Natural Bioactive Compounds in Sheep Milk: Potential Biomedical Applications
Abstract
1. Introduction
2. Bioactive Substances of Sheep Milk in Biomedicine
2.1. Proteins
2.2. Fatty Acids
2.3. Polar Lipids
2.4. Orotic Acid
2.5. Insulin
2.6. Selected Antioxidant Substances and Minerals
3. Novel Potential Applications of Sheep Milk
3.1. Potential Applications of Dressing Biomaterials Enriched with Sheep Milk Bioactive Substances
3.2. Sheep Milk as a Functional Alternative for the Development of a Young Organism
3.3. Sheep Milk as a Functional Food for the Elderly
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marcone, S.; Belton, O.; Fitzgerald, D.J. Milk-derived bioactive peptides and their health promoting effects: A potential role in atherosclerosis. Br. J. Clin. Pharmacol. 2017, 83, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Lordan, R.; Walsh, A.M.; Crispie, F.; Finnegan, L.; Cotter, P.D.; Zabetakis, I. The effect of ovine milk fermentation on the antithrombotic properties of polar lipids. J. Funct. Foods. 2019, 54, 289–300. [Google Scholar] [CrossRef]
- Millar, C.; Jiang, C.; Norris, G.; Blesso, C. Milk Polar Lipids Reduce Atherogenic Lipoprotein Cholesterol and Attenuate Atherosclerosis Development in LDL-Receptor Knockout Mice Fed a Western-Type Diet (P06-051-19). Curr. Dev. Nutr. 2019, 3. [Google Scholar] [CrossRef]
- Flis, Z.; Szatkowski, P.; Pielichowska, K.; Edyta, M. The Potential of Sheep or Camel Milk Constituents to Contribute to Novel Dressings for Diabetic Wounds. Int. J. Mol. Sci. 2023, 24, 17551. [Google Scholar] [CrossRef]
- Flis, Z.; Molik, E. Importance of Bioactive Substances in Sheep’s Milk in Human Health. Int. J. Mol. Sci. 2021, 22, 4364. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Guha, S.; Majumder, K. Food-Derived Bioactive Peptides in Human Health: Challenges and Opportunities. Nutrients 2018, 10, 1738. [Google Scholar] [CrossRef]
- Sezik, E.; Yeşilada, E.; Honda, G.; Takaishi, Y.; Takeda, Y.; Tanaka, T. Traditional medicine in Turkey X. Folk medicine in Central Anatolia. J. Ethnopharmacol. 2001, 75, 95–115. [Google Scholar] [CrossRef]
- Gantner, V.; Mijić, P.; Baban, M.; Škrtić, Z.; Turalija, A. The overall and fat composition of milk of various species. Mljekarstvo 2015, 65, 223–231. [Google Scholar] [CrossRef]
- Masoodi, T.A.; Shafi, G. Analysis of casein alpha S1 & S2 proteins from different mammalian species. Bioinformation 2010, 4, 430–435. [Google Scholar] [CrossRef]
- Mazinani, M.; Rude, B. Population, world production and quality of sheep and goat products. Am. J. Anim. Vet. Sci. 2020, 15, 291–299. [Google Scholar] [CrossRef]
- Viñas, M.; Carnés, J.; López-Matas, M.A.; Hernández, N.; Castillo, M.J.; Ibero, M. Allergy to goat and sheep cheese with tolerance to cow’s milk and its derivatives. Allergol. Immunopathol. 2014, 42, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Kazimierska, K.; Szabłowska-Gadomska, I.; Rudziński, S.; Kośla, K.; Płuciennik, E.; Bobak, Ł.; Zambrowicz, A.; Kalinowska-Lis, U. Biologically Active Sheep Colostrum for Topical Treatment and Skin Care. Int. J. Mol. Sci. 2024, 25, 8091. [Google Scholar] [CrossRef]
- Kitts, D.D.; Weiler, K. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr. Pharm. Des. 2003, 9, 1309–1323. [Google Scholar] [CrossRef] [PubMed]
- Haque, E.; Chand, R.; Kapila, S. Biofunctional Properties of Bioactive Peptides of Milk Origin. Food Rev. Int. 2008, 25, 28–43. [Google Scholar] [CrossRef]
- Moldes, A.B.; Vecino, X.; Cruz, J.M. 6—Nutraceuticals and Food Additives. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 143–164. [Google Scholar] [CrossRef]
- Wong, D.W.S.; Camirand, W.M.; Pavlath, A.E.; Parris, N.; Friedman, M. Structures and functionalities of milk proteins. Crit. Rev. Food Sci. Nutr. 1996, 36, 807–844. [Google Scholar] [CrossRef]
- Dario, C.; Carnicella, D.; Dario, M.; Bufano, G. Genetic polymorphism of β-lactoglobulin gene and effect on milk composition in Leccese sheep. Small Rumin. Res. 2008, 74, 270–273. [Google Scholar] [CrossRef]
- Rajendran, P.; Nandakumar, N.; Rengarajan, T.; Palaniswami, R.; Gnanadhas, E.N.; Lakshminarasaiah, U.; Gopas, J.; Nishigaki, I. Antioxidants and human diseases. Clin. Chim. Acta Int. J. Clin. Chem. 2014, 436, 332–347. [Google Scholar] [CrossRef]
- Park, Y.W. Rheological characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 73–87. [Google Scholar] [CrossRef]
- Alichanidis, E.; Moatsou, G.; Polychroniadou, A. Composition and Properties of Non-cow Milk and Products. In Non-Bovine Milk and Milk Products; Tsakalidou, E., Papadimitriou, K., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 81–116. [Google Scholar] [CrossRef]
- Singh, J.; Singh, R.; Gupta, P.; Rai, S.; Ganesher, A.; Badrinarayan, P.; Sastry, G.N.; Konwar, R.; Panda, G. Targeting progesterone metabolism in breast cancer with l-proline derived new 14-azasteroids. Bioorganic. Med. Chem. 2017, 25, 4452–4463. [Google Scholar] [CrossRef]
- Rafiq, S.; Huma, N.; Pasha, I.; Sameen, A.; Mukhtar, O.; Khan, M.I. Chemical Composition, Nitrogen Fractions and Amino Acids Profile of Milk from Different Animal Species. Asian-Australas. J. Anim. Sci. 2016, 29, 1022–1028. [Google Scholar] [CrossRef]
- Oguz, M.; Gul, A.; Karakurt, S.; Yilmaz, M. Synthesis and evaluation of the antitumor activity of Calix[4]arene l-proline derivatives. Bioorganic. Chem. 2020, 94, 103207. [Google Scholar] [CrossRef] [PubMed]
- Authority (EFSA) EFS. Orotic acid salts as sources of orotic acid and various minerals added for nutritional purposes to food supplements. EFSA J. 2009, 7, 1187. [Google Scholar] [CrossRef]
- Zancada, L.; Pérez-Díez, F.; Sánchez-Juanes, F.; Alonso, J.; García-Pardo, L.; Hueso, P. Phospholipid classes and fatty acid composition of ewe’s and goat’s milk. Grasas Aceites. 2013, 64, 304–310. [Google Scholar] [CrossRef]
- Rodríguez-Alcalá, L.M.; Fontecha, J. Major lipid classes separation of buttermilk, and cows, goats and ewes milk by high performance liquid chromatography with an evaporative light scattering detector focused on the phospholipid fraction. J. Chromatogr. A 2010, 1217, 3063–3066. [Google Scholar] [CrossRef] [PubMed]
- Balthazar, C.F.; Pimentel, T.C.; Ferrão, L.L.; Almada, C.N.; Santillo, A.; Albenzio, M.; Mollakhalili, N.; Mortazavian, A.M.; Nascimento, J.S.; Silva, M.C.; et al. Sheep Milk: Physicochemical Characteristics and Relevance for Functional Food Development. Compr. Rev. Food Sci. Food Saf. 2017, 16, 247–262. [Google Scholar] [CrossRef]
- Moatsou, G.; Sakkas, L. Sheep milk components: Focus on nutritional advantages and biofunctional potential. Small Rumin. Res. 2019, 180, 86–99. [Google Scholar] [CrossRef]
- Cao, X.; Ren, Y.; Lu, Q.; Wang, K.; Wu, Y.; Wang, Y.; Zhang, Y.; Cui, X.S.; Yang, Z.; Chen, Z. Lactoferrin: A glycoprotein that plays an active role in human health. Front. Nutr. 2023, 9, 1018336. [Google Scholar] [CrossRef]
- Kehinde, B.; Sharma, P. Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: A review. Crit Rev. Food Sci. Nutr. 2018, 60, 322–340. [Google Scholar] [CrossRef]
- Lacroix, I.M.E.; Li-Chan, E.C.Y. Dipeptidyl peptidase-IV inhibitory activity of dairy protein hydrolysates. Int. Dairy J. 2012, 25, 97–102. [Google Scholar] [CrossRef]
- Patil, P.; Mandal, S.; Tomar, S.K.; Anand, S. Food protein-derived bioactive peptides in management of type 2 diabetes. Eur. J. Nutr. 2015, 54, 863–880. [Google Scholar] [CrossRef]
- Singh, B.P.; Aluko, R.E.; Hati, S.; Solanki, D. Bioactive peptides in the management of lifestyle-related diseases: Current trends and future perspectives. Crit. Rev. Food Sci. Nutr. 2022, 62, 4593–4606. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Bello-Pérez, E.; Márquez-Hernández, R.I.; Hernández-Castellano, L.E. Bioactive peptides from milk: Animal determinants and their implications in human health. J. Dairy Res. 2019, 86, 136–144. [Google Scholar] [CrossRef]
- Ashraf, A.; Mudgil, P.; Palakkott, A.; Iratni, R.; Gan, C.Y.; Maqsood, S.; Ayoub, M.A. Molecular basis of the anti-diabetic properties of camel milk through profiling of its bioactive peptides on dipeptidyl peptidase IV (DPP-IV) and insulin receptor activity. J. Dairy Sci. 2021, 104, 61–77. [Google Scholar] [CrossRef] [PubMed]
- Baba, W.N.; Mudgil, P.; Kamal, H.; Kilari, B.P.; Gan, C.Y.; Maqsood, S. Identification and characterization of novel α-amylase and α-glucosidase inhibitory peptides from camel whey proteins. J. Dairy Sci. 2021, 104, 1364–1377. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; Cadamuro, C.; Le Gouic, A.; Mudgil, P.; Maqsood, S.; FitzGerald, R.J. Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a camel whey protein enriched hydrolysate preparation. Food Chem. 2019, 279, 70–79. [Google Scholar] [CrossRef]
- Jan, F.; Kumar, S.; Jha, R. Effect of boiling on the antidiabetic property of enzyme treated sheep milk casein. Vet. World 2016, 9, 1152–1156. [Google Scholar] [CrossRef] [PubMed]
- Iram, D.; Sansi, M.S.; Zanab, S.; Vij, S.; Meena, S. In silico identification of antidiabetic and hypotensive potential bioactive peptides from the sheep milk proteins-a molecular docking study. J. Food Biochem. 2022, 46, e14137. [Google Scholar] [CrossRef]
- Molik, E.; Stańko, K.; Flis, Z. Prozdrowotne znaczenie substancji bioaktywnych mleka owczego. Przegląd Hod. 2021, 2021, 18–21. [Google Scholar]
- Revilla, I.; Escuredo, O.; González-Martín, M.I.; Palacios, C. Fatty acids and fat-soluble vitamins in ewe’s milk predicted by near infrared reflectance spectroscopy. Determination of seasonality. Food Chem. 2017, 214, 468–477. [Google Scholar] [CrossRef]
- Cichosz, G.; Czeczot, H. Stabilność oksydacyjna tłuszczów jadalnych—konsekwencje zdrowotne. Bro-Mat. Chem. Toksykol. 2011, nr 1, 50–60. [Google Scholar]
- Gómez-Cortés, P.; Frutos, P.; Mantecón, A.R.; Juárez, M.; de la Fuente, M.A.; Hervás, G. Milk production, conjugated linoleic acid content, and in vitro ruminal fermentation in response to high levels of soybean oil in dairy ewe diet. J. Dairy Sci. 2008, 91, 1560–1569. [Google Scholar] [CrossRef] [PubMed]
- Luna, P.; Fontecha, J.; Juárez, M.; de la Fuente, M. Changes in the milk and cheese fat composition of ewes fed commercial supplements containing linseed with special reference to the CLA content and isomer composition. Lipids 2005, 40, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Pariza, M.W. Mechanisms of body fat modulation by conjugated linoleic acid (CLA). Food Res. Int. 2007, 40, 311–323. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Banu, J.; Rahman, M.; Causey, J.; Fernandes, G. Biological effects of conjugated linoleic acids in health and disease. J. Nutr. Biochem. 2006, 17, 789–810. [Google Scholar] [CrossRef] [PubMed]
- Pintus, S.; Murru, E.; Carta, G.; Cordeddu, L.; Batetta, B.; Accossu, S.; Pistis, D.; Uda, S.; Elena Ghiani, M.; Mele, M.; et al. Sheep cheese naturally enriched in α-linolenic, conjugated linoleic and vaccenic acids improves the lipid profile and reduces anandamide in the plasma of hypercholesterolaemic subjects. Br. J. Nutr. 2013, 109, 1453–1462. [Google Scholar] [CrossRef]
- Sofi, F.; Buccioni, A.; Cesari, F.; Gori, A.M.; Minieri, S.; Mannini, L.; Casini, A.; Gensini, G.F.; Abbate, R.; Antongiovanni, M. Effects of a dairy product (pecorino cheese) naturally rich in cis-9, trans-11 conjugated linoleic acid on lipid, inflammatory and haemorheological variables: A dietary intervention study. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 117–124. [Google Scholar] [CrossRef]
- Tognocchi, M.; Conte, M.; Testai, L.; Martucci, M.; Serra, A.; Salvioli, S.; Calderone, V.; Mele, M.; Conte, G. Supplementation of Enriched Polyunsaturated Fatty Acids and CLA Cheese on High Fat Diet: Effects on Lipid Metabolism and Fat Profile. Foods 2022, 11, 398. [Google Scholar] [CrossRef]
- Hartigh, D.J.L. Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. Nutrients 2019, 11, 370. [Google Scholar] [CrossRef]
- Racine, N.M.; Watras, A.C.; Carrel, A.L.; Allen, D.B.; McVean, J.J.; Clark, R.R.; O’Brien, A.R.; O’Shea, M.; Scott, C.E.; Schoeller, D.A. Effect of conjugated linoleic acid on body fat accretion in overweight or obese children. Am. J. Clin. Nutr. 2010, 91, 1157–1164. [Google Scholar] [CrossRef]
- Watras, A.C.; Buchholz, A.C.; Close, R.N.; Zhang, Z.; Schoeller, D.A. The role of conjugated linoleic acid in reducing body fat and preventing holiday weight gain. Int. J. Obes. 2005, 31, 481–487. [Google Scholar] [CrossRef]
- Hu, X.; Li, Y.; Li, C.; Fu, Y.; Cai, F.; Chen, Q.; Li, D. Combination of fucoxanthin and conjugated linoleic acid attenuates body weight gain and improves lipid metabolism in high-fat diet-induced obese rats. Arch. Biochem. Biophys. 2012, 519, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, D.; Puniya, A. Conjugated linoleic acid enriched skim milk prepared with Lactobacillus fermentum DDHI27 endorsed antiobesity in mice. Future Microbiol. 2018, 13, 1007–1020. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, M.; Cichosz, G. Produkty mleczarskie—najlepsze źródło CLA. Bromat. Chem. Toksykol. 2013, 1, 1–12. [Google Scholar]
- Brown, J.M.; Halvorsen, Y.D.; Lea-Currie, Y.R.; Geigerman, C.; McIntosh, M. Trans-10, cis-12, but not cis-9, trans-11, conjugated linoleic acid attenuates lipogenesis in primary cultures of stromal vascular cells from human adipose tissue. J. Nutr. 2001, 131, 2316–2321. [Google Scholar] [CrossRef]
- Szymczyk, B.; Pisulewski, P. Effects of dietary conjugated linoleic acid isomersand vitamin E on fatty acid composition and cholesterol content of hen egg yolks. J. Anim. Feed. Sci. 2005, 14, 109–123. [Google Scholar] [CrossRef]
- Bawa, S. An update on beneficial role of conjugated linoleic acid (CLA) in modulating human health: Mechanisms of action. Pol. J. Food Nutr. Sci. 2003, 12, 3–13. [Google Scholar]
- Moon, H.S. Biological effects of conjugated linoleic acid on obesity-related cancers. Chem. Biol. Interact. 2014, 224, 189–195. [Google Scholar] [CrossRef]
- Claeys, W.L.; Verraes, C.; Cardoen, S.; De Block, J.; Huyghebaert, A.; Raes, K.; Dewettinck, K.; Herman, L. Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control. 2014, 42, 188–201. [Google Scholar] [CrossRef]
- Collomb, M.; Bisig, W.; Bütikofer, U.; Sieber, R.; Bregy, M.; Etter, L. Seasonal variation in the fatty acid composition of milk supplied to dairies in the mountain regions of Switzerland. Dairy Sci. Technol. 2008, 88, 631–647. [Google Scholar] [CrossRef]
- Markiewicz-Keszycka, M.; Wójtowski, J.; Kuczyńska, B.; Puppel, K.; Czyzak-Runowska, G.; Bagnicka, E.; Strzałkowska, N.; Jóźwik, A.; Krzyżewski, J. Chemical composition and whey protein fraction of late lactation mares’ milk. Int. Dairy J. 2013, 31, 62–64. [Google Scholar] [CrossRef]
- Zervas, G.; Tsiplakou, E. The effect of feeding systems on the characteristics of products from small ruminants. Small Rumin. Res. 2011, 101, 140–149. [Google Scholar] [CrossRef]
- Viladomiu, M.; Hontecillas, R.; Bassaganya-Riera, J. Modulation of inflammation and immunity by dietary conjugated linoleic acid. Eur. J. Pharmacol. 2016, 785, 87–95. [Google Scholar] [CrossRef]
- Basak, S.; Duttaroy, A.K. Conjugated Linoleic Acid and Its Beneficial Effects in Obesity, Cardiovascular Disease, and Cancer. Nutrients. 2020, 12, 1913. [Google Scholar] [CrossRef]
- Ou, L.; Ip, C.; Lisafeld, B.; Ip, M.M. Conjugated linoleic acid induces apoptosis of murine mammary tumor cells via Bcl-2 loss. Biochem. Biophys. Res. Commun. 2007, 356, 1044–1049. [Google Scholar] [CrossRef] [PubMed]
- Chujo, H.; Yamasaki, M.; Nou, S.; Koyanagi, N.; Tachibana, H.; Yamada, K. Effect of conjugated linoleic acid isomers on growth factor-induced proliferation of human breast cancer cells. Cancer Lett. 2003, 202, 81–87. [Google Scholar] [CrossRef]
- Bruen, R.; Fitzsimons, S.; Belton, O. Atheroprotective effects of conjugated linoleic acid. Br. J. Clin. Pharmacol. 2017, 83, 46–53. [Google Scholar] [CrossRef]
- Wang, Y.; Jones, P.J.H. Dietary conjugated linoleic acid and body composition. Am. J. Clin. Nutr. 2004, 79 (Suppl. S6), 1153S–1158S. [Google Scholar] [CrossRef]
- Park, N.Y.; Valacchi, G.; Lim, Y. Effect of dietary conjugated linoleic acid supplementation on early inflammatory responses during cutaneous wound healing. Mediators Inflamm. 2010, 2010, 342328. [Google Scholar] [CrossRef] [PubMed]
- Bassaganya-Riera, J.; Hontecillas, R.; Horne, W.T.; Sandridge, M.; Herfarth, H.H.; Bloomfeld, R.; Isaacs, K.L. Conjugated linoleic acid modulates immune responses in patients with mild to moderately active Crohn’s disease. Clin. Nutr. Edinb. Scotl. 2012, 31, 721–727. [Google Scholar] [CrossRef]
- Janczy, A. Sprzężony kwas linolowy cis-9, trans-11 CLA a zmiany miażdżycowe. Zesz. Nauk. Akad. Morskiej W Gdyni. 2012, 73, 7–15. [Google Scholar]
- Wójcik, M.; Matwijczuk, A. Cholesterol w mleku a miażdżyca. Przegl. Hod. 2011, nr 3, 22–24. [Google Scholar]
- DeClercq, V.; Taylor, C.G.; Wigle, J.; Wright, B.; Tworek, L.; Zahradka, P. Conjugated linoleic acid improves blood pressure by increasing adiponectin and endothelial nitric oxide synthase activity. J. Nutr. Biochem. 2012, 23, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Santurino, C.; López-Plaza, B.; Fontecha, J.; Calvo, M.V.; Bermejo, L.M.; Gómez-Andrés, D.; Gómez-Candela, C. Consumption of Goat Cheese Naturally Rich in Omega-3 and Conjugated Linoleic Acid Improves the Cardiovascular and Inflammatory Biomarkers of Overweight and Obese Subjects: A Randomized Controlled Trial. Nutrients 2020, 12, 1315. [Google Scholar] [CrossRef]
- Norris, G.H.; Porter, C.M.; Jiang, C.; Millar, C.L.; Blesso, C.N. Dietary sphingomyelin attenuates hepatic steatosis and adipose tissue inflammation in high-fat-diet-induced obese mice. J. Nutr. Biochem. 2017, 40, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Megalemou, K.; Sioriki, E.; Lordan, R.; Dermiki, M.; Nasopoulou, C.; Zabetakis, I. Evaluation of sensory and in vitro anti-thrombotic properties of traditional Greek yogurts derived from different types of milk. Heliyon 2017, 3, e00227. [Google Scholar] [CrossRef]
- Poutzalis, S.; Anastasiadou, A.; Nasopoulou, C.; Megalemou, K.; Sioriki, E.; Zabetakis, I. Evaluation of the in vitro anti-atherogenic activities of goat milk and goat dairy products. Dairy Sci. Technol. 2016, 96, 317–327. [Google Scholar] [CrossRef]
- Tsorotioti, S.E.; Nasopoulou, C.; Detopoulou, M.; Sioriki, E.; Demopoulos, C.A.; Zabetakis, I. In vitro anti-atherogenic properties of traditional Greek cheese lipid fractions. Dairy Sci. Technol. 2014, 94, 269–281. [Google Scholar] [CrossRef]
- West, T.; Chunduru, J.; Murahari, E. Orotic Acid: Why it is Important to Understand Its Role in Metabolism. Biochem. Physiol. 2017, 6. [Google Scholar] [CrossRef]
- Castan, P.; Colacio-Rodriguez, E.; Beauchamp, A.L.; Cros, S.; Wimmer, S. Platinum and palladium complexes of 3-methyl orotic acid: A route toward palladium complexes with good antitumor activity. J. Inorg. Biochem. 1990, 38, 225–239. [Google Scholar] [CrossRef]
- Nath, M.; Vats, M.; Roy, P. Tri- and diorganotin(IV) complexes of biologically important orotic acid: Synthesis, spectroscopic studies, in vitro anti-cancer, DNA fragmentation, enzyme assays and in vivo anti-inflammatory activities. Eur. J. Med. Chem. 2013, 59, 310–321. [Google Scholar] [CrossRef]
- Marynowicz, W.; Borski, N.; Flis, Z.; Ptak, A.; Edyta, M. Orotic acid induces apoptotic death in ovarian adult granulosa tumour cells and increases mitochondrial activity in normal ovarian granulosa cells. Reprod. Biol. 2023, 23, 100790. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Ramos-Roman, M.A.; Deng, Y. Metabolic adaptation in lactation: Insulin-dependent and -independent glycemic control. J. Transl. Intern. Med. 2022, 10, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Bereket, A.; Lang, C.H.; Blethen, S.L.; Gelato, M.C.; Fan, J.; Frost, R.A.; Wilson, T.A. Effect of insulin on the insulin-like growth factor system in children with new-onset insulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 1995, 80, 1312–1317. [Google Scholar] [CrossRef]
- Suzawa, M.; Bland, M.L. Insulin signaling in development. Development 2023, 150, dev201599. [Google Scholar] [CrossRef]
- Acquah, C.; Dzuvor, C.K.O.; Tosh, S.; Agyei, D. Anti-diabetic effects of bioactive peptides: Recent advances and clinical implications. Crit. Rev. Food Sci. Nutr. 2022, 62, 2158–2171. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Zhang, L.; Hou, Y.; Zhong, J.; Hettinga, K.; Zhou, P. Phosphoproteomics reveals that camel and goat milk improve glucose homeostasis in HDF/STZ-induced diabetic rats through activation of hepatic AMPK and GSK3-GYS axis. Food Res. Int. 2022, 157, 111254. [Google Scholar] [CrossRef]
- Abdalla, E.; Ashmawy, A.; Farouk, M.H.; Salama, O.; Khalil, F.; Seioudy, A. Milk production potential in Maghrebi she-camels. Small Rumin. Res. 2015, 123, 129–135. [Google Scholar] [CrossRef]
- Agrawal, R.P.; Jain, S.; Shah, S.; Chopra, A.; Agarwal, V. Effect of camel milk on glycemic control and insulin requirement in patients with type 1 diabetes: 2-years randomized controlled trial. Eur. J. Clin. Nutr. 2011, 65, 1048–1052. [Google Scholar] [CrossRef]
- Zagorski, O.; Maman, A.; Yafee, A.; Meisles, A.; Van creveld, C.; Yagil, R. Insulin in milk—a comparative study. Int. J. Anim. Sci. 1998, 13, 241–244. [Google Scholar]
- Zhang, L.; Liu, J.; Wang, Y.; Wei, M.; Liu, X.; Jiang, Y.; Wang, X.; Zhu, Z.; Niu, C.; Liu, S.; et al. Mechanisms by which sheep milk consumption ameliorates insulin resistance in high-fat diet-fed mice. Food Res. Int. 2024, 179, 114021. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, P.; Yang, Z.; Liu, Y.; Yang, K.; Cheng, Y.; Yao, H.; Zhang, Z. Current Progress and Outlook of Nano-Based Hydrogel Dressings for Wound Healing. Pharmaceutics 2023, 15, 68. [Google Scholar] [CrossRef] [PubMed]
- Lai, G.; Caboni, P.; Piras, C.; Pes, M.; Sitzia, M.; Addis, M.; Pirisi, A.; Scano, P. Development and Chemico-Physical Characterization of Ovine Milk-Based Ingredients for Infant Formulae. Appl. Sci. 2023, 13, 653. [Google Scholar] [CrossRef]
- Flis, Z.; Szczecina, J.; Molik, E. The role of sheep’s milk bioactive substances in the prevention of metabolic and viral diseases. J. Anim. Feed. Sci. 2022, 31, 211–216. [Google Scholar] [CrossRef]
- Flis, Z.; Molik, E. Role of bioactive substances in sheep’s milk and its products in the prevention of neurodegenerative diseases. Med. Weter. 2023, 79, 460–466. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Saliou, C. Role of vitamins in skin care. Nutrition 2001, 17, 839–844. [Google Scholar] [CrossRef]
- Szatkowski, P.; Flis, Z.; Ptak, A.; Molik, E. Hydrogel Dressing Biomaterial Enriched with Vitamin C: Synthesis and Characterization. Int. J. Mol. Sci. 2024, 25, 10565. [Google Scholar] [CrossRef]
- Guiso, M.F.; Battacone, G.; Canu, L.; Deroma, M.; Langasco, I.; Sanna, G.; Tsiplakou, E.; Pulina, G.; Nudda, A. Essential and Toxic Mineral Content and Fatty Acid Profile of Colostrum in Dairy Sheep. Animals 2022, 12, 2730. [Google Scholar] [CrossRef] [PubMed]
- Kaura, S.; Parle, M.; Insa, R.; Yadav, B.S.; Sethi, N. Neuroprotective effect of goat milk. Small Rumin. Res. 2022, 214, 106748. [Google Scholar] [CrossRef]
- Ostrówka, M.; Duda-Madej, A.; Pietluch, F.; Mackiewicz, P.; Gagat, P. Testing Antimicrobial Properties of Human Lactoferrin-Derived Fragments. Int. J. Mol. Sci. 2023, 24, 10529. [Google Scholar] [CrossRef]
- Li, Y.Q.; Guo, C. A Review on Lactoferrin and Central Nervous System Diseases. Cells 2021, 10, 1810. [Google Scholar] [CrossRef]
- Caboni, P.; Murgia, A.; Porcu, A.; Manis, C.; Ibba, I.; Scano, P.; Caboni, P.; Manis, C. A metabolomics comparison between sheep’s and goat’s milk. Food Res. Int. 2019, 119, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhao, J.; Lu, W.; Ma, Y.; Wang, X.; An, X.; Fan, Z. The preparation of lactoferrin/magnesium silicate lithium injectable hydrogel and application in promoting wound healing. Int. J. Biol. Macromol. 2022, 220, 1501–1511. [Google Scholar] [CrossRef] [PubMed]
- Mansour, N.; Shadeed, W.; Hamood, S. Clinical study on the effect of the sheep milk fat globules on deep second degree burns on pigs. Assiut Vet. Med. J. 2015, 61, 1501–1511. [Google Scholar] [CrossRef]
- Molik, E.; Błasiak, M.; Pustkowiak, H. Impact of Photoperiod Length and Treatment with Exogenous Melatonin during Pregnancy on Chemical Composition of Sheep’s Milk. Animals 2020, 10, 1721. [Google Scholar] [CrossRef]
- Szatkowski, P.; Flis, Z.; Ptak, A.; Molik, E. Biomateriały hydrożelowe możliwe do stosowania w leczeniu trudno gojących się ran. Rocz. Nauk. Zoot. 2024, 51, 135–145. [Google Scholar] [CrossRef]
- Blum, J.W.; Baumrucker, C.R. Colostral and milk insulin-like growth factors and related substances: Mammary gland and neonatal (intestinal and systemic) targets. Domest. Anim. Endocrinol. 2002, 23, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Blum, J.W.; Hammon, H. Endocrine and metabolic aspects in milk-fed calves. Domest. Anim. Endocrinol. 1999, 17, 219–230. [Google Scholar] [CrossRef]
- Woliński, J.; Biernat, M.; Guilloteau, P.; Weström, B.R.; Zabielski, R. Exogenous leptin controls the development of the small intestine in neonatal piglets. J. Endocrinol. 2003, 177, 215–222. [Google Scholar] [CrossRef]
- Lin, W.; Baluyot, K.R.; Yao, M.; Yan, J.; Wang, L.; Li, G.; Howell, B.; Elison, J.T.; Shen, D. Early-Life Nutrition and Cognitive Development: Imaging Approaches. Nestle Nutr. Inst. Workshop Ser. 2019, 90, 121–135. [Google Scholar] [CrossRef]
- Jena, A.; Montoya, C.A.; Young, W.; Mullaney, J.A.; Roy, D.; Dilger, R.N.; Giezenaar, C.; McNabb, W.C.; Roy, N.C. The effects of ruminant milk treatments on hippocampal, striatal, and prefrontal cortex gene expression in pigs as a model for the human infant. Front. Neurosci. 2022, 16, 937845. [Google Scholar] [CrossRef]
- Martin, C.R.; Ling, P.R.; Blackburn, G.L. Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients 2016, 8, 279. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.W. Hypo-allergenic and therapeutic significance of goat milk. Small Rumin. Res. 1994, 14, 151–159. [Google Scholar] [CrossRef]
- Ah-Leung, S.; Bernard, H.; Bidat, E.; Paty, E.; Rancé, F.; Scheinmann, P.; Wal, J.M. Allergy to goat and sheep milk without allergy to cow’s milk. Allergy 2006, 61, 1358–1365. [Google Scholar] [CrossRef]
- Casellas, F.; Varela, E.; Aparici, A.; Casaus, M.; Rodríguez, P. Development, validation, and applicability of a symptoms questionnaire for lactose malabsorption screening. Dig. Dis. Sci. 2009, 54, 1059–1065. [Google Scholar] [CrossRef]
- Gasparin, F.S.R.; Carvalho, J.M.T.; de Araujo, S.C. Alergia à Proteína do Leite de Vaca Versus Intolerância à Lactose: As Diferenças e Semelhanças. Saúde E Pesquisa 2010, 3. [Google Scholar]
- Rangel, A.H.; Sales, D.C.; Urbano, S.A.; Galvão Júnior, J.G.B.; de Andrade Neto, J.C.; de Macêdo, C.S. Lactose intolerance and cow’s milk protein allergy. Food Sci. Technol. 2016, 36, 179–187. [Google Scholar] [CrossRef]
- Shrestha, A.; Samuelsson, L.M.; Sharma, P.; Day, L.; Cameron-Smith, D.; Milan, A.M. Comparing Response of Sheep and Cow Milk on Acute Digestive Comfort and Lactose Malabsorption: A Randomized Controlled Trial in Female Dairy Avoiders. Front. Nutr. 2021, 8, 603816. [Google Scholar] [CrossRef]
- Ramos, M.; Juarez, M. Sheep milk. In Encyclopedia of Dairy Sciences; Roginski, H., Fuquay, J.W., Fox, P.F., Eds.; Academic Press: Amsterdam, The Netherlands, 2003; Volume 4, pp. 2539–2545. [Google Scholar]
- Li, R.; Ma, Y.; Jiang, L. Review: Research Progress of Dairy Sheep Milk Genes. Agriculture 2022, 12, 169. [Google Scholar] [CrossRef]
- Zhou, C.; Li, C.; Cai, W.; Liu, S.; Yin, H.; Shi, S.; Zhang, Q.; Zhang, S. Genome-Wide Association Study for Milk Protein Composition Traits in a Chinese Holstein Population Using a Single-Step Approach. Front. Genet. 2019, 10, 72. [Google Scholar] [CrossRef]
- Jianqin, S.; Leiming, X.; Lu, X.; Yelland, G.W.; Ni, J.; Clarke, A.J. Effects of milk containing only A2 beta casein versus milk containing both A1 and A2 beta casein proteins on gastrointestinal physiology, symptoms of discomfort, and cognitive behavior of people with self-reported intolerance to traditional cows’ milk. Nutr. J. 2016, 15, 35. [Google Scholar] [CrossRef]
- Mohamed, W.A.; Salama, R.M.; Schaalan, M.F. A pilot study on the effect of lactoferrin on Alzheimer’s disease pathological sequelae: Impact of the p-Akt/PTEN pathway. Biomed. Pharmacother. 2019, 111, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Ravenwood, B.; Coad, J.; Barnes, M.J. A comparison of the effects of sheep’s milk and cow’s milk on recovery from eccentric exercise. Front. Sports Act. Living 2024, 5, 1335434. [Google Scholar] [CrossRef]
- Pan, Z.; Ye, A.; Li, S.; Dave, A.; Fraser, K.; Singh, H. Dynamic In Vitro Gastric Digestion of Sheep Milk: Influence of Homogenization and Heat Treatment. Foods 2021, 10, 1938. [Google Scholar] [CrossRef]
- Albenzio, M.; Santillo, A.; Avondo, M.; Nudda, A.; Chessa, S.; Pirisi, A.; Banni, S. Nutritional properties of small ruminant food products and their role on human health. Small Rumin. Res. 2016, 135, 3–12. [Google Scholar] [CrossRef]
- Solfrizzi, V.; Custodero, C.; Lozupone, M.; Imbimbo, B.P.; Valiani, V.; Agosti, P.; Schilardi, A.; D’Introno, A.; La Montagna, M.; Calvani, M.; et al. Relationships of Dietary Patterns, Foods, and Micro- and Macronutrients with Alzheimer’s Disease and Late-Life Cognitive Disorders: A Systematic Review. J. Alzheimers Dis. 2017, 59, 815–849. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Yang, M.; Tian, M.; Yang, Y.; Liu, W.; Liu, Y. The Relationship Between Fermented Dairy Consumption with Cognitive Function Among Older US Adults: Data from the NHANES 2011-2014. J. Alzheimers Dis. 2024, 97, 1877–1887. [Google Scholar] [CrossRef]
- Safdar, A.; Azman, K.F.; Zakaria, R.; Aziz, C.B.A.; Rashid, U. Memory-enhancing effects of goat milk in D-galactose-induced aging rat model. Biomed. Res. Ther. 2020, 7, 3563–3571. [Google Scholar] [CrossRef]
- Soares, J.K.; Rocha-de-Melo, A.P.; Medeiros, M.C.; Queiroga, R.C.; Bomfim, M.A.; de Souza, A.F.; Nascimento, A.L.; Guedes, R.C. Conjugated linoleic acid in the maternal diet differentially enhances growth and cortical spreading depression in the rat progeny. Biochim. Biophys. Acta. 2012, 1820, 1490–1495. [Google Scholar] [CrossRef]
- Bermejo-Pareja, F.; Ciudad-Cabañas, M.J.; Llamas-Velasco, S.; Tapias-Merino, E.; Hernández Gallego, J.; Hernández-Cabria, M.; Collado-Yurrita, L.; López-Arrieta, J.M. Is milk and dairy intake a preventive factor for elderly cognition (dementia and Alzheimer’s)? A quality review of cohort surveys. Nutr. Rev. 2021, 79, 743–757. [Google Scholar] [CrossRef]
- Ianiro, G.; Rosa, L.; Bonaccorsi di Patti, M.C.; Valenti, P.; Musci, G.; Cutone, A. Lactoferrin: From the structure to the functional orchestration of iron homeostasis. BioMetals 2022, 36, 391–416. [Google Scholar] [CrossRef]
- Zheng, J.; Xie, Y.; Li, F.; Zhou, Y.; Qi, L.; Liu, L.; Chen, Z. Lactoferrin improves cognitive function and attenuates brain senescence in aged mice. J. Funct. Foods 2020, 65, 103736. [Google Scholar] [CrossRef]
- Abdelhamid, M.; Jung, C.G.; Zhou, C.; Abdullah, M.; Nakano, M.; Wakabayashi, H.; Abe, F.; Michikawa, M. Dietary Lactoferrin Supplementation Prevents Memory Impairment and Reduces Amyloid-β Generation in J20 Mice. J. Alzheimers Dis. 2020, 74, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T.; To, M.; Saruta, J.; Sato, C.; Yamamoto, Y.; Kondo, Y.; Shimizu, T.; Kamata, Y.; Tsukinoki, K. Salivary lactoferrin is transferred into the brain via the sublingual route. Biosci. Biotechnol. Biochem. 2017, 81, 1300–1304. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.; Maeda, J.; Higuchi, M.; Inoue, K.; Akita, H.; Harashima, H.; Suhara, T. Pharmacokinetics and brain uptake of lactoferrin in rats. Life Sci. 2006, 78, 851–855. [Google Scholar] [CrossRef]
- Agwa, M.M.; Abdelmonsif, D.A.; Khattab, S.N.; Sabra, S. Self- assembled lactoferrin-conjugated linoleic acid micelles as an orally active targeted nanoplatform for Alzheimer’s disease. Int. J. Biol. Macromol. 2020, 162, 246–261. [Google Scholar] [CrossRef]
- Kistner, A.; Krack, P. Parkinson’s disease: No milk today? Front. Neurol. 2014, 5, 172. [Google Scholar] [CrossRef]
- Ubaid, S.; Rumman, M.; Singh, B.; Akhtar Mohd, S.; Mahdi, A.A.; Pandey, S. Elucidating the Neuroprotective Role of Formulated Camel α-Lactalbumin–Oleic Acid Complex by Curating the SIRT1 Pathway in Parkinson’s Disease Model. ACS Chem. Neurosci. 2020, 11, 4416–4425. [Google Scholar] [CrossRef]
- Mohapatra, A.; Shinde, A.K.; Singh, R. Sheep milk: A pertinent functional food. Small Rumin. Res. 2019, 181, 6–11. [Google Scholar] [CrossRef]
Chemical Composition | Sheep Milk | Cow Milk | Goat Milk |
---|---|---|---|
Dry matter (g/kg) | 178 | 127 | 132 |
Protein (g/kg) | 57 | 34 | 36 |
Fat (g/kg) | 74 | 38 | 43 |
Lactose (g/kg) | 48 | 48 | 44 |
Bioactive Substances | Sheep Milk | Cow Milk | Goat Milk |
---|---|---|---|
Proline (in whey milk proteins) (mg/g) [22] | 102 | 69 | - |
Lactoferrin (g/L) [20] | 0.7–0.9 | 0.02–0.5 | 0.02–0.3 |
Total casein (g/kg) [20] | 48 | 26 | 30 |
Lactose (g/kg) [20] | 48 | 48 | 44 |
Conjugated linoleic acid (CLA) (% of total fatty acids) [20] | 0.3–1.8 | 0.3–1.6 | 0.7 |
Orotic acid (mg/L) | 20–400 [24] | 20–100 [24] | 20–400 [24] |
Total polar lipids (% of total fatty acids) | 0.39 [25] | 0.36 [26] | - |
Iron (mg/100 g) [27] | 0.1 | 0.1 | 0.06 |
Zinc (mg/100 g) [27] | 0.6 | 0.4 | 0.43 |
Cooper (mg/100 g) [27] | trace | 0.04 | 0.1 |
Retinol (μg/100 g) [27] | 64 | 35 | 0.04 |
Vitamin A (μgRE/100 g) [27] | 64 | 37 | 54.32 |
Vitamin E (mg/100 g) [27] | 0.11 | 0.08 | 0.04 |
Vitamin C (μg/100 g) [27] | 4.6 | 0.15 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flis, Z.; Molik, E.; Ptak, A.; Szatkowski, P. Natural Bioactive Compounds in Sheep Milk: Potential Biomedical Applications. Curr. Issues Mol. Biol. 2025, 47, 456. https://doi.org/10.3390/cimb47060456
Flis Z, Molik E, Ptak A, Szatkowski P. Natural Bioactive Compounds in Sheep Milk: Potential Biomedical Applications. Current Issues in Molecular Biology. 2025; 47(6):456. https://doi.org/10.3390/cimb47060456
Chicago/Turabian StyleFlis, Zuzanna, Edyta Molik, Anna Ptak, and Piotr Szatkowski. 2025. "Natural Bioactive Compounds in Sheep Milk: Potential Biomedical Applications" Current Issues in Molecular Biology 47, no. 6: 456. https://doi.org/10.3390/cimb47060456
APA StyleFlis, Z., Molik, E., Ptak, A., & Szatkowski, P. (2025). Natural Bioactive Compounds in Sheep Milk: Potential Biomedical Applications. Current Issues in Molecular Biology, 47(6), 456. https://doi.org/10.3390/cimb47060456