Epigenetic Biomarkers of Cardiovascular Risk in Frail Patients—A Scope Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stage 1: Identification of Epigenetic Biomarkers of Frailty
2.2. Stage 2: Screening for Cardiovascular Relevance
2.3. Exclusion Criteria
2.4. Information Sources
2.5. Search Strategy
2.6. Stage 1 (Epigenetic Biomarkers of Frailty)—The Search Methodology for Each Database Is Presented in Figure 1
2.7. Stage 2 (CVD Relevance Search for Selected Biomarkers)
2.8. Selection Process
2.9. Data Collection Process
2.10. Primary Outcomes
- (1)
- Association of biomarkers with frailty severity.
- (2)
- Association of selected biomarkers with CVD risk.
2.11. Other Variables
2.12. Risk of Bias Assessment
2.13. Effect Measures
2.14. Methods of Data Synthesis and Rationale
2.15. Certainty Assessment
3. Results and Discussion
3.1. Identification of Epigenetic Biomarkers of Frailty
Epigenetic Factor | Reference Article | Tested Biomarker | Result | Characteristics and Bias Risk |
---|---|---|---|---|
MicroRNA | [22] | miR-21 | Mir-21 was increased in frailty elders. | Cross-sectional study; n = 96 (22 aged without frailty, 34 aged with frailty, 40 young controls). Moderate risk of bias due to limited cohort size, potential confounding factors, and lack of longitudinal validation. |
miR-146a | MiR-146a was increased in robust elders. | |||
miR-223 miR-483 | Mir-233 and mir-483 were increased in both groups. | |||
MicroRNA | [23] | miR-21 (selected from 365 miR tested) | Increases with age and in cardiovascular disease. | Cross-sectional study; n = 150 (Validation cohort: 111 healthy controls, including 30 centenarians; 15 healthy centenarian offspring; 34 CVD patients); Moderate risk of bias due to limited cohort size, heterogeneity of age groups, potential confounding factors, and lack of longitudinal validation. |
MicroRNA | [43] | miR-10a-3p, miR-92a-3p, miR-185-p, miR-194-5p, miR-326, miR-532–5p, miR-576–5p, miR-760 | Increased in frail elders. | Cross-sectional study. High risk of bias due to very limited sample size, (n = 14; 7 robust vs. 7 frail). Potential confounders not accounted for, lack of longitudinal validation. |
MicroRNA | [44] | miR-151a-5p, miR-181a-5p miR-1248 | Decreased in older subjects. | Cross-sectional study. High risk of bias due to small sample size (n = 22; 11 young vs. 11 old), limited age range (30–64 years old), lack of longitudinal validation, and potential confounders not addressed. |
miR-21 | No differences between old and young. | |||
MicroRNA | [45] | miR-451a | Increased in frail subjects. | Cross-sectional study with intervention component—evaluation of miRNA expression before and after 12-week multicomponent exercise protocol (VIVIFRAIL) in frail (n = 50) and robust (n = 136) subjects. Subgroup analysis of participants undergoing physical exercise intervention: 15 frail and 30 robust. Moderate risk of bias due to non-randomized assignment, differences in population size between groups, and potential confounding from other health conditions not accounted for. Lack of longitudinal follow-up beyond exercise protocol. |
lncRNAs | [46] | 9p21-23 locus (ANRIL) | ANRIL expression is reduced in frail individuals, which may lead to dysregulation of CDKN2A/B, key genes involved in cellular senescence and inflammation. | Large cohort study (n = 637) of Ashkenazi Jewish adults aged 65+. Moderate risk of bias due to selection bias (limited to Ashkenazi Jewish population), lack of randomization, and potential measurement bias related to subjective grip strength assessment. |
Methylation (EWAS) | [47] | CpG sites: cg19283806 (KCNQ1), cg21572722 (PHF21A), cg05575921 (AHRR), | Hypomethylation at these CpG sites was associated with increased frailty scores. | Observational study (n = 346 twin participants, aged 65–91 years; 128 analyzed for DNA methylation). Moderate risk of bias due to selection (participants from a specific twin registry), potential measurement bias (self-reported medical history), and no adjustment for all confounders. However, familial relatedness was accounted for. |
Methylation (EWAS) | [48] | CpG site located in the MAF1 gene | Positive correlation with physical frailty phenotype. | Cross-sectional study (n = 791, All participants aged 70). Moderate risk of bias due to cross-sectional design, potential confounding factors, and limitations in the sample (incomplete data on frailty). |
Methylation (EWAS) | [49] | eFRS | Predicts frailty prevalence and incidence over time. | Large observational study with cross-sectional and longitudinal validation; n = 3986 (ESTHER and KORA-Age cohorts). Moderate risk of bias due to the self-reported frailty index components, potential confounding factors (e.g., smoking, BMI, education), and voluntary recruitment. |
Methylation (EWAS) | [50] | 589 CpG sites and 3 differentially methylated regions (DMRs) | Differentially methylated in association with frailty and biological aging; supporting the role of epigenetic clocks in risk prediction. | Meta-analysis of four twin cohort studies: SATSA 450K (n = 379) and EPIC (n = 146); LSADT 1997 (n = 304) and 2007 (n = 86). Moderate risk of bias due to potential attrition and limited generalizability to non-twin populations, possible differences in frailty measures across cohorts (self-reported data, slightly different items included in the Frailty Index in SATSA and LSADT), and the small sample size for certain subgroups (e.g., limited sample sizes in the LSADT 2007 cohort and SATSA EPIC, which may affect sex-specific or age-specific analyses). Longitudinal data help strengthen the robustness of the findings, but differences in cohort characteristics may introduce heterogeneity. |
Methylation (CpGlobal) | [51] | Global methylation levels | Lower global DNA methylation levels were associated with increased frailty in middle-aged and elderly subjects; a decline in methylation over a 7-year period correlated with worsening frailty status. | Observational study with cross-sectional and longitudinal analysis; n = 318 (65–105 years old, Calabria, Italy). Moderate risk of bias due to lack of representativeness (single geographical region), differences in frailty assessment methods (HCA-based classification), and small sample size in the >90 age group. |
Methylation (LINE-1) | [52] | LINE-1 DNA methylation | Lower methylation levels in males with sarcopenia in comparison to women. | Cross-sectional study; n = 204 (aged 60+ years, from a rural community in Japan). Moderate risk of bias due to moderately small sample size, potential confounding factors (e.g., smoking, BMI), and the specific rural population, which may limit generalizability to other regions. |
Methylation (LINE-1 and specific marker loci) | [53] | LINE-1 DNA methylation | LINE-1 methylation showed no significant association with frailty. | Cohort study; n = 552 (Newcastle 85+ Study, participants aged 85). Moderate risk of bias due to the exclusion of individuals with cognitive impairment and the lack of complete methylation data for all participants; reliance on self-reported health data and the focus on a specific cohort (elderly individuals from the North East of England) may limit generalizability. |
Promoter-specific CpG island methylation: EPHA10, HAND2, HOXD4, TUSC3 and TWIST2 | Lower promoter-specific CpG island methylation levels were associated with reduced frailty. | |||
Methylation (Epigenetic clock) | [39] | GrimAge and PhenoAge | Positive correlation with frailty phenotype. | Cohort study; n = 490 (Irish Longitudinal Study on Ageing, TILDA cohort, participants aged 50+, follow-up up to 10 years). Moderate risk of bias due to the selective sample and the reliance on self-reported health data. |
Horvath and Hannum | No correlation with frailty. | |||
Methylation (Epigenetic clock) | [40] | Horvath | DNAmAge measures (Horvath’s DNAmAge, AgeDiff, AgeResid) did not predict mortality when adjusting for chronological age. Frailty index remains a more reliable indicator of biological aging. | Cohort study; n = 262 (Louisiana Healthy Aging Study, participants aged 60–103). Moderate risk of bias due to cross-sectional nature of the study and relatively small sample size restricted to only Caucasian participants, which may limit generalizability to other ethnic groups. |
Methylation (Epigenetic clock) | [54] | Horvath Hannum Lin epiTOC PhenoAge DunedinPoAm GrimAge Zhang | GrimAge and PhenoAge showed positive correlation with frailty phenotype. | Large cohort study; n = 3222 (Rotterdam Study and Leiden Longevity Study, participants aged 30–98). Moderate risk of bias mostly due to the inclusion of only healthy individuals who could attend the research centers, potentially leading to selection bias. Additionally, reliance on proxies for missing frailty measures could impact the precision of the frailty scores. |
Methylation (Epigenetic clock) | [55] | Horvath Hannum Lin Zhang Yang Dunedin PoAm PhenoAge GrimAge | GrimAge and Hannum showed the strongest correlation with both baseline frailty and with its time alterations. | Large cohort study; n = 1446 (Canadian Longitudinal Study on Aging, participants aged 45–86). Moderate risk of bias due to the study’s cohort being predominantly community-dwelling, the exclusion of participants with missing data at follow-up, which may lead to attrition bias, and the reliance on self-reported lifestyle factors such as diet, physical activity, and smoking status. |
Methylation (Epigenetic clock) | [56] | GrimAge PhenoAge MRscore-8CpGs | All DNAm markers correlated with each other and FI and independently predicted all-cause and cause-specific mortality. MRscore-8CpGs showed the strongest predictive power. | Large cohort study; n = 1771 (ESTHER Study, participants aged 50–75). Moderate risk of bias due to the use of a cross-sectional, single cohort design; the MRscore algorithm was based on a microarray with missing CpGs, which may have impacted the predictive accuracy for mortality. |
Methylation (Epigenetic clock) | [57] | GrimAge PhenoAge | Mediate the relationship between circulating metabolites and frailty. | Large cohort study; n = 980 (China Kadoorie Biobank, participants aged 50+). Moderate risk of bias due to rather young population, and the cross-sectional nature of baseline measurements, limiting causal inference between metabolites and DNAm aging. |
Methylation (Epigenetic clock) | [58] | DunedinPACE | Higher DunedinPACE predicts subsequent increases in frailty. | Large cohort study; n = 524 (Swedish Adoption/Twin Study of Aging, participants aged 50–90). Moderate risk of bias due to potential attrition and limited generalizability to non-twin populations. |
Horvath Hannum PhenoAge GrimAge | Horvath, Hannum, PhenoAge and GrimAge showed no dynamic longitudinal association with frailty. | |||
Methylation (Epigenetic clock) | [59] | Epigenetic Age Acceleration (eAA) GrimAge PhenoAge Hannum Horvath | No significant relationship between eAA and changes in frailty over time; inconsistent associations across frailty models. | Cohort study; n = 395 (MOBILIZE Boston, participants aged 77–78). Moderate risk of bias due to short follow-up period (12–18 months) and limited sample diversity (all participants identified as white). Potential for regression to the mean in frailty measures. |
Methylation (Epigenetic clock) | [60] | Horvath Hannum Skin & Blood PhenoAge GrimAge | No significant association was found between FI and DNAm age estimators. | Small cohort study; n = 31 (Italian semi-supercentenarians, aged 104–109). High risk of bias due to the small sample size and the homogeneity of participants, as all subjects were from a single region (Italy). |
Methylation and Telomere | [61] | 7-CpG Clock Horvath Hannum PhenoAge, GrimAge, Telomere Length | No significant longitudinal association between both telomere length and epigenetic clocks with functional decline. Cross-sectional analysis showed a weak association between only GrimAge and frailty. | Cohort study with cross-sectional and longitudinal components; n = 1083 (Berlin Aging Study II, participants aged 60–85). Moderate risk of bias due to potential sample selection (convenience sample), attrition over time, and limited generalizability to populations with higher morbidity. |
Methylation and Telomere | [62] | Horvath Telomere Length | Frailty is significantly associated with the epigenetic clock (Horvath DNAm age acceleration), but not with telomere length. | Cohort study with cross-sectional components; n = 1820 (ESTHER cohort, participants aged 50–75). Moderate risk of bias due to the cross-sectional nature of the analysis, potential selection bias from the case-cohort design, and limitations from self-reported data. |
Methylation and Smoking | [63] | Smoking Index (SI)—Smoking-related DNA methylation (CpG sites: MYO1G, GPR15, GNG12, CPOX, POLK, ALPP) | Smoking-related CpG sites were significantly associated with frailty. DNA methylation-based smoking indices correlated with frailty more strongly than self-reported smoking. | Cohort study with cross-sectional components; n = 1509 (ESTHER cohort, participants aged 50–75). Moderate risk of bias due to the cross-sectional design and potential confounding factors related to self-reported smoking status and health-related behaviors. The study benefits from validation in an independent sample and detailed adjustment for various covariates such as alcohol consumption and leukocyte distribution. |
3.1.1. MicroRNA
3.1.2. Long Noncoding RNA
3.1.3. DNA Methylation
3.1.4. EWAS
3.1.5. Epigenetic Clocks
3.2. Screening for Cardiovascular Relevance
Epigenetic Factor | Key Findings | Reference Articles |
---|---|---|
MiR-21 |
| [26,81,82,83,84,85,86,87,88,89] |
MiR-451a |
| [90,91,92] |
Mir-146 |
| [83,91,92,93,94,95,96] |
Mir-92a |
| [26,97,98] |
LINE-1 methylation |
| [99,100,101] |
GrimAge (eAA) |
| [50,57,102,103,104,105,106,107,108] |
eFRS |
| [49] |
Smoking Index |
| [63] |
3.3. Final Considerations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CVD | cardiovascular disease |
PCI | percutaneous coronary intervention |
CABG | coronary artery bypass graft |
FI | frailty index |
GRACE | Global Registry for Acute Coronary Events |
REPOSI | REgistro POliterapie SIMI (Registro Politerapie Società Italiana di Medicina Interna) |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
EWAS | epigenome-wide association study |
CpG | Cytosine-phosphate-Guanine |
eFRS | epigenetic Frailty Risk Score |
DMRs | differentially methylated regions |
LINE-1 | Long Interspersed Nuclear Element-1 |
DNAm | DNA methylation |
eAA | epigenetic Age Acceleration |
SASP | senescence-associated secretory phenotype |
miRNA | microRNA |
lncRNA | long noncoding RNA |
ANRIL | antisense noncoding RNA in the INK4 locus |
TLRs | toll-like receptors |
NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
IL | interleukin |
TNF-α | tumor necrosis factor-alpha |
TGF-β | transforming growth factor-beta |
IRAK1 | interleukin-1 receptor-associated kinase 1 |
TRAF6 | TNF receptor-associated factor 6 |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
Ago2 | Argonaute 2 |
LDL | low-density lipoprotein |
HDL | high-density lipoprotein |
CRP | C-reactive protein |
PAI-1 | plasminogen activator inhibitor-1 |
GDF15 | growth differentiation factor 15 |
SI | Smoking Index |
DNAmCVDscore | DNA methylation cardiovascular disease score |
MAPK | mitogen-activated protein kinase |
Ras | Rat sarcoma (small GTPase proteins) |
mRNA | messenger RNA |
AUC | area under the curve |
HR | hazard ratio |
OR | odds ratio |
References
- Rockwood, K.; Song, X.; MacKnight, C.; Bergman, H.; Hogan, D.B.; McDowell, I.; Mitnitski, A. A Global Clinical Measure of Fitness and Frailty in Elderly People. CMAJ 2005, 173, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- He, Y.-Y.; Chang, J.; Wang, X.-J. Frailty as a Predictor of All-Cause Mortality in Elderly Patients Undergoing Percutaneous Coronary Intervention: A Systematic Review and Meta-Analysis. Arch. Gerontol. Geriatr. 2022, 98, 104544. [Google Scholar] [CrossRef]
- Sepehri, A.; Beggs, T.; Hassan, A.; Rigatto, C.; Shaw-Daigle, C.; Tangri, N.; Arora, R.C. The Impact of Frailty on Outcomes after Cardiac Surgery: A Systematic Review. J. Thorac. Cardiovasc. Surg. 2014, 148, 3110–3117. [Google Scholar] [CrossRef]
- Shamliyan, T.; Talley, K.M.C.; Ramakrishnan, R.; Kane, R.L. Association of Frailty with Survival: A Systematic Literature Review. Ageing Res. Rev. 2013, 12, 719–736. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Rihal, C.S.; Lennon, R.J.; Spertus, J.A.; Nair, K.S.; Roger, V.L. Influence of Frailty and Health Status on Outcomes in Patients with Coronary Disease Undergoing Percutaneous Revascularization. Circ. Cardiovasc. Qual. Outcomes 2011, 4, 496–502. [Google Scholar] [CrossRef]
- Tanaka, S.; Kamiya, K.; Hamazaki, N.; Matsuzawa, R.; Nozaki, K.; Maekawa, E.; Noda, C.; Yamaoka-Tojo, M.; Matsunaga, A.; Masuda, T.; et al. Incremental Value of Objective Frailty Assessment to Predict Mortality in Elderly Patients Hospitalized for Heart Failure. J. Card. Fail. 2018, 24, 723–732. [Google Scholar] [CrossRef]
- Gharacholou, S.M.; Roger, V.L.; Lennon, R.J.; Rihal, C.S.; Sloan, J.A.; Spertus, J.A.; Singh, M. Comparison of Frail Patients versus Nonfrail Patients ≥65 Years of Age Undergoing Percutaneous Coronary Intervention. Am. J. Cardiol. 2012, 109, 1569–1575. [Google Scholar] [CrossRef]
- Gu, S.Z.; Qiu, W.; Batty, J.A.; Sinclair, H.; Veerasamy, M.; Brugaletta, S.; Neely, D.; Ford, G.; Calvert, P.A.; Mintz, G.S.; et al. Coronary Artery Lesion Phenotype in Frail Older Patients with Non-ST-Elevation Acute Coronary Syndrome Undergoing Invasive Care. EuroIntervention 2019, 15, e261–e268. [Google Scholar] [CrossRef]
- Kanenawa, K.; Yamaji, K.; Tashiro, H.; Morimoto, T.; Hiromasa, T.; Hayashi, M.; Hiramori, S.; Tomoi, Y.; Kuramitsu, S.; Domei, T.; et al. Frailty and Bleeding After Percutaneous Coronary Intervention. Am. J. Cardiol. 2021, 148, 22–29. [Google Scholar] [CrossRef]
- Jylhävä, J.; Jiang, M.; Foebel, A.D.; Pedersen, N.L.; Hägg, S. Can Markers of Biological Age Predict Dependency in Old Age? Biogerontology 2019, 20, 321–329. [Google Scholar] [CrossRef]
- Marcucci, M.; Franchi, C.; Nobili, A.; Mannucci, P.M.; Ardoino, I. Defining Aging Phenotypes and Related Outcomes: Clues to Recognize Frailty in Hospitalized Older Patients. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Ratcovich, H.; Joshi, F.R.; Palm, P.; Færch, J.; Bang, L.E.; Tilsted, H.-H.; Sadjadieh, G.; Engstrøm, T.; Holmvang, L. Prevalence and Impact of Frailty in Patients ≥70 Years Old with Acute Coronary Syndrome Referred for Coronary Angiography. Cardiology 2024, 149, 1–13. [Google Scholar] [CrossRef]
- Afilalo, J.; Alexander, K.P.; Mack, M.J.; Maurer, M.S.; Green, P.; Allen, L.A.; Popma, J.J.; Ferrucci, L.; Forman, D.E. Frailty Assessment in the Cardiovascular Care of Older Adults. J. Am. Coll. Cardiol. 2014, 63, 747–762. [Google Scholar] [CrossRef] [PubMed]
- Cacciatore, S.; Spadafora, L.; Bernardi, M.; Galli, M.; Betti, M.; Perone, F.; Nicolaio, G.; Marzetti, E.; Martone, A.M.; Landi, F.; et al. Management of Coronary Artery Disease in Older Adults: Recent Advances and Gaps in Evidence. J. Clin. Med. 2023, 12, 5233. [Google Scholar] [CrossRef]
- García-Giménez, J.L.; Mena-Molla, S.; Tarazona-Santabalbina, F.J.; Viña, J.; Gomez-Cabrera, M.C.; Pallardó, F.V. Implementing Precision Medicine in Human Frailty through Epigenetic Biomarkers. Int. J. Environ. Res. Public. Health 2021, 18, 1883. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Tyler, J.K. Epigenetics and Aging. Sci. Adv. 2016, 2, e1600584. [Google Scholar] [CrossRef]
- Lebrasseur, N.K.; de Cabo, R.; Fielding, R.; Ferrucci, L.; Rodriguez-Manas, L.; Viña, J.; Vellas, B. Identifying Biomarkers for Biological Age: Geroscience and the ICFSR Task Force. 2021. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107906673&doi=10.14283%2Fjfa.2021.5&partnerID=40&md5=e7fa9b2a58ff263262cd98ae5513fc62 (accessed on 10 December 2024).
- Yin, J.; Qian, Z.; Chen, Y.; Li, Y.; Zhou, X. MicroRNA Regulatory Networks in the Pathogenesis of Sarcopenia. J. Cell Mol. Med. 2020, 24, 4900–4912. [Google Scholar] [CrossRef]
- Krichevsky, A.M.; Gabriely, G. MiR-21: A Small Multi-Faceted RNA. J. Cell Mol. Med. 2009, 13, 39–53. [Google Scholar] [CrossRef]
- Ginckels, P.; Holvoet, P. Oxidative Stress and Inflammation in Cardiovascular Diseases and Cancer: Role of Non-Coding RNAs. Yale J. Biol. Med. 2022, 95, 129–152. [Google Scholar]
- Rusanova, I.; Diaz-Casado, M.E.; Fernández-Ortiz, M.; Aranda-Martínez, P.; Guerra-Librero, A.; García-García, F.J.; Escames, G.; Mañas, L.; Acuña-Castroviejo, D. Analysis of Plasma MicroRNAs as Predictors and Biomarkers of Aging and Frailty in Humans. Oxid. Med. Cell Longev. 2018, 2018, 7671850. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, F.; Spazzafumo, L.; Santini, G.; Lazzarini, R.; Albertini, M.C.; Rippo, M.R.; Galeazzi, R.; Abbatecola, A.M.; Marcheselli, F.; Monti, D.; et al. Age-Related Differences in the Expression of Circulating MicroRNAs: MiR-21 as a New Circulating Marker of Inflammaging. Mech. Ageing Dev. 2012, 133, 675–685. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, H.; Zhao, M.; Lu, Q. Identifying the Differentially Expressed MicroRNAs in Autoimmunity: A Systemic Review and Meta-Analysis. Autoimmunity 2020, 53, 122–136. [Google Scholar] [CrossRef] [PubMed]
- Wankhede, N.L.; Rai, K.K.R.; Anandpara, T.M.; Hirave, K.S.; Trivedi, R.V.; Kale, M.B.; Umekar, M.J.; Wadher, K.J. Biomarkers of Cardiovascular Disease and Future Directions: A Review. Int. J. Pharm. Sci. Rev. Res. 2023, 79, 54–67. [Google Scholar] [CrossRef]
- Searles, C.D. MicroRNAs and Cardiovascular Disease Risk. Curr. Cardiol. Rep. 2024, 26, 51–60. [Google Scholar] [CrossRef]
- He, J.; Tu, C.; Liu, Y. Role of LncRNAs in Aging and Age-Related Diseases. Aging Med. 2018, 1, 158–175. [Google Scholar] [CrossRef]
- Baba, Y.; Murata, A.; Watanabe, M.; Baba, H. Clinical Implications of the LINE-1 Methylation Levels in Patients with Gastrointestinal Cancer. Surg. Today 2014, 44, 1807–1816. [Google Scholar] [CrossRef]
- Horvath, S.; Raj, K. DNA Methylation-Based Biomarkers and the Epigenetic Clock Theory of Ageing. Nat. Rev. Genet. 2018, 19, 371–384. [Google Scholar] [CrossRef]
- Hernandez, D.G.; Nalls, M.A.; Gibbs, J.R.; Arepalli, S.; van der Brug, M.; Chong, S.; Moore, M.; Longo, D.L.; Cookson, M.R.; Traynor, B.J.; et al. Distinct DNA Methylation Changes Highly Correlated with Chronological Age in the Human Brain. Hum. Mol. Genet. 2011, 20, 1164–1172. [Google Scholar] [CrossRef]
- Rakyan, V.K.; Down, T.A.; Maslau, S.; Andrew, T.; Yang, T.-P.; Beyan, H.; Whittaker, P.; McCann, O.T.; Finer, S.; Valdes, A.M.; et al. Human Aging-Associated DNA Hypermethylation Occurs Preferentially at Bivalent Chromatin Domains. Genome Res. 2010, 20, 434–439. [Google Scholar] [CrossRef]
- Bocklandt, S.; Lin, W.; Sehl, M.E.; Sánchez, F.J.; Sinsheimer, J.S.; Horvath, S.; Vilain, E. Epigenetic Predictor of Age. PLoS ONE 2011, 6, e14821. [Google Scholar] [CrossRef] [PubMed]
- Oblak, L.; van der Zaag, J.; Higgins-Chen, A.T.; Levine, M.E.; Boks, M.P. A Systematic Review of Biological, Social and Environmental Factors Associated with Epigenetic Clock Acceleration. Ageing Res. Rev. 2021, 69, 101348. [Google Scholar] [CrossRef]
- Chen, B.H.; Marioni, R.E.; Colicino, E.; Peters, M.J.; Ward-Caviness, C.K.; Tsai, P.-C.; Roetker, N.S.; Just, A.C.; Demerath, E.W.; Guan, W.; et al. DNA Methylation-Based Measures of Biological Age: Meta-Analysis Predicting Time to Death. Aging 2016, 8, 1844–1865. [Google Scholar] [CrossRef] [PubMed]
- Marioni, R.E.; Shah, S.; McRae, A.F.; Chen, B.H.; Colicino, E.; Harris, S.E.; Gibson, J.; Henders, A.K.; Redmond, P.; Cox, S.R.; et al. DNA Methylation Age of Blood Predicts All-Cause Mortality in Later Life. Genome Biol. 2015, 16, 25. [Google Scholar] [CrossRef]
- Hannum, G.; Guinney, J.; Zhao, L.; Zhang, L.; Hughes, G.; Sadda, S.; Klotzle, B.; Bibikova, M.; Fan, J.-B.; Gao, Y.; et al. Genome-Wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Mol. Cell 2013, 49, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S. DNA Methylation Age of Human Tissues and Cell Types. Genome Biol. 2013, 14, R115. [Google Scholar] [CrossRef]
- Zhang, Q.; Vallerga, C.L.; Walker, R.M.; Lin, T.; Henders, A.K.; Montgomery, G.W.; He, J.; Fan, D.; Fowdar, J.; Kennedy, M.; et al. Improved Precision of Epigenetic Clock Estimates across Tissues and Its Implication for Biological Ageing. Genome Med. 2019, 11, 54. [Google Scholar] [CrossRef]
- McCrory, C.; Fiorito, G.; Hernandez, B.; Polidoro, S.; O’Halloran, A.M.; Hever, A.; Ni Cheallaigh, C.; Lu, A.T.; Horvath, S.; Vineis, P.; et al. GrimAge Outperforms Other Epigenetic Clocks in the Prediction of Age-Related Clinical Phenotypes and All-Cause Mortality. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 741–749. [Google Scholar] [CrossRef]
- Kim, S.; Myers, L.; Wyckoff, J.; Cherry, K.E.; Jazwinski, S.M. The Frailty Index Outperforms DNA Methylation Age and Its Derivatives as an Indicator of Biological Age. Geroscience 2017, 39, 83–92. [Google Scholar] [CrossRef]
- Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; et al. An Epigenetic Biomarker of Aging for Lifespan and Healthspan. Aging 2018, 10, 573–591. [Google Scholar] [CrossRef]
- Lu, A.T.; Quach, A.; Wilson, J.G.; Reiner, A.P.; Aviv, A.; Raj, K.; Hou, L.; Baccarelli, A.A.; Li, Y.; Stewart, J.D.; et al. DNA Methylation GrimAge Strongly Predicts Lifespan and Healthspan. Aging 2019, 11, 303–327. [Google Scholar] [CrossRef] [PubMed]
- Ipson, B.R.; Fletcher, M.B.; Espinoza, S.E.; Fisher, A.L. Identifying Exosome-Derived MicroRNAs as Candidate Biomarkers of Frailty. J. Frailty Aging 2018, 7, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Noren Hooten, N.; Fitzpatrick, M.; Wood, W.H., 3rd; De, S.; Ejiogu, N.; Zhang, Y.; Mattison, J.A.; Becker, K.G.; Zonderman, A.B.; Evans, M.K. Age-Related Changes in MicroRNA Levels in Serum. Aging 2013, 5, 725–740. [Google Scholar] [CrossRef]
- Agostini, S.; Mancuso, R.; Citterio, L.A.; Mihali, G.A.; Arosio, B.; Clerici, M. Evaluation of Serum MiRNAs Expression in Frail and Robust Subjects Undergoing Multicomponent Exercise Protocol (VIVIFRAIL). J. Transl. Med. 2023, 21, 67. [Google Scholar] [CrossRef] [PubMed]
- Sathyan, S.; Barzilai, N.; Atzmon, G.; Milman, S.; Ayers, E.; Verghese, J. Genetic Insights Into Frailty: Association of 9p21-23 Locus With Frailty. Front Med. 2018, 5, 105. [Google Scholar] [CrossRef]
- Kim, S.; Wyckoff, J.; Morris, A.-T.; Succop, A.; Avery, A.; Duncan, G.E.; Jazwinski, S.M. DNA Methylation Associated with Healthy Aging of Elderly Twins. Geroscience 2018, 40, 469–484. [Google Scholar] [CrossRef]
- Gale, C.R.; Marioni, R.E.; Harris, S.E.; Starr, J.M.; Deary, I.J. DNA Methylation and the Epigenetic Clock in Relation to Physical Frailty in Older People: The Lothian Birth Cohort 1936. Clin. Epigenet. 2018, 10, 101. [Google Scholar] [CrossRef]
- Li, X.; Delerue, T.; Schöttker, B.; Holleczek, B.; Grill, E.; Peters, A.; Waldenberger, M.; Thorand, B.; Brenner, H. Derivation and Validation of an Epigenetic Frailty Risk Score in Population-Based Cohorts of Older Adults. Nat. Commun. 2022, 13, 5269. [Google Scholar] [CrossRef]
- Mak, J.K.L.; Skovgaard, A.C.; Nygaard, M.; Kananen, L.; Reynolds, C.A.; Wang, Y.; Kuja-Halkola, R.; Karlsson, I.K.; Pedersen, N.L.; Hägg, S.; et al. Epigenome-Wide Analysis of Frailty: Results from Two European Twin Cohorts. Aging Cell 2024, 23, e14135. [Google Scholar] [CrossRef]
- Bellizzi, D.; D’Aquila, P.; Montesanto, A.; Corsonello, A.; Mari, V.; Mazzei, B.; Lattanzio, F.; Passarino, G. Global DNA Methylation in Old Subjects Is Correlated with Frailty. Age 2012, 34, 169–179. [Google Scholar] [CrossRef]
- Kato, D.; Takegami, Y.; Seki, T.; Nakashima, H.; Osawa, Y.; Suzuki, K.; Yamada, H.; Hasegawa, Y.; Imagama, S. DNA Methylation Is Associated with Muscle Loss in Community-Dwelling Older Men -the Yakumo Study: A Preliminary Experimental Study. Nagoya J. Med. Sci. 2022, 84, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Collerton, J.; Gautrey, H.E.; van Otterdijk, S.D.; Davies, K.; Martin-Ruiz, C.; von Zglinicki, T.; Kirkwood, T.B.L.; Jagger, C.; Mathers, J.C.; Strathdee, G. Acquisition of Aberrant DNA Methylation Is Associated with Frailty in the Very Old: Findings from the Newcastle 85+ Study. Biogerontology 2014, 15, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, L.M.; Polinder-Bos, H.A.; Bizzarri, D.; Vojinovic, D.; Vallerga, C.L.; Beekman, M.; Dollé, E.T.; Ghanbari, M.; Voortman, T.; Reinders, M.J.T.; et al. Epigenetic and Metabolomic Biomarkers for Biological Age: A Comparative Analysis of Mortality and Frailty Risk. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 1753–1762. [Google Scholar] [CrossRef]
- Verschoor, C.P.; Lin, D.T.S.; Kobor, M.S.; Mian, O.; Ma, J.; Pare, G.; Ybazeta, G. Epigenetic Age Is Associated with Baseline and 3-Year Change in Frailty in the Canadian Longitudinal Study on Aging. Clin. Epigenet. 2021, 13, 163. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Gào, X.; Holleczek, B.; Schöttker, B.; Brenner, H. Comparative Validation of Three DNA Methylation Algorithms of Ageing and a Frailty Index in Relation to Mortality: Results from the ESTHER Cohort Study. EBioMedicine 2021, 74, 103686. [Google Scholar] [CrossRef]
- Si, J.; Ma, Y.; Yu, C.; Sun, D.; Pang, Y.; Pei, P.; Yang, L.; Millwood, I.Y.; Walters, R.G.; Chen, Y.; et al. DNA Methylation Age Mediates Effect of Metabolic Profile on Cardiovascular and General Aging. Circ. Res. 2024, 135, 954–966. [Google Scholar] [CrossRef]
- Mak, J.K.L.; Karlsson, I.K.; Tang, B.; Wang, Y.; Pedersen, N.L.; Hägg, S.; Jylhävä, J.; Reynolds, C.A. Temporal Dynamics of Epigenetic Aging and Frailty From Midlife to Old Age. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad251. [Google Scholar] [CrossRef] [PubMed]
- Seligman, B.J.; Berry, S.D.; Lipsitz, L.A.; Travison, T.G.; Kiel, D.P. Epigenetic Age Acceleration and Change in Frailty in MOBILIZE Boston. J. Gerontol. A Biol. Sci. Med. Sci. 2022, 77, 1760–1765. [Google Scholar] [CrossRef]
- Bacalini, M.G.; Gentilini, D.; Monti, D.; Garagnani, P.; Mari, D.; Cesari, M.; Ogliari, G.; Passarino, G.; Franceschi, C.; Pirazzini, C.; et al. No Association between Frailty Index and Epigenetic Clocks in Italian Semi-Supercentenarians. Mech. Ageing Dev. 2021, 197, 111514. [Google Scholar] [CrossRef]
- Vetter, V.M.; Kalies, C.H.; Sommerer, Y.; Spira, D.; Drewelies, J.; Regitz-Zagrosek, V.; Bertram, L.; Gerstorf, D.; Demuth, I. Relationship Between 5 Epigenetic Clocks, Telomere Length, and Functional Capacity Assessed in Older Adults: Cross-Sectional and Longitudinal Analyses. J. Gerontol. A Biol. Sci. Med. Sci. 2022, 77, 1724–1733. [Google Scholar] [CrossRef]
- Breitling, L.P.; Saum, K.-U.; Perna, L.; Schöttker, B.; Holleczek, B.; Brenner, H. Frailty Is Associated with the Epigenetic Clock but Not with Telomere Length in a German Cohort. Clin. Epigenet. 2016, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Zhang, Y.; Saum, K.-U.; Schöttker, B.; Breitling, L.P.; Brenner, H. Tobacco Smoking and Smoking-Related DNA Methylation Are Associated with the Development of Frailty among Older Adults. Epigenetics 2017, 12, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, F.; Capri, M.; Bonafè, M.; Morsiani, C.; Jung, H.J.; Spazzafumo, L.; Viña, J.; Suh, Y. Circulating MiRNAs and MiRNA Shuttles as Biomarkers: Perspective Trajectories of Healthy and Unhealthy Aging. Mech. Ageing Dev. 2017, 165 Pt B, 162–170. [Google Scholar] [CrossRef]
- Wei, J.; Wang, J.; Zhou, Y.; Yan, S.; Li, K.; Lin, H. MicroRNA-146a Contributes to SCI Recovery via Regulating TRAF6 and IRAK1 Expression. Biomed. Res. Int. 2016, 2016, 4013487. [Google Scholar] [CrossRef] [PubMed]
- Nunes, A.D.C.; Weigl, M.; Schneider, A.; Noureddine, S.; Yu, L.; Lahde, C.; Saccon, T.D.; Mitra, K.; Beltran, E.; Grillari, J.; et al. MiR-146a-5p Modulates Cellular Senescence and Apoptosis in Visceral Adipose Tissue of Long-Lived Ames Dwarf Mice and in Cultured Pre-Adipocytes. Geroscience 2022, 44, 503–518. [Google Scholar] [CrossRef] [PubMed]
- Legnini, I.; Morlando, M.; Mangiavacchi, A.; Fatica, A.; Bozzoni, I. A Feedforward Regulatory Loop between HuR and the Long Noncoding RNA Linc-MD1 Controls Early Phases of Myogenesis. Mol. Cell 2014, 53, 506–514. [Google Scholar] [CrossRef]
- Watts, R.; Johnsen, V.L.; Shearer, J.; Hittel, D.S. Myostatin-Induced Inhibition of the Long Noncoding RNA Malat1 Is Associated with Decreased Myogenesis. Am. J. Physiol. Cell Physiol. 2013, 304, C995–C1001. [Google Scholar] [CrossRef]
- McKay, B.R.; Ogborn, D.I.; Bellamy, L.M.; Tarnopolsky, M.A.; Parise, G. Myostatin Is Associated with Age-Related Human Muscle Stem Cell Dysfunction. FASEB J. 2012, 26, 2509–2521. [Google Scholar] [CrossRef]
- Melzer, D.; Frayling, T.M.; Murray, A.; Hurst, A.J.; Harries, L.W.; Song, H.; Khaw, K.; Luben, R.; Surtees, P.G.; Bandinelli, S.S.; et al. A Common Variant of the P16(INK4a) Genetic Region Is Associated with Physical Function in Older People. Mech. Ageing Dev. 2007, 128, 370–377. [Google Scholar] [CrossRef]
- Pasmant, E.; Sabbagh, A.; Vidaud, M.; Bièche, I. ANRIL, a Long, Noncoding RNA, Is an Unexpected Major Hotspot in GWAS. FASEB J. 2011, 25, 444–448. [Google Scholar] [CrossRef]
- Arathimos, R.; Sharp, G.C.; Granell, R.; Tilling, K.; Relton, C.L. Associations of Sex Hormone-Binding Globulin and Testosterone with Genome-Wide DNA Methylation. BMC Genet. 2018, 19, 113. [Google Scholar] [CrossRef] [PubMed]
- Ekerstad, N.; Swahn, E.; Janzon, M.; Alfredsson, J.; Löfmark, R.; Lindenberger, M.; Carlsson, P. Frailty Is Independently Associated with Short-Term Outcomes for Elderly Patients with Non-ST-Segment Elevation Myocardial Infarction. Circulation 2011, 124, 2397–2404. [Google Scholar] [CrossRef] [PubMed]
- Christensen, D.M.; Strange, J.E.; Falkentoft, A.C.; El-Chouli, M.; Ravn, P.B.; Ruwald, A.C.; Fosbøl, E.; Køber, L.; Gislason, G.; Sehested, T.S.G.; et al. Frailty, Treatments, and Outcomes in Older Patients With Myocardial Infarction: A Nationwide Registry-Based Study. J. Am. Heart Assoc. 2023, 12, e030561. [Google Scholar] [CrossRef] [PubMed]
- Kwok, C.S.; Achenbach, S.; Curzen, N.; Fischman, D.L.; Savage, M.; Bagur, R.; Kontopantelis, E.; Martin, G.P.; Steg, P.G.; Mamas, M.A. Relation of Frailty to Outcomes in Percutaneous Coronary Intervention. Cardiovasc. Revasc Med. 2020, 21, 811–818. [Google Scholar] [CrossRef]
- Murali-Krishnan, R.; Iqbal, J.; Rowe, R.; Hatem, E.; Parviz, Y.; Richardson, J.; Sultan, A.; Gunn, J. Impact of Frailty on Outcomes after Percutaneous Coronary Intervention: A Prospective Cohort Study. Open Heart 2015, 2, e000294. [Google Scholar] [CrossRef]
- Lee, D.H.; Buth, K.J.; Martin, B.-J.; Yip, A.M.; Hirsch, G.M. Frail Patients Are at Increased Risk for Mortality and Prolonged Institutional Care after Cardiac Surgery. Circulation 2010, 121, 973–978. [Google Scholar] [CrossRef]
- Afilalo, J.; Mottillo, S.; Eisenberg, M.J.; Alexander, K.P.; Noiseux, N.; Perrault, L.P.; Morin, J.-F.; Langlois, Y.; Ohayon, S.M.; Monette, J.; et al. Addition of Frailty and Disability to Cardiac Surgery Risk Scores Identifies Elderly Patients at High Risk of Mortality or Major Morbidity. Circ. Cardiovasc. Qual. Outcomes 2012, 5, 222–228. [Google Scholar] [CrossRef]
- Freiheit, E.A.; Hogan, D.B.; Patten, S.B.; Wunsch, H.; Anderson, T.; Ghali, W.A.; Knudtson, M.; Maxwell, C.J. Frailty Trajectories After Treatment for Coronary Artery Disease in Older Patients. Circ. Cardiovasc. Qual. Outcomes 2016, 9, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lin, S.; Yang, S.; Qi, M.; Ren, Y.; Tian, C.; Wang, S.; Yang, Y.; Gao, J.; Zhao, H. Genetic and Phenotypic Associations of Frailty with Cardiovascular Indicators and Behavioral Characteristics. J. Adv. Res. 2024, 71, 263–277. [Google Scholar] [CrossRef]
- He, J.-G.; Li, S.; Wu, X.-X.; Chen, X.-H.; Yan, D.; Wang, X.-J.; Dang, Z.-W. Circulating MiRNA-21 as a Diagnostic Biomarker for Acute Coronary Syndrome: A Systematic Review and Meta-Analysis of Diagnostic Test Accuracy Study. Cardiovasc. Diagn. Ther. 2024, 14, 328–339. [Google Scholar] [CrossRef]
- Bang, C.; Batkai, S.; Dangwal, S.; Gupta, S.K.; Foinquinos, A.; Holzmann, A.; Just, A.; Remke, J.; Zimmer, K.; Zeug, A.; et al. Cardiac Fibroblast-Derived MicroRNA Passenger Strand-Enriched Exosomes Mediate Cardiomyocyte Hypertrophy. J. Clin. Invest. 2014, 124, 2136–2146. [Google Scholar] [CrossRef] [PubMed]
- Raitoharju, E.; Lyytikäinen, L.-P.; Levula, M.; Oksala, N.; Mennander, A.; Tarkka, M.; Klopp, N.; Illig, T.; Kähönen, M.; Karhunen, P.J.; et al. MiR-21, MiR-210, MiR-34a, and MiR-146a/b Are up-Regulated in Human Atherosclerotic Plaques in the Tampere Vascular Study. Atherosclerosis 2011, 219, 211–217. [Google Scholar] [CrossRef]
- Ramanujam, D.; Sassi, Y.; Laggerbauer, B.; Engelhardt, S. Viral Vector-Based Targeting of MiR-21 in Cardiac Nonmyocyte Cells Reduces Pathologic Remodeling of the Heart. Mol. Ther. 2016, 24, 1939–1948. [Google Scholar] [CrossRef] [PubMed]
- Hinkel, R.; Ramanujam, D.; Kaczmarek, V.; Howe, A.; Klett, K.; Beck, C.; Dueck, A.; Thum, T.; Laugwitz, K.-L.; Maegdefessel, L.; et al. AntimiR-21 Prevents Myocardial Dysfunction in a Pig Model of Ischemia/Reperfusion Injury. J. Am. Coll. Cardiol. 2020, 75, 1788–1800. [Google Scholar] [CrossRef] [PubMed]
- Ramanujam, D.; Schön, A.P.; Beck, C.; Vaccarello, P.; Felician, G.; Dueck, A.; Esfandyari, D.; Meister, G.; Meitinger, T.; Schulz, C.; et al. MicroRNA-21-Dependent Macrophage-to-Fibroblast Signaling Determines the Cardiac Response to Pressure Overload. Circulation 2021, 143, 1513–1525. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.-J.; Liu, T.; Zhang, H.; Yang, S.-J. Plasma MicroRNA-21 Is a Potential Diagnostic Biomarker of Acute Myocardial Infarction. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 323–329. [Google Scholar]
- Wang, F.; Long, G.; Zhao, C.; Li, H.; Chaugai, S.; Wang, Y.; Chen, C.; Wang, D.W. Atherosclerosis-Related Circulating MiRNAs as Novel and Sensitive Predictors for Acute Myocardial Infarction. PLoS ONE 2014, 9, e105734. [Google Scholar] [CrossRef]
- Xu, T.; Zhou, Q.; Che, L.; Das, S.; Wang, L.; Jiang, J.; Li, G.; Xu, J.; Yao, J.; Wang, H.; et al. Circulating MiR-21, MiR-378, and MiR-940 Increase in Response to an Acute Exhaustive Exercise in Chronic Heart Failure Patients. Oncotarget 2016, 7, 12414–12425. [Google Scholar] [CrossRef]
- Andiappan, R.; Govindan, R.; Ramasamy, T.; Poomarimuthu, M. Circulating MiR-133a-3p and MiR-451a as Potential Biomarkers for Diagnosis of Coronary Artery Disease. Acta Cardiol. 2024, 79, 813–823. [Google Scholar] [CrossRef]
- Cebro-Marquez, M.; Vilar-Sanchez, M.E.; Gonzalez-Melchor, L.; Garcia-Seara, J.; Martinez-Sande, J.L.; Fernandez-Lopez, X.A.; Martinez-Monzonis, M.A.; Gonzalez-Juanatey, J.R.; Rodriguez-Manero, M.; Lage-Fernandez, R.; et al. Plasma MiR-451a Predicts Atrial Fibrillation Recurrence after Pulmonary Vein Ablation. Eur. Heart J. 2022, 43 (Suppl. S2), ehac544.2980. [Google Scholar] [CrossRef]
- Xu, L.; Tian, L.; Yan, Z.; Wang, J.; Xue, T.; Sun, Q. Diagnostic and Prognostic Value of MiR-486-5p, MiR-451a, MiR-21-5p and Monocyte to High-Density Lipoprotein Cholesterol Ratio in Patients with Acute Myocardial Infarction. Heart Vessels 2023, 38, 318–331. [Google Scholar] [CrossRef] [PubMed]
- Lage, R.; Cebro-Márquez, M.; Vilar-Sánchez, M.E.; González-Melchor, L.; García-Seara, J.; Martínez-Sande, J.L.; Fernández-López, X.A.; Aragón-Herrera, A.; Martínez-Monzonís, M.A.; González-Juanatey, J.R.; et al. Circulating MiR-451a Expression May Predict Recurrence in Atrial Fibrillation Patients after Catheter Pulmonary Vein Ablation. Cells 2023, 12, 638. [Google Scholar] [CrossRef]
- Pereira-da-Silva, T.; Napoleão, P.; Costa, M.C.; Gabriel, A.F.; Selas, M.; Silva, F.; Enguita, F.J.; Cruz Ferreira, R.; Mota Carmo, M. Association between MiR-146a and Tumor Necrosis Factor Alpha (TNF-α) in Stable Coronary Artery Disease. Medicina 2021, 57, 575. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Chen, S.; Gordon, A.D.; Chakrabarti, S. MiR-146a Mediates Inflammatory Changes and Fibrosis in the Heart in Diabetes. J. Mol. Cell Cardiol. 2017, 105, 70–76. [Google Scholar] [CrossRef]
- Ibrahim, A.G.-E.; Cheng, K.; Marbán, E. Exosomes as Critical Agents of Cardiac Regeneration Triggered by Cell Therapy. Stem Cell Rep. 2014, 2, 606–619. [Google Scholar] [CrossRef]
- Bonauer, A.; Carmona, G.; Iwasaki, M.; Mione, M.; Koyanagi, M.; Fischer, A.; Burchfield, J.; Fox, H.; Doebele, C.; Ohtani, K.; et al. MicroRNA-92a Controls Angiogenesis and Functional Recovery of Ischemic Tissues in Mice. Science 2009, 324, 1710–1713. [Google Scholar] [CrossRef]
- Carena, M.C.; Badi, I.; Polkinghorne, M.; Akoumianakis, I.; Psarros, C.; Wahome, E.; Kotanidis, C.P.; Akawi, N.; Antonopoulos, A.S.; Chauhan, J.; et al. Role of Human Epicardial Adipose Tissue–Derived MiR-92a-3p in Myocardial Redox State. J. Am. Coll. Cardiol. 2023, 82, 317–332. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Liu, S.; Su, Z.; Cheng, R.; Bai, X.; Li, X. LINE-1 Hypomethylation Is Associated with the Risk of Coronary Heart Disease in Chinese Population. Arq. Bras. Cardiol. 2014, 102, 481–488. [Google Scholar] [CrossRef]
- Guarrera, S.; Fiorito, G.; Onland-Moret, N.C.; Russo, A.; Agnoli, C.; Allione, A.; Di Gaetano, C.; Mattiello, A.; Ricceri, F.; Chiodini, P.; et al. Gene-Specific DNA Methylation Profiles and LINE-1 Hypomethylation Are Associated with Myocardial Infarction Risk. Clin. Epigenet. 2015, 7, 133. [Google Scholar] [CrossRef]
- Cash, H.L.; McGarvey, S.T.; Houseman, E.A.; Marsit, C.J.; Hawley, N.L.; Lambert-Messerlian, G.M.; Viali, S.; Tuitele, J.; Kelsey, K.T. Cardiovascular Disease Risk Factors and DNA Methylation at the LINE-1 Repeat Region in Peripheral Blood from Samoan Islanders. Epigenetics 2011, 6, 1257–1264. [Google Scholar] [CrossRef]
- Cappozzo, A.; McCrory, C.; Robinson, O.; Freni Sterrantino, A.; Sacerdote, C.; Krogh, V.; Panico, S.; Tumino, R.; Iacoviello, L.; Ricceri, F.; et al. A Blood DNA Methylation Biomarker for Predicting Short-Term Risk of Cardiovascular Events. Clin. Epigenet. 2022, 14, 121. [Google Scholar] [CrossRef]
- Gao, T.; Wilkins, J.T.; Zheng, Y.; Joyce, B.T.; Jacobs, D.R.J.; Schreiner, P.J.; Horvath, S.; Greenland, P.; Lloyd-Jones, D.; Hou, L. Plasma Lipid Profiles in Early Adulthood Are Associated with Epigenetic Aging in the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Clin. Epigenet. 2022, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Ammous, F.; Zhao, W.; Lin, L.; Ratliff, S.M.; Mosley, T.H.; Bielak, L.F.; Zhou, X.; Peyser, P.A.; Kardia, S.L.R.; Smith, J.A. Epigenetics of Single-Site and Multi-Site Atherosclerosis in African Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA). Clin. Epigenet. 2022, 14, 10. [Google Scholar] [CrossRef] [PubMed]
- Ammous, F.; Zhao, W.; Ratliff, S.M.; Mosley, T.H.; Bielak, L.F.; Zhou, X.; Peyser, P.A.; Kardia, S.L.R.; Smith, J.A. Epigenetic Age Acceleration Is Associated with Cardiometabolic Risk Factors and Clinical Cardiovascular Disease Risk Scores in African Americans. Clin. Epigenet. 2021, 13, 55. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.D.; Vittinghoff, E.; Lu, A.T.; Alonso, A.; Wang, B.; Sitlani, C.M.; Mohammadi-Shemirani, P.; Fornage, M.; Kornej, J.; Brody, J.A.; et al. Epigenetic Age and the Risk of Incident Atrial Fibrillation. Circulation 2021, 144, 1899–1911. [Google Scholar] [CrossRef]
- Carbonneau, M.; Li, Y.; Prescott, B.; Liu, C.; Huan, T.; Joehanes, R.; Murabito, J.M.; Heard-Costa, N.L.; Xanthakis, V.; Levy, D.; et al. Epigenetic Age Mediates the Association of Life’s Essential 8 With Cardiovascular Disease and Mortality. J. Am. Heart Assoc. 2024, 13, e032743. [Google Scholar] [CrossRef]
- Sun, X.; Chen, W.; Razavi, A.C.; Shi, M.; Pan, Y.; Li, C.; Argos, M.; Layden, B.T.; Daviglus, M.L.; He, J.; et al. Associations of Epigenetic Age Acceleration With CVD Risks Across the Lifespan: The Bogalusa Heart Study. JACC Basic. Transl. Sci. 2024, 9, 577–590. [Google Scholar] [CrossRef]
- Lloyd-Jones, D.M.; Allen, N.B.; Anderson, C.A.M.; Black, T.; Brewer, L.C.; Foraker, R.E.; Grandner, M.A.; Lavretsky, H.; Perak, A.M.; Sharma, G.; et al. Life’s Essential 8: Updating and Enhancing the American Heart Association’s Construct of Cardiovascular Health: A Presidential Advisory From the American Heart Association. Circulation 2022, 146, e18–e43. [Google Scholar] [CrossRef]
- Rusanova, I.; Fernández-Martínez, J.; Fernández-Ortiz, M.; Aranda-Martínez, P.; Escames, G.; García-García, F.J.; Mañas, L.; Acuña-Castroviejo, D. Involvement of Plasma MiRNAs, Muscle MiRNAs and Mitochondrial MiRNAs in the Pathophysiology of Frailty. Exp. Gerontol. 2019, 124, 110637. [Google Scholar] [CrossRef]
- Szarc Vel Szic, K.; Declerck, K.; Vidaković, M.; Vanden Berghe, W. From Inflammaging to Healthy Aging by Dietary Lifestyle Choices: Is Epigenetics the Key to Personalized Nutrition? Clin. Epigenet. 2015, 7, 33. [Google Scholar] [CrossRef]
- Jenike, A.E.; Halushka, M.K. MiR-21: A Non-Specific Biomarker of All Maladies. Biomark. Res. 2021, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Figueredo, D.d.S.; Gitaí, D.L.G.; de Andrade, T.G. Daily Variations in the Expression of MiR-16 and MiR-181a in Human Leukocytes. Blood Cells Mol. Dis. 2015, 54, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Fahy, G.M.; Brooke, R.T.; Watson, J.P.; Good, Z.; Vasanawala, S.S.; Maecker, H.; Leipold, M.D.; Lin, D.T.S.; Kobor, M.S.; Horvath, S. Reversal of Epigenetic Aging and Immunosenescent Trends in Humans. Aging Cell 2019, 18, e13028. [Google Scholar] [CrossRef]
- Viña, J.; Salvador-Pascual, A.; Tarazona-Santabalbina, F.J.; Rodriguez-Mañas, L.; Gomez-Cabrera, M.C. Exercise Training as a Drug to Treat Age Associated Frailty. Free Radic. Biol. Med. 2016, 98, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wawrzyniak, S.; Cieśla, J.; Woś, M.; Wołoszyn-Horák, E.; Masternak, M.M.; Kukulski, T.; Stępień, E.; Tomasik, A. Epigenetic Biomarkers of Cardiovascular Risk in Frail Patients—A Scope Review. Curr. Issues Mol. Biol. 2025, 47, 422. https://doi.org/10.3390/cimb47060422
Wawrzyniak S, Cieśla J, Woś M, Wołoszyn-Horák E, Masternak MM, Kukulski T, Stępień E, Tomasik A. Epigenetic Biomarkers of Cardiovascular Risk in Frail Patients—A Scope Review. Current Issues in Molecular Biology. 2025; 47(6):422. https://doi.org/10.3390/cimb47060422
Chicago/Turabian StyleWawrzyniak, Stanisław, Julia Cieśla, Magdalena Woś, Ewa Wołoszyn-Horák, Michał M. Masternak, Tomasz Kukulski, Ewa Stępień, and Andrzej Tomasik. 2025. "Epigenetic Biomarkers of Cardiovascular Risk in Frail Patients—A Scope Review" Current Issues in Molecular Biology 47, no. 6: 422. https://doi.org/10.3390/cimb47060422
APA StyleWawrzyniak, S., Cieśla, J., Woś, M., Wołoszyn-Horák, E., Masternak, M. M., Kukulski, T., Stępień, E., & Tomasik, A. (2025). Epigenetic Biomarkers of Cardiovascular Risk in Frail Patients—A Scope Review. Current Issues in Molecular Biology, 47(6), 422. https://doi.org/10.3390/cimb47060422