Association of DROSHA Variants with Susceptibility and Outcomes in Childhood Acute Lymphoblastic Leukemia
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AIC | Akaike information criteria |
BIC | Bayesian information criteria |
ALL | Acute lymphoblastic leukemia |
ChIP-seq | Chromatin immunoprecipitation sequencing |
CI | Confidence interval |
EDTA | Ethylenediaminetetraacetic acid |
FDR | False discovery rate |
GTEx | Genotype-Tissue Expression |
GWAS | Genome-wide association study |
HWE | Hardy–Weinberg equilibrium |
LD | Linkage disequilibrium |
MRD | Measurable residual disease |
NS | Not significant |
OR | Odds ratio |
OS | Overall survival |
PCR | Polymerase chain reaction |
RFS | Relapse-free survival |
SNP | Single-nucleotide polymorphism |
UTR | Untranslated region |
WBC | White blood cell |
References
- Tang, X.-W.; Jiang, J.; Huang, S.; Shi, X.-M.; Xu, H.; Xu, J.; Peng, J.-Y.; Zhang, W.; Shi, L.; Zhong, X.-L.; et al. Long-Term Trends in Cancer Incidence and Mortality among U.S. Children and Adolescents: A SEER Database Analysis from 1975 to 2018. Front. Pediatr. 2024, 12, 1357093. [Google Scholar] [CrossRef] [PubMed]
- DelRocco, N.J.; Loh, M.L.; Borowitz, M.J.; Gupta, S.; Rabin, K.R.; Zweidler-McKay, P.; Maloney, K.W.; Mattano, L.A.; Larsen, E.; Angiolillo, A.; et al. Enhanced Risk Stratification for Children and Young Adults with B-Cell Acute Lymphoblastic Leukemia: A Children’s Oncology Group Report. Leukemia 2024, 38, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Samardžić-Predojević, J.; Đurđević-Banjac, B.; Malčić-Zanić, D. Influence of Minimal Residual Disease at Day 15 of Induction Therapy on Survival of Children with Acute Lymphoblastic Leukemia. Acta Med. Acad. 2023, 52, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, T.; Relling, M.V.; Yang, J.J. Inherited Genetic Variation in Childhood Acute Lymphoblastic Leukemia. Blood 2015, 125, 3988–3995. [Google Scholar] [CrossRef]
- Navabi, A.; Aznab, M.; Heydarpour, F. The Association between microRNA Polymorphisms and the Risk of Childhood Acute Lymphoblastic Leukemia: A Meta-Analysis. Cancer Epidemiol. 2022, 81, 102285. [Google Scholar] [CrossRef]
- Kyriakidis, I.; Kyriakidis, K.; Tsezou, A. MicroRNAs and the Diagnosis of Childhood Acute Lymphoblastic Leukemia: Systematic Review, Meta-Analysis and Re-Analysis with Novel Small RNA-Seq Tools. Cancers 2022, 14, 3976. [Google Scholar] [CrossRef]
- da Silva Menezes, E.; de Moraes, F.C.A.; de Nazaré Cohen-Paes, A.; Wanderley, A.V.; Pereira, E.E.B.; Pastana, L.F.; Modesto, A.A.C.; de Assumpção, P.P.; Burbano, R.M.R.; Dos Santos, S.E.B.; et al. Influence of Genetic Variations in miRNA and Genes Encoding Proteins in the miRNA Synthesis Complex on Toxicity of the Treatment of Pediatric B-Cell ALL in the Brazilian Amazon. Int. J. Mol. Sci. 2023, 24, 4431. [Google Scholar] [CrossRef]
- Shang, R.; Lee, S.; Senavirathne, G.; Lai, E.C. microRNAs in Action: Biogenesis, Function and Regulation. Nat. Rev. Genet. 2023, 24, 816–833. [Google Scholar] [CrossRef]
- O’Connell, R.M.; Rao, D.S.; Chaudhuri, A.A.; Baltimore, D. Physiological and Pathological Roles for microRNAs in the Immune System. Nat. Rev. Immunol. 2010, 10, 111–122. [Google Scholar] [CrossRef]
- Santulli, G. MicroRNA, Basic Science: From Molecular Biology to Clinical Practice; Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2015; Volume 887, ISBN 978-3-319-22379-7. [Google Scholar]
- Deng, W. Advancements in the Regulatory Role of microRNAs in Childhood Acute Lymphoblastic Leukemia: Mechanisms and Clinical Implications. Technol. Cancer Res. Treat. 2024, 23, 15330338241273143. [Google Scholar] [CrossRef]
- Bofill-De Ros, X.; Vang Ørom, U.A. Recent Progress in miRNA Biogenesis and Decay. RNA Biol. 2024, 21, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hajirostamlou, M.; Ghorbian, S. Evaluation of the Clinical Significance of RNase III Enzyme DROSHA in Pediatrics Acute Lymphocytic Leukemia. Mol. Biol. Rep. 2021, 48, 451–456. [Google Scholar] [CrossRef]
- Hashemi, M.; Hasani, S.-S.; Naderi, M. DROSHA Rs642321 Polymorphism Influence Susceptibility to Childhood Acute Lymphoblastic Leukemia: A Preliminary Report. Indian. J. Med. Paediatr. Oncol. 2017, 38, 416–419. [Google Scholar] [CrossRef]
- de Souza, T.P.; de Carvalho, D.C.; Wanderley, A.V.; Fernandes, S.M.; Rodrigues, J.C.G.; Cohen-Paes, A.; Fernandes, M.R.; Mello Junior, F.A.R.; Pastana, L.F.; Vinagre, L.W.M.S.; et al. Influence of Variants of the Drosha, Mir499a, and Mir938 Genes on Susceptibility to Acute Lymphoblastic Leukemia in an Admixed Population from the Brazilian Amazon. Am. J. Transl. Res. 2020, 12, 8216–8224. [Google Scholar] [PubMed]
- Gutierrez-Camino, A.; Lopez-Lopez, E.; Martin-Guerrero, I.; Piñan, M.A.; Garcia-Miguel, P.; Sanchez-Toledo, J.; Carbone Bañeres, A.; Uriz, J.; Navajas, A.; Garcia-Orad, A. Noncoding RNA-Related Polymorphisms in Pediatric Acute Lymphoblastic Leukemia Susceptibility. Pediatr. Res. 2014, 75, 767–773. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Kim, B.; Kim, V.N. Re-Evaluation of the Roles of DROSHA, Export in 5, and DICER in microRNA Biogenesis. Proc. Natl. Acad. Sci. USA 2016, 113, E1881–E1889. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.C.; Johnson, S.T.; Liu, J.; Chu, Y.; Arana, C.; Han, Y.; Wang, T.; Corey, D.R. Consequences of Depleting TNRC6, AGO, and DROSHA Proteins on Expression of microRNAs. RNA 2023, 29, 1166–1184. [Google Scholar] [CrossRef]
- Treiber, T.; Treiber, N.; Meister, G. Regulation of microRNA Biogenesis and Its Crosstalk with Other Cellular Pathways. Nat. Rev. Mol. Cell Biol. 2019, 20, 5–20. [Google Scholar] [CrossRef]
- Elshazli, R.M.; Toraih, E.A.; Hussein, M.H.; Ruiz, E.M.; Kandil, E.; Fawzy, M.S. Pan-Cancer Study on Variants of Canonical miRNA Biogenesis Pathway Components: A Pooled Analysis. Cancers. 2023, 15, 338. [Google Scholar] [CrossRef]
- Posada, D.; Buckley, T.R. Model Selection and Model Averaging in Phylogenetics: Advantages of Akaike Information Criterion and Bayesian Approaches over Likelihood Ratio Tests. Syst. Biol. 2004, 53, 793–808. [Google Scholar] [CrossRef]
- Horita, N.; Kaneko, T. Genetic Model Selection for a Case–Control Study and a Meta-Analysis. Meta Gene 2015, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and Visualization of LD and Haplotype Maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Seki, M.; Kimura, S.; Isobe, T.; Yoshida, K.; Ueno, H.; Nakajima-Takagi, Y.; Wang, C.; Lin, L.; Kon, A.; Suzuki, H.; et al. Recurrent SPI1 (PU.1) Fusions in High-Risk Pediatric T Cell Acute Lymphoblastic Leukemia. Nat. Genet. 2017, 49, 1274–1281. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Chu, H.; Wang, M.; Gu, X.; Shi, D.; Ma, L.; Zhong, D.; Du, M.; Li, P.; Tong, N.; et al. Genetic Variation in DROSHA 3’UTR Regulated by Hsa-miR-27b Is Associated with Bladder Cancer Risk. PLoS ONE 2013, 8, e81524. [Google Scholar] [CrossRef]
- Sung, H.; Jeon, S.; Lee, K.-M.; Han, S.; Song, M.; Choi, J.-Y.; Park, S.K.; Yoo, K.-Y.; Noh, D.-Y.; Ahn, S.-H.; et al. Common Genetic Polymorphisms of microRNA Biogenesis Pathway Genes and Breast Cancer Survival. BMC Cancer 2012, 12, 195. [Google Scholar] [CrossRef]
- Rotunno, M.; Zhao, Y.; Bergen, A.W.; Koshiol, J.; Burdette, L.; Rubagotti, M.; Linnoila, R.I.; Marincola, F.M.; Bertazzi, P.A.; Pesatori, A.C.; et al. Inherited Polymorphisms in the RNA-Mediated Interference Machinery Affect microRNA Expression and Lung Cancer Survival. Br. J. Cancer 2010, 103, 1870–1874. [Google Scholar] [CrossRef]
- López-López, E.; Gutiérrez-Camino, Á.; Piñán, M.Á.; Sánchez-Toledo, J.; Uriz, J.J.; Ballesteros, J.; García-Miguel, P.; Navajas, A.; García-Orad, Á. Pharmacogenetics of MicroRNAs and MicroRNAs Biogenesis Machinery in Pediatric Acute Lymphoblastic Leukemia. PLoS ONE 2014, 9, e91261. [Google Scholar] [CrossRef]
- Martin-Guerrero, I.; Gutierrez-Camino, A.; Lopez-Lopez, E.; Bilbao-Aldaiturriaga, N.; Pombar-Gomez, M.; Ardanaz, M.; Garcia-Orad, A. Genetic Variants in miRNA Processing Genes and Pre-miRNAs Are Associated with the Risk of Chronic Lymphocytic Leukemia. PLoS ONE 2015, 10, e0118905. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H.; Lee, J.J.; Kim, E.; Lippman, S.M.; Khuri, F.R.; Spitz, M.R.; Lotan, R.; Hong, W.K.; Wu, X. MicroRNA-Related Genetic Variations as Predictors for Risk of Second Primary Tumor and/or Recurrence in Patients with Early-Stage Head and Neck Cancer. Carcinogenesis 2010, 31, 2118–2123. [Google Scholar] [CrossRef]
- Liang, D.; Meyer, L.; Chang, D.W.; Lin, J.; Pu, X.; Ye, Y.; Gu, J.; Wu, X.; Lu, K. Genetic Variants in MicroRNA Biosynthesis Pathways and Binding Sites Modify Ovarian Cancer Risk, Survival, and Treatment Response. Cancer Res. 2010, 70, 9765–9776. [Google Scholar] [CrossRef]
- Gelmez, M.Y.; Coskunpinar, E.; Saracoglu, B.; Deniz, G.; Aktan, M. Investigation of AID, Dicer, and Drosha Expressions in Patients with Chronic Lymphocytic Leukemia. Immunol. Invest. 2017, 46, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Czubak, K.; Lewandowska, M.A.; Klonowska, K.; Roszkowski, K.; Kowalewski, J.; Figlerowicz, M.; Kozlowski, P. High Copy Number Variation of Cancer-Related microRNA Genes and Frequent Amplification of DICER1 and DROSHA in Lung Cancer. Oncotarget 2015, 6, 23399–23416. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.X.T.; Zhang, B.; Hoang, D.H.; Zhao, D.; Wang, H.; Wu, H.; Su, Y.-L.; Dong, H.; Rodriguez-Rodriguez, S.; Armstrong, B.; et al. Cytoplasmic DROSHA and Non-Canonical Mechanisms of MiR-155 Biogenesis in FLT3-ITD Acute Myeloid Leukemia. Leukemia 2021, 35, 2285–2298. [Google Scholar] [CrossRef] [PubMed]
- Kyriakidis, I.; Pelagiadis, I.; Stiakaki, E. Pre-Analytical Considerations for microRNA Quantification in Childhood Leukemia Research. J. Biol. Methods 2025, 12, e99010062. [Google Scholar] [CrossRef]
- Kyriakidis, I.; Pelagiadis, I.; Katzilakis, N.; Stratigaki, M.; Keklikoglou, I.; Tragiannidis, A.; Stiakaki, E. DICER1 Rs3742330 and AGO1 Rs636832 Polymorphisms and Acute Lymphoblastic Leukemia in Greek Children and Adolescents: A Case-Control Study. Gene Rep. 2024, 37, 102043. [Google Scholar] [CrossRef]
Trait | Patients with ALL (n = 115) | Control Group (n = 137) |
---|---|---|
Median age (Range) | 4.9 (1.2–18.1) | 4.2 (0.5–18.5) |
Sex | ||
Female | 48 (41.7%) | 69 (50.4%) |
Male | 67 (58.3%) | 68 (49.6%) |
Relapse | 15 (13%) | |
Overall survival | 106 (92.2%) | |
Median WBC at diagnosis | 13,000/μL | |
(Range) | (800–498,000) | |
Lineage | ||
B | 103 (89.6%) | |
T | 12 (10.4%) | |
Cytogenetics | ||
Hyperdiploidy | 36 (31.3%) | |
ETV6::RUNX1 | 34 (29.5%) | |
Monosomies and near-diploid ALL | 21 (18.3%) | |
BCR::ABL1 | 4 (3.5%) | |
TCF3::PBX1 | 3 (2.6%) | |
ΚΜΤ2A-r | 1 (0.9%) | |
Other | 16 (13.9%) | |
High-risk stratification | 43 (37.4%) | |
Positive MRD on day 33 | 31 (27%) |
Variant | Position GRCh38.p14 | Global Frequency | European Frequency | pHWE | Allele-Specific Binding Affinity Changes | Location |
---|---|---|---|---|---|---|
rs642321 | chr5:31400896 | T = 21.1% C = 78.9% | T = 19.5% C = 80.5% | 0.929 | SOX6, CEBPA, THAP1, CDK2, MAFK, MEF2B, CUX1, RUNX2, SRF, FOXA1, SMARCA1, SPI1, FOXA3, HOXA1 | 3′-UTR variant |
rs3805500 | chr5:31462870 | G = 41% A = 59% | G = 32.9% A = 67.1% | 0.469 | TAL1, SPI1, NR4A1, IRF2, HEY1, MYC, SOX2, ESRRA, FOXA2, CTCF, IRF5, NR2C1, AR, POU2F2, ZNF274, BRF1 | Intron variant |
rs10035440 | chr5:31539356 | T = 82% C = 18% | T = 81.5% C = 18.5% | 0.682 | CEBPA, HSF2, NANOG, BCL2, IRF2, CUX1 | C5orf22 intron variant |
SNP | Genotype | Controls | Cases | p | Best Model | OR (95% CI) | p |
rs642321 | CC | 83 (60.6%) | 63 (67.7%) | 0.037 | Recessive TT vs. CC+CT | 4.467 (1.202–21.216) | 0.034 |
CT | 51 (37.2%) | 23 (24.7%) | |||||
TT | 3 (2.2%) | 7 (7.5%) | |||||
rs3805500 | AA | 54 (46.2%) | 43 (47.3%) | 0.035 | Recessive GG vs. AA+AG | 2.734 (1.269–6.118) | 0.012 |
AG | 51 (43.6%) | 28 (30.8%) | |||||
GG | 12 (10.3%) | 20 (22%) | |||||
rs10035440 | TT | 73 (62.9%) | 67 (72.8%) | NS | NS results | ||
CT | 36 (31%) | 22 (23.9%) | |||||
CC | 7 (6%) | 3 (3.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyriakidis, I.; Pelagiadis, I.; Pontikoglou, C.; Papadaki, H.A.; Stiakaki, E. Association of DROSHA Variants with Susceptibility and Outcomes in Childhood Acute Lymphoblastic Leukemia. Curr. Issues Mol. Biol. 2025, 47, 473. https://doi.org/10.3390/cimb47060473
Kyriakidis I, Pelagiadis I, Pontikoglou C, Papadaki HA, Stiakaki E. Association of DROSHA Variants with Susceptibility and Outcomes in Childhood Acute Lymphoblastic Leukemia. Current Issues in Molecular Biology. 2025; 47(6):473. https://doi.org/10.3390/cimb47060473
Chicago/Turabian StyleKyriakidis, Ioannis, Iordanis Pelagiadis, Charalampos Pontikoglou, Helen A. Papadaki, and Eftichia Stiakaki. 2025. "Association of DROSHA Variants with Susceptibility and Outcomes in Childhood Acute Lymphoblastic Leukemia" Current Issues in Molecular Biology 47, no. 6: 473. https://doi.org/10.3390/cimb47060473
APA StyleKyriakidis, I., Pelagiadis, I., Pontikoglou, C., Papadaki, H. A., & Stiakaki, E. (2025). Association of DROSHA Variants with Susceptibility and Outcomes in Childhood Acute Lymphoblastic Leukemia. Current Issues in Molecular Biology, 47(6), 473. https://doi.org/10.3390/cimb47060473