48, 1611–1620. [Google Scholar] [CrossRef] [PubMed]
- Shukla, R.K.; Badiye, A.; Vajpayee, K.; Kapoor, N. Genotoxic Potential of Nanoparticles: Structural and Functional Modifications in DNA. Front. Genet. 2021, 12, 728250. [Google Scholar] [CrossRef]
- Núñez, M.E.; Hall, D.B.; Barton, J.K. Long-Range Oxidative Damage to DNA: Effects of Distance and Sequence. Chem. Biol. 1999, 6, 85–97. [Google Scholar] [CrossRef]
- Magaye, R.; Zhao, J.; Bowman, L.; Ding, M.I.N. Genotoxicity and Carcinogenicity of Cobalt-, Nickel-and Copper-Based Nanoparticles. Exp. Ther. Med. 2012, 4, 551–561. [Google Scholar] [CrossRef]
- Solorio-Rodriguez, S.A.; Wu, D.; Boyadzhiev, A.; Christ, C.; Williams, A.; Halappanavar, S. A Systematic Genotoxicity Assessment of a Suite of Metal Oxide Nanoparticles Reveals Their DNA Damaging and Clastogenic Potential. Nanomaterials 2024, 14, 743. [Google Scholar] [CrossRef]
- Sielska, A.; Skuza, L.; Kowalska-Góralska, M. The Effects of Silver and Copper Nanoparticles and Selenium on Salmo Trutta Hatchlings. Ecohydrology 2022, 15, e2453. [Google Scholar] [CrossRef]
- Abdel-Khalek, A.A. Comparative Evaluation of Genotoxic Effects Induced by CuO Bulk and Nano-Particles in Nile Tilapia, Oreochromis niloticus. Water Air Soil. Pollut. 2015, 227, 35. [Google Scholar] [CrossRef]
- Gallo, A.; Manfra, L.; Boni, R.; Rotini, A.; Migliore, L.; Tosti, E. Cytotoxicity and Genotoxicity of CuO Nanoparticles in Sea Urchin Spermatozoa through Oxidative Stress. Environ. Int. 2018, 118, 325–333. [Google Scholar] [CrossRef]
- Aziz, S.; Abdullah, S.; Anwar, H.; Latif, F. DNA Damage and Oxidative Stress in Economically Important Fish, Bighead Carp (Hypophthalmichthys nobilis) Exposed to Engineered Copper Oxide Nanoparticles. Pak. Vet. J. 2022, 42, 1–8. [Google Scholar]
- Auclair, J.; Turcotte, P.; Gagnon, C.; Peyrot, C.; Wilkinson, K.J.; Gagné, F. Investigation on the Toxicity of Nanoparticle Mixture in Rainbow Trout Juveniles. Nanomaterials 2023, 13, 311. [Google Scholar] [CrossRef] [PubMed]
- Margis, R.; Dunand, C.; Teixeira, F.K.; Margis-Pinheiro, M. Glutathione Peroxidase Family—An Evolutionary Overview. FEBS J. 2008, 275, 3959–3970. [Google Scholar] [CrossRef]
- Arockiaraj, J.; Palanisamy, R.; Bhatt, P.; Kumaresan, V.; Gnanam, A.J.; Pasupuleti, M.; Kasi, M. A Novel Murrel Channa Striatus Mitochondrial Manganese Superoxide Dismutase: Gene Silencing, SOD Activity, Superoxide Anion Production and Expression. Fish. Physiol. Biochem. 2014, 40, 1937–1955. [Google Scholar] [CrossRef]
- Fridovich, I. Superoxide Radical and Superoxide Dismutases. Annu. Rev. Biochem. 1995, 64, 97–112. [Google Scholar] [CrossRef]
- Finaud, J.; Lac, G.; Filaire, E. Oxidative Stress. Sports Med. 2006, 36, 327–358. [Google Scholar] [CrossRef] [PubMed]
- Nitta, Y.; Muraoka-Hirayama, S.; Sakurai, K. Catalase Is Required for Peroxisome Maintenance during Adipogenesis. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2020, 1865, 158726. [Google Scholar] [CrossRef]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative Stress and Antioxidant Defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef]
- Davies, K.J.A. Oxidative Stress, Antioxidant Defenses, and Damage Removal, Repair, and Replacement Systems. IUBMB Life 2000, 50, 279–289. [Google Scholar] [CrossRef]
- Limón-Pacheco, J.; Gonsebatt, M.E. The Role of Antioxidants and Antioxidant-Related Enzymes in Protective Responses to Environmentally Induced Oxidative Stress. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2009, 674, 137–147. [Google Scholar] [CrossRef]
- Çiçek, S. Influences of L-Ascorbic Acid on Cytotoxic, Biochemical, and Genotoxic Damages Caused by Copper II Oxide Nanoparticles in the Rainbow Trout Gonad Cells-2. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 266, 109559. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Latif, H.M.R.; Dawood, M.A.O.; Mahmoud, S.F.; Shukry, M.; Noreldin, A.E.; Ghetas, H.A.; Khallaf, M.A. Copper Oxide Nanoparticles Alter Serum Biochemical Indices, Induce Histopathological Alterations, and Modulate Transcription of Cytokines, HSP70, and Oxidative Stress Genes in Oreochromis niloticus. Animals 2021, 11, 652. [Google Scholar] [CrossRef]
- Noureen, A.; Jabeen, F.; Tabish, T.A.; Yaqub, S.; Ali, M.; Chaudhry, A.S. Assessment of Copper Nanoparticles (Cu-NPs) and Copper (II) Oxide (CuO) Induced Hemato-and Hepatotoxicity in Cyprinus carpio. Nanotechnology 2018, 29, 144003. [Google Scholar] [CrossRef] [PubMed]
- Canli, E.G.; Canli, M. Effects of Aluminum, Copper and Titanium Nanoparticles on the Liver Antioxidant Enzymes of the Nile Fish (Oreochromis niloticus). Energy Rep. 2020, 6, 62–67. [Google Scholar] [CrossRef]
- Villarreal, F.D.; Das, G.K.; Abid, A.; Kennedy, I.M.; Kültz, D. Sublethal Effects of CuO Nanoparticles on Mozambique Tilapia (Oreochromis mossambicus) Are Modulated by Environmental Salinity. PLoS ONE 2014, 9, e88723. [Google Scholar] [CrossRef]
- Tunçsoy, M.; Duran, S.; Ay, Ö.; Cicik, B.; Erdem, C. Effects of Copper Oxide Nanoparticles on Antioxidant Enzyme Activities and on Tissue Accumulation of Oreochromis niloticus. Bull. Environ. Contam. Toxicol. 2017, 99, 360–364. [Google Scholar] [CrossRef]
- Murphy, M.E. The HSP70 Family and Cancer. Carcinogenesis 2013, 34, 1181–1188. [Google Scholar] [CrossRef]
- Yu, A.; Li, P.; Tang, T.; Wang, J.; Chen, Y.; Liu, L. Roles of Hsp70s in Stress Responses of Microorganisms, Plants, and Animals. Biomed. Res. Int. 2015, 2015, 510319. [Google Scholar] [CrossRef]
- Basu, N.; Todgham, A.E.; Ackerman, P.A.; Bibeau, M.R.; Nakano, K.; Schulte, P.M.; Iwama, G.K. Heat Shock Protein Genes and Their Functional Significance in Fish. Gene 2002, 295, 173–183. [Google Scholar] [CrossRef]
- Yamashita, M.; Yabu, T.; Ojima, N. Stress Protein HSP70 in Fish. Aqua-Biosci. Monogr. 2010, 3, 111–141. [Google Scholar] [CrossRef]
- Jeyachandran, S.; Chellapandian, H.; Park, K.; Kwak, I.-S. A Review on the Involvement of Heat Shock Proteins (Extrinsic Chaperones) in Response to Stress Conditions in Aquatic Organisms. Antioxidants 2023, 12, 1444. [Google Scholar] [CrossRef] [PubMed]
- Masouleh, F.F.; Amiri, B.M.; Mirvaghefi, A.; Ghafoori, H.; Madsen, S.S. Silver Nanoparticles Cause Osmoregulatory Impairment and Oxidative Stress in Caspian Kutum (Rutilus kutum, Kamensky 1901). Environ. Monit. Assess. 2017, 189, 448. [Google Scholar] [CrossRef] [PubMed]
- Harsij, M.; Paknejad, H.; Khalili, M.; Jafarian, H.; Nazari, S. Histological Study and Evaluation of Hsp70 Gene Expression in Gill and Liver Tissues of Goldfish (Carassius auratus) Exposed to Zinc Oxide Nanoparticles. Iran. J. Fish. Sci. 2021, 20, 741–760. [Google Scholar]
- Temiz, Ö.; Kargın, F. Toxicological Impacts on Antioxidant Responses, Stress Protein, and Genotoxicity Parameters of Aluminum Oxide Nanoparticles in the Liver of Oreochromis niloticus. Biol. Trace Elem. Res. 2022, 200, 1339–1346. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutterdge, J.M.C. 1 Oxygen: Boon yet Bane—Introducing Oxygen Toxicity and Reactive Species. In Free Radicals in Biology and Medicine, 5th ed.; Oxford Academic: Oxford, UK, 2015; pp. 1–29. [Google Scholar] [CrossRef]
- Andleeb, S.; Banday, M.S.; Rashid, S.; Ahmad, I.; Hafeez, M.; Asimi, O.; Rather, M.A.; Baba, S.H.; Shah, A.; Razak, N.; et al. Rather, M.A., Amin, A., Hajam, Y.A., Jamwal, A., Ahmad, I., Eds.; Role of Cytochrome P450 in Xenobiotic Metabolism in Fishes (Review). In Xenobiotics in Aquatic Animals: Reproductive and Developmental Impacts; Springer Nature: Singapore, 2023; pp. 251–268. [Google Scholar] [CrossRef]
- Schlenk, D.; Goldstone, J.; James, M.O.; van den Hurk, P. Biotransformation in Fishes 1. In Toxicology of Fishes; CRC Press: Boca Raton, FL, USA, 2024; pp. 60–120. [Google Scholar]
- Scown, T.M.; Santos, E.M.; Johnston, B.D.; Gaiser, B.; Baalousha, M.; Mitov, S.; Lead, J.R.; Stone, V.; Fernandes, T.F.; Jepson, M.; et al. Effects of Aqueous Exposure to Silver Nanoparticles of Different Sizes in Rainbow Trout. Toxicol. Sci. 2010, 115, 521–534. [Google Scholar] [CrossRef]
- Mansour, W.A.A.; Abdelsalam, N.R.; Tanekhy, M.; Khaled, A.A.; Mansour, A.T. Toxicity, Inflammatory and Antioxidant Genes Expression, and Physiological Changes of Green Synthesis Silver Nanoparticles on Nile Tilapia (Oreochromis niloticus) Fingerlings. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 247, 109068. [Google Scholar] [CrossRef]
- Khan, A.; Khan, M.; Shah, N.; Khan, M.; Dawar, A.; Shah, A.A.; Dawar, F.; Khisroon, M. Genotoxicity of Copper, Silver and Green Synthetic Gold Nanoparticles in Fish (Ctenopharyngodon idella). Biol. Trace Elem. Res. 2024, 202, 2855–2863. [Google Scholar] [CrossRef]
- Ogunsuyi, O.I.; Fadoju, O.M.; Akanni, O.O.; Alabi, O.A.; Alimba, C.G.; Cambier, S.; Eswara, S.; Gutleb, A.C.; Adaramoye, O.A.; Bakare, A.A. Genetic and Systemic Toxicity Induced by Silver and Copper Oxide Nanoparticles, and Their Mixture in Clarias gariepinus (Burchell, 1822). Environ. Sci. Pollut. Res. 2019, 26, 27470–27481. [Google Scholar] [CrossRef]
- Pereira, S.P.P.; Boyle, D.; Nogueira, A.; Handy, R.D. Differences in Toxicity and Accumulation of Metal from Copper Oxide Nanomaterials Compared to Copper Sulphate in Zebrafish Embryos: Delayed Hatching, the Chorion Barrier and Physiological Effects. Ecotoxicol. Environ. Saf. 2023, 253, 114613. [Google Scholar] [CrossRef]
- Yavaş, C.; Gülsoy, N. Research Article: Comparative Genotoxic and Histopathological Effects of Copper Nanoparticles and Copper Chloride in Goldfish (Carassius auratus). Iran. J. Fish. Sci. 2024, 23, 485–503. [Google Scholar]
- Tsai, K.-P. Management of Target Algae by Using Copper-Based Algaecides: Effects of Algal Cell Density and Sensitivity to Copper. Water Air Soil. Pollut. 2016, 227, 238. [Google Scholar] [CrossRef]
- Wang, T.; Chen, X.; Long, X.; Liu, Z.; Yan, S. Copper Nanoparticles and Copper Sulphate Induced Cytotoxicity in Hepatocyte Primary Cultures of Epinephelus coioides. PLoS ONE 2016, 11, e0149484. [Google Scholar] [CrossRef] [PubMed]
- Shaw, B.J.; Al-Bairuty, G.; Handy, R.D. Effects of Waterborne Copper Nanoparticles and Copper Sulphate on Rainbow Trout, (Oncorhynchus mykiss): Physiology and Accumulation. Aquat. Toxicol. 2012, 116–117, 90–101. [Google Scholar] [CrossRef]
- Isani, G.; Falcioni, M.L.; Barucca, G.; Sekar, D.; Andreani, G.; Carpenè, E.; Falcioni, G. Comparative Toxicity of CuO Nanoparticles and CuSO4 in Rainbow Trout. Ecotoxicol. Environ. Saf. 2013, 97, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Soliman, H.A.M.; Hamed, M.; Sayed, A.E.-D.H. Investigating the Effects of Copper Sulfate and Copper Oxide Nanoparticles in Nile Tilapia (Oreochromis niloticus) Using Multiple Biomarkers: The Prophylactic Role of Spirulina. Environ. Sci. Pollut. Res. 2021, 28, 30046–30057. [Google Scholar] [CrossRef]
- Thit, A.; Skjolding, L.M.; Selck, H.; Sturve, J. Effects of Copper Oxide Nanoparticles and Copper Ions to Zebrafish (Danio rerio) Cells, Embryos and Fry. Toxicol. Vitr. 2017, 45, 89–100. [Google Scholar] [CrossRef]
- Gopalraaj, J.; Manikantan, P.; Arun, M.; Balamuralikrishnan, B.; Anand, A.V. Toxic Effects of Nanoparticles on Fish Embryos. Res. J. Biotechnol. Vol. 2021, 16, 12. [Google Scholar]
- Balasubramanian, S.; Haneen, M.A.; Sharma, G.; Perumal, E. Acute Copper Oxide Nanoparticles Exposure Alters Zebrafish Larval Microbiome. Life Sci. 2024, 336, 122313. [Google Scholar] [CrossRef]
- Rotomskis, R.; Jurgelėnė, Ž.; Stankevičius, M.; Stankevičiūtė, M.; Kazlauskienė, N.; Jokšas, K.; Montvydienė, D.; Kulvietis, V.; Karabanovas, V. Interaction of Carboxylated CdSe/ZnS Quantum Dots with Fish Embryos: Towards Understanding of Nanoparticles Toxicity. Sci. Total Environ. 2018, 635, 1280–1291. [Google Scholar] [CrossRef]
- Ozmen, N.; Ozhan Turhan, D.; Güngördü, A.; Caglar Yilmaz, H.; Ozmen, M. Investigation of the Effects of Metal Oxide Nanoparticle Mixtures on Danio rerio and Xenopus Laevis Embryos. Chem. Ecol. 2023, 39, 215–234. [Google Scholar] [CrossRef]
- Aksakal, F.I.; Ciltas, A. Impact of Copper Oxide Nanoparticles (CuO NPs) Exposure on Embryo Development and Expression of Genes Related to the Innate Immune System of Zebrafish (Danio rerio). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 223, 78–87. [Google Scholar] [CrossRef]
- Chao, S.-J.; Huang, C.P.; Lam, C.-C.; Hua, L.-C.; Chang, S.-H.; Huang, C. Transformation of Copper Oxide Nanoparticles as Affected by Ionic Strength and Its Effects on the Toxicity and Bioaccumulation of Copper in Zebrafish Embryo. Ecotoxicol. Environ. Saf. 2021, 225, 112759. [Google Scholar] [CrossRef] [PubMed]
- Dziewulska, K.; Kirczuk, L.; Czerniawski, R.; Kowalska-Góralska, M. Survival of Embryos and Fry of Sea Trout (Salmo trutta m. Trutta) Growing from Eggs Exposed to Different Concentrations of Selenium during Egg Swelling. Animals 2021, 11, 2921. [Google Scholar] [CrossRef]
- Hsiao, B.-Y.; Horng, J.-L.; Yu, C.-H.; Lin, W.-T.; Wang, Y.-H.; Lin, L.-Y. Assessing Cardiovascular Toxicity in Zebrafish Embryos Exposed to Copper Nanoparticles. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2024, 277, 109838. [Google Scholar] [CrossRef]
- Ganesan, S.; Anaimalai Thirumurthi, N.; Raghunath, A.; Vijayakumar, S.; Perumal, E. Acute and Sub-Lethal Exposure to Copper Oxide Nanoparticles Causes Oxidative Stress and Teratogenicity in Zebrafish Embryos. J. Appl. Toxicol. 2016, 36, 554–567. [Google Scholar] [CrossRef]
- Ostaszewska, T.; Chojnacki, M.; Kamaszewski, M.; Sawosz-Chwalibóg, E. Histopathological Effects of Silver and Copper Nanoparticles on the Epidermis, Gills, and Liver of Siberian Sturgeon. Environ. Sci. Pollut. Res. 2016, 23, 1621–1633. [Google Scholar] [CrossRef]
- Wang, T.; Wen, X.; Hu, Y.; Zhang, X.; Wang, D.; Yin, S. Copper Nanoparticles Induced Oxidation Stress, Cell Apoptosis and Immune Response in the Liver of Juvenile Takifugu Fasciatus. Fish. Shellfish. Immunol. 2019, 84, 648–655. [Google Scholar] [CrossRef]
- Fu, D.; Hu, Y.; Chu, P.; Wang, T.; Chu, M.; Shi, Y.; Yin, S.; Zhu, Y.; Wang, Y.; Guo, Z. Histopathological and Calreticulin Changes in the Liver and Gill of Takifugu Fasciatus Demonstrate the Effects of Copper Nanoparticle and Copper Sulphate Exposure. Aquac. Rep. 2021, 20, 100662. [Google Scholar] [CrossRef]
- Forouhar Vajargah, M.; Mohamadi Yalsuyi, A.; Hedayati, A.; Faggio, C. Histopathological Lesions and Toxicity in Common Carp (Cyprinus carpio L. 1758) Induced by Copper Nanoparticles. Microsc. Res. Tech. 2018, 81, 724–729. [Google Scholar] [CrossRef]
- Naeemi, A.S.; Elmi, F.; Vaezi, G.; Ghorbankhah, M. Copper Oxide Nanoparticles Induce Oxidative Stress Mediated Apoptosis in Carp (Cyprinus carpio) Larva. Gene Rep. 2020, 19, 100676. [Google Scholar] [CrossRef]
- Rambau, U.; Masevhe, N.A.; Samie, A. Green Synthesis of Gold and Copper Nanoparticles by Lannea Discolor: Characterization and Antibacterial Activity. Inorganics 2024, 12, 36. [Google Scholar] [CrossRef]
- Saif, S.; Tahir, A.; Asim, T.; Chen, Y. Plant Mediated Green Synthesis of CuO Nanoparticles: Comparison of Toxicity of Engineered and Plant Mediated CuO Nanoparticles towards Daphnia Magna. Nanomaterials 2016, 6, 205. [Google Scholar] [CrossRef] [PubMed]
- Sathiyavimal, S.; Vasantharaj, S.; Kaliannan, T.; Pugazhendhi, A. Eco-Biocompatibility of Chitosan Coated Biosynthesized Copper Oxide Nanocomposite for Enhanced Industrial (Azo) Dye Removal from Aqueous Solution and Antibacterial Properties. Carbohydr. Polym. 2020, 241, 116243. [Google Scholar] [CrossRef]
- Gao, J.; Li, K.; Gao, L. The Complete Chloroplast Genome Sequence of the Bambusa multiplex (Poaceae: Bambusoideae). Mitochondrial DNA Part A 2016, 27, 980–982. [Google Scholar] [CrossRef]
- Sukhanova, A.; Bozrova, S.; Sokolov, P.; Berestovoy, M.; Karaulov, A.; Nabiev, I. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties. Nanoscale Res. Lett. 2018, 13, 44. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sielska, A.; Skuza, L. Copper Nanoparticles in Aquatic Environment: Release Routes and Oxidative Stress-Mediated Mechanisms of Toxicity to Fish in Various Life Stages and Future Risks. Curr. Issues Mol. Biol. 2025, 47, 472. https://doi.org/10.3390/cimb47060472
Sielska A, Skuza L. Copper Nanoparticles in Aquatic Environment: Release Routes and Oxidative Stress-Mediated Mechanisms of Toxicity to Fish in Various Life Stages and Future Risks. Current Issues in Molecular Biology. 2025; 47(6):472. https://doi.org/10.3390/cimb47060472
Chicago/Turabian StyleSielska, Anna, and Lidia Skuza. 2025. "Copper Nanoparticles in Aquatic Environment: Release Routes and Oxidative Stress-Mediated Mechanisms of Toxicity to Fish in Various Life Stages and Future Risks" Current Issues in Molecular Biology 47, no. 6: 472. https://doi.org/10.3390/cimb47060472
APA StyleSielska, A., & Skuza, L. (2025). Copper Nanoparticles in Aquatic Environment: Release Routes and Oxidative Stress-Mediated Mechanisms of Toxicity to Fish in Various Life Stages and Future Risks. Current Issues in Molecular Biology, 47(6), 472. https://doi.org/10.3390/cimb47060472