Biologics in Dermatology
Abstract
:1. Introduction
2. Psoriasis
2.1. TNF Antagonists
2.2. Interleukin Antagonists
2.3. Protein Kinase Inhibitors
2.4. Other
3. Autoimmune Blistering Disorders
4. Hidradenitis Suppurativa
5. Pyoderma Gangrenosum
6. Skin Cancer: Malignant Melanoma
6.1. Interferon
6.2. Interleukin (IL)-2
6.3. Anti-CTLA-4 Monoclonal Antibodies
6.4. BRAF Inhibitors
6.5. MEK Inhibitors
6.6. Other
7. Granulomatous Disease: Cutaneous Sarcoidosis
8. Pityriasis Rubra Pilaris
9. Alopecia Areata
10. Chronic Urticaria
11. Atopic Dermatitis
12. Concluding Statements
Conflict of Interest
References
- Parisi, R.; Griffiths, C.E.M.; Ashcroft, D.M. Systematic review of the incidence and prevalence of psoriasis. Brit. J. Dermatol. 2011, 165, e5. [Google Scholar] [CrossRef]
- Parisi, R.; Symmons, D.P.; Griffiths, C.E.; Ashcroft, D.M. Global Epidemiology of Psoriasis: A Systematic Review of Incidence and Prevalence. J. Invest. Dermatol. 2013, 133, 377–385. [Google Scholar] [CrossRef]
- Zachariae, H. Prevalence of joint disease in patients with psoriasis: Implications for therapy. Am. J. Clin. Dermatol. 2003, 4, 441–447. [Google Scholar] [CrossRef]
- Ibrahim, G.; Waxman, R.; Helliwell, P.S. The prevalence of psoriatic arthritis in people with psoriasis. Arthritis. Rheum. 2009, 61, 1373–1378. [Google Scholar] [CrossRef]
- Lowes, M.A.; Kikuchi, T.; Fuentes-Duculan, J.; Cardinale, I.; Zaba, L.C.; Haider, A.S.; Bowman, E.P.; Krueger, J.G. Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J. Invest. Dermatol. 2008, 128, 1207–1211. [Google Scholar] [CrossRef]
- Di Meglio, P.; Perera, G.K.; Nestle, F.O. The multitasking organ: Recent insights into skin immune function. Immunity 2011, 35, 857–869. [Google Scholar] [CrossRef]
- Woolacott, N.; Bravo, V.Y.; Hawkins, N.; Kainth, A.; Khadjesari, Z.; Misso, K.; Light, K.; Asseburg, C.; Palmer, S.; Claxton, K.; Bruce, I.; Sculpher, M.; Riemsma, R. Etanercept and infliximab for the treatment of psoriatic arthritis: A systematic review and economic evaluation. Health Technol. Assess. 2006, 10, 1–239. [Google Scholar]
- Mease, P.J.; Antoni, C.E. Psoriatic arthritis treatment: Biological response modifiers. Ann. Rheum Dis. 2005, 64 (Suppl. 2), 78–82. [Google Scholar]
- Gottlieb, A.B.; Langley, R.G.; Strober, B.E.; Papp, K.A.; Klekotka, P.; Creamer, K.; Thompson, E.H.; Hooper, M.; Kricorian, G. A randomized, double-blind, placebo-controlled study to evaluate the addition of methotrexate to etanercept in patients with moderate to severe plaque psoriasis. Br. J. Dermatol. 2012, 167, 649–657. [Google Scholar] [CrossRef]
- Strober, B.E.; Sobell, J.M.; Duffin, K.C.; Bao, Y.; Guérin, A.; Yang, H.; Goldblum, O.; Okun, M.M.; Mulani, P.M. Sleep quality and other patient-reported outcomes improve after patients with psoriasis with suboptimal response to other systemic therapies are switched to adalimumab: Results from PROGRESS, an open-label Phase IIIB trial. Br. J. Dermatol. 2012, 167, 1374–1381. [Google Scholar] [CrossRef]
- Reich, K.; Ortonne, J.P.; Gottlieb, A.B.; Terpstra, I.J.; Coteur, G.; Tasset, C.; Mease, P. Successful treatment of moderate to severe plaque psoriasis with the PEGylated Fab′ certolizumab pegol: Results of a phase II randomized, placebo-controlled trial with a re-treatment extension. Br. J. Dermatol. 2012, 167, 180–190. [Google Scholar] [CrossRef]
- Nesbitt, A.; Fossati, G.; Bergin, M.; Stephens, P.; Stephens, S.; Foulkes, R.; Brown, D.; Robinson, M.; Bourne, T. Mechanism of action of certolizumab pegol (CDP870): In vitro comparison with other anti-tumor necrosis factor alpha agents. Inflamm. Bowel Dis. 2007, 13, 1323–1332. [Google Scholar] [CrossRef]
- Kanakaraj, P.; Puffer, B.A.; Yao, X.T.; Kankanala, S.; Boyd, E.; Shah, R.R.; Wang, G.; Patel, D.; Krishnamurthy, R.; Kaithamana, S.; et al. Simultaneous targeting of TNF and Ang2 with a novel bispecific antibody enhances efficacy in an in vivo model of arthritis. MAbs 2012, 4, 600–613. [Google Scholar] [CrossRef]
- Jung, K.; Lee, D.; Lim, H.S.; Lee, S.I.; Kim, Y.J.; Lee, G.M.; Kim, S.C.; Koh, G.Y. Double anti-angiogenic and anti-inflammatory protein Valpha targeting VEGF-A and TNF-alpha in retinopathy and psoriasis. J. Biol. Chem. 2011, 286, 14410–14418. [Google Scholar]
- Crawshaw, A.A.; Griffiths, C.E.; Young, H.S. Investigational VEGF antagonists for psoriasis. Expert Opin. Investig. Drugs 2012, 21, 33–43. [Google Scholar] [CrossRef]
- Zheng, Y.; Danilenko, D.M.; Valdez, P.; Kasman, I.; Eastham-Anderson, J.; Wu, J.; Ouyang, W. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 2007, 445, 648–651. [Google Scholar] [CrossRef]
- Griffiths, C.E.; Strober, B.E.; van de Kerkhof, P.; Ho, V.; Fidelus-Gort, R.; Yeilding, N.; Guzzo, C.; Xia, Y.; Zhou, B.; Li, S.; et al. ACCEPT Study group. comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. N Engl. J. Med. 2010, 362, 118–128. [Google Scholar] [CrossRef]
- Reich, K.; Papp, K.A.; Griffiths, C.E.; Szapary, P.O.; Yeilding, N.; Wasfi, Y.; Ott, E.; Hsu, M.C.; Lebwohl, M.; Gordon, K.B. PHOENIX 1, PHOENIX 2, and ACCEPT investigators. An update on the long-term safety experience of ustekinumab: Results from the psoriasis clinical development program with up to four years of follow-up. J. Drugs Dermatol. 2012, 11, 300–312. [Google Scholar]
- Papp, K.A.; Leonardi, C.; Menter, A.; Ortonne, J.P.; Krueger, J.G.; Kricorian, G.; Aras, G.; Li, J.; Russell, C.B.; Thompson, E.H.; Baumgartner, S. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N Engl. J. Med. 2012, 366, 1181–1189. [Google Scholar] [CrossRef]
- Leonardi, C.; Matheson, R.; Zachariae, C.; Cameron, G.; Li, L.; Edson-Heredia, E.; Braun, D.; Banerjee, S. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N Engl. J. Med. 2012, 366, 1190–1199. [Google Scholar] [CrossRef]
- Papp, K.A.; Menter, A.; Strober, B.; Langley, R.G.; Buonanno, M.; Wolk, R.; Gupta, P.; Krishnaswami, S.; Tan, H.; Harness, J.A. Efficacy and safety of tofacitinib, an oral Janus kinase inhibitor, in the treatment of psoriasis: A Phase 2b randomized placebo-controlled dose-ranging study. Br. J. Dermatol. 2012, 167, 668–677. [Google Scholar] [CrossRef]
- Skvara, H.; Dawid, M.; Kleyn, E.; Wolff, B.; Meingassner, J.G.; Knight, H.; Dumortier, T.; Kopp, T.; Fallahi, N.; Stary, G.; et al. The PKC inhibitor AEB071 may be a therapeutic option for psoriasis. J. Clin. Invest. 2008, 118, 3151–3159. [Google Scholar] [CrossRef]
- Schafer, P.H.; Parton, A.; Gandhi, A.K.; Capone, L.; Adams, M.; Wu, L.; Bartlett, J.B.; Loveland, M.A.; Gilhar, A.; Cheung, Y.F.; et al. Apremilast, a cAMP phosphodiesterase-4 inhibitor, demonstrates anti-inflammatory activity in vitro and in a model of psoriasis. Br. J. Pharmacol. 2010, 159, 842–855. [Google Scholar] [CrossRef]
- Papp, K.; Cather, J.C.; Rosoph, L.; Sofen, H.; Langley, R.G.; Matheson, R.T.; Hu, C.; Day, R.M. Efficacy of apremilast in the treatment of moderate to severe psoriasis: A randomised controlled trial. Lancet 2012, 380, 738–746. [Google Scholar] [CrossRef]
- Horváth, B.; Huizinga, J.; Pas, H.H.; Mulder, A.B.; Jonkman, M.F. Low-dose rituximab is effective in pemphigus. Br. J. Dermatol. 2012, 166, 405–412. [Google Scholar] [CrossRef]
- Leshem, Y.A.; Hodak, E.; David, M.; Anhalt, G.J.; Mimouni, D. Successful treatment of pemphigus with biweekly 1-g infusions of rituximab: A retrospective study of 47 patients. J. Am. Acad. Dermatol. 2013, 68, 404–411. [Google Scholar] [CrossRef]
- Kasperkiewicz, M.; Shimanovich, I.; Meier, M.; Schumacher, N.; Westermann, L.; Kramer, J.; Zillikens, D.; Schmidt, E. Treatment of severe pemphigus with a combination of immunoadsorption, rituximab, pulsed dexamethasone and azathioprine/mycophenolate mofetil: A pilot study of 23 patients. Br. J. Dermatol. 2012, 166, 154–160. [Google Scholar] [CrossRef]
- Jacobi, A.; Shuler, G.; Hertl, M. Rapid control of therapy-refractory pemphigus vulgaris by treatment with the tumour necrosis factor-alpha inhibitor infliximab. Br. J. Dermatol. 2005, 153, 448–449. [Google Scholar] [CrossRef]
- Berookhim, B.; Fischer, H.D.; Weinberg, J.M. Treatment of recalcitrant pemphigus vulgaris with the tumor necrosis factor alpha antagonist etanercept. Cutis 2004, 74, 245–247. [Google Scholar]
- Giamarellos-Bourboulis, E.J.; Antonopoulou, A.; Petropoulou, C.; Mouktaroudi, M.; Spyridaki, E.; Baziaka, F.; Pelekanou, A.; Giamarellou, H.; Stavrianeas, N.G. Altered innate and adaptive immune responses in patients with hidradenitis suppurativa. Br. J. Dermatol. 2007, 156, 51–56. [Google Scholar] [CrossRef]
- Van der Zee, H.H.; de Ruiter, L.; van den Broecke, D.G.; Dik, W.A.; Laman, J.D.; Prens, E.P. Elevated levels of tumour necrosis factor (TNF)-α, interleukin (IL)-1β and IL-10 in hidradenitis suppurativa skin: A rationale for targeting TNF-α and IL-1β. Br. J. Dermatol. 2011, 164, 1292–1298. [Google Scholar] [CrossRef]
- Kimball, A.B.; Kerdel, F.; Adams, D.; Mrowietz, U.; Gelfand, J.M.; Gniadecki, R.; Prens, E.P.; Schlessinger, J.; Zouboulis, C.C.; van der Zee, H.H.; et al. Adalimumab for the treatment of moderate to severe hidradenitis suppurativa: A parallel randomized trial. Ann. Intern. Med. 2012, 157, 846–855. [Google Scholar] [CrossRef]
- Sotiriou, E.; Goussi, C.; Lallas, A.; Chovarda, E.; Apalla, Z.; Lazaridou, E.; Ioannides, D. A prospective open-label clinical trial of efficacy of the every week administration of adalimumab in the treatment of hidradenitis suppurativa. J. Drugs Dermatol. 2012, 11 (Suppl. 5), S15–S20. [Google Scholar]
- Van Rappard, D.C.; Limpens, J.; Mekkes, J.R. The off-label treatment of severe hidradenitis suppurativa with TNF-α inhibitors: A systematic review. J. Dermatolog. Treat. 2012, 23, 22397574. [Google Scholar]
- Van Rappard, D.C.; Leenarts, M.F.; Meijerink-van't Oost, L.; Mekkes, J.R. Comparing treatment outcome of infliximab and adalimumab in patients with severe hidradenitis suppurativa. J. Dermatolog. Treat. 2012, 23, 284–289. [Google Scholar] [CrossRef]
- Schlapbach, C.; Hänni, T.; Yawalkar, N.; Hunger, R.E. Expression of the IL-23/Th17 pathway in lesions of hidradenitis suppurativa. J. Am. Acad. Dermatol. 2011, 65, 790–798. [Google Scholar] [CrossRef]
- Sharon, V.R.; Garcia, M.S.; Bagheri, S.; Goodarzi, H.; Yang, C.; Ono, Y.; Maverakis, E. Management of recalcitrant hidradenitis suppurativa with ustekinumab. Acta. Derm. Venereol. 2012, 92, 320–321. [Google Scholar] [CrossRef]
- Groves, R.W.; Allen, M.H.; Ross, E.L.; Barker, J.N.; MacDonald, D.M. Tumour necrosis factor alpha is pro-inflammatory in normal human skin and modulates cutaneous adhesion molecule expression. Br. J. Dermatol. 1995, 132, 345–352. [Google Scholar] [CrossRef]
- Craig, F.F.; Thomas, K.S.; Mitchell, E.J.; Williams, H.C.; Norrie, J.; Mason, J.M.; Ormerod, A.D. UK Dermatology Clinical Trials Network’s STOP GAP trial (a multicentre trial of prednisolone versus ciclosporin for pyoderma gangrenosum): Protocol for a randomised controlled trial. Trials 2012, 13, 51. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, I.; Caspi, D.; Yeshurun, D.; Dotan, I.; Yaron, M.; Elkayam, O. The effect of infliximab on extraintestinal manifestations of Crohn’s disease. Rheumatol. Int. 2005, 25, 406–410. [Google Scholar] [CrossRef]
- Mooij, J.E.; van Rappard, D.C.; Mekkes, J.R. Six patients with pyoderma gangrenosum successfully treated with infliximab. Int. J. Dermatol. 2012. [Google Scholar] [CrossRef]
- Guenova, E.; Teske, A.; Fehrenbacher, B.; Hoerber, S.; Adamczyk, A.; Schaller, M.; Hoetzenecker, W.; Biedermann, T. Interleukin 23 expression in pyoderma gangrenosum and targeted therapy with ustekinumab. Arch. Dermatol. 2011, 147, 1203–1205. [Google Scholar] [CrossRef]
- Erdmann, F.; Lortet-Tieulent, J.; Schüz, J.; Zeeb, H.; Greinert, R.; Breitbart, E.W.; Bray, F. International trends in the incidence of malignant melanoma 1953–2008—Are recent generations at higher or lower risk? Int. J. Cancer 2013, 132, 385–400. [Google Scholar]
- Tarhini, A.A.; Gogas, H.; Kirkwood, J.M. IFN-α in the treatment of melanoma. J. Immunol. 2012, 189, 3789–3793. [Google Scholar] [CrossRef]
- Kirkwood, J.M.; Manola, J.; Ibrahim, J.; Sondak, V.; Ernstoff, M.S.; Rao, U. A pooled analysis of eastern cooperative oncology group and intergroup trials of adjuvant high-dose interferon for melanoma. Clin. Cancer Res. 2004, 10, 1670–1677. [Google Scholar] [CrossRef]
- Eggermont, A.M.; Suciu, S.; Testori, A.; Santinami, M.; Kruit, W.H.; Marsden, J.; Punt, C.J.; Salès, F.; Dummer, R.; Robert, C.; et al. Long-term results of the randomized phase III trial EORTC 18991 of adjuvant therapy with pegylated interferon alfa-2b versus observation in resected stage III melanoma. J. Clin. Oncol. 2012, 30, 3810–3818. [Google Scholar] [CrossRef]
- Atkins, M.B.; Lotze, M.T.; Dutcher, J.P.; Fisher, R.I.; Weiss, G.; Margolin, K.; Abrams, J.; Sznol, M.; Parkinson, D.; Hawkins, M.; et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: Analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol. 1999, 17, 2105–2116. [Google Scholar]
- Dudley, M.E.; Yang, J.C.; Sherry, R.; Hughes, M.S.; Royal, R.; Kammula, U.; Robbins, P.F.; Huang, J.; Citrin, D.E.; Leitman, S.F.; et al. Adoptive cell therapy for patients with metastatic melanoma: Evaluation of intensive myeloablative chemoradiation preparative regimens. J. Clin. Oncol. 2008, 26, 5233–5239. [Google Scholar] [CrossRef]
- Ellebaek, E.; Iversen, T.Z.; Junker, N.; Donia, M.; Engell-Noerregaard, L.; Met, O.; Hölmich, L.R.; Andersen, R.S.; Hadrup, S.R.; Andersen, M.H.; et al. Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients. J. Transl. Med. 2012, 10, 169. [Google Scholar] [CrossRef]
- Weber, J. Overcoming immunologic tolerance to melanoma: Targeting CTLA-4 with ipilimumab (MDX-010). Oncologist 2008, 13 (Suppl. 4), 16–25. [Google Scholar] [CrossRef]
- Robert, C.; Thomas, L.; Bondarenko, I.; O’Day, S.; Weber, J.; Garbe, C.; Lebbe, C.; Baurain, J.F.; Testori, A.; Grob, J.J.; et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl. J. Med. 2011, 364, 2517–2526. [Google Scholar] [CrossRef]
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef]
- Ribas, A.; Chesney, J.A.; Gordon, M.S.; Abernethy, A.P.; Logan, T.F.; Lawson, D.H.; Chmielowksi, B.; Glaspy, J.A.; Lewis, K.; Huang, B.; et al. Safety profile and pharmacokinetic analyses of the anti-CTLA4 antibody tremelimumab administered as a one hour infusion. J. Transl. Med. 2012, 10, 236. [Google Scholar] [CrossRef]
- Kirkwood, J.M.; Lorigan, P.; Hersey, P.; Hauschild, A.; Robert, C.; McDermott, D.; Marshall, M.A.; Gomez-Navarro, J.; Liang, J.Q.; Bulanhagui, C.A. Phase II trial of tremelimumab (CP-675,206) in patients with advanced refractory or relapsed melanoma. Clin. Cancer Res. 2010, 16, 1042–1048. [Google Scholar] [CrossRef]
- Camacho, L.H.; Antonia, S.; Sosman, J.; Kirkwood, J.M.; Gajewski, T.F.; Redman, B.; Pavlov, D.; Bulanhagui, C.; Bozon, V.A.; Gomez-Navarro, J.; et al. Phase I/II trial of tremelimumab in patients with metastatic melanoma. J. Clin. Oncol. 2009, 27, 1075–1081. [Google Scholar] [CrossRef]
- Ribas, A.; Hauschild, A.; Kefford, R.; Punt, C.J.; Haanen, J.B.; Marmol, M.; Garbe, C.; Gomez-Navarro, J; Pavlov, D.; Marshall, M. Phase III, open-label, randomized, comparative study of tremelimumab (CP-675,206) and chemotherapy (temozolomide [TMZ] or dacarbazine [DTIC]) in patients with advanced melanoma [oral]. J. Clin. Oncol. 2008, 20 (Suppl. 15), BA9011. [Google Scholar]
- Sinha, R.; Edmonds, K.; Newton-Bishop, J.A.; Gore, M.E.; Larkin, J.; Fearfield, L. Cutaneous adverse events associated with vemurafenib in patients with metastatic melanoma: Practical advice on diagnosis, prevention and management of the main treatment-related skin toxicities. Br. J. Dermatol. 2012, 167, 987–994. [Google Scholar] [CrossRef]
- Chapman, P.B.; Hauschild, A.; Robert, C.; Haanen, J.B.; Ascierto, P.; Larkin, J.; Dummer, R.; Garbe, C.; Testori, A.; Maio, M.; et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl. J. Med. 2011, 364, 2507–2516. [Google Scholar]
- Young, K.; Minchom, A.; Larkin, J. BRIM-1, -2 and -3 trials: Improved survival with vemurafenib in metastatic melanoma patients with a BRAF(V600E) mutation. Future Oncol. 2012, 8, 499–507. [Google Scholar] [CrossRef]
- Hauschild, A.; Grob, J.J.; Demidov, L.V.; Jouary, T.; Gutzmer, R.; Millward, M.; Rutkowski, P.; Blank, C.U.; Miller, W.H., Jr.; Kaempgen, E.; et al. Dabrafenib in BRAF-mutated metastatic melanoma: A multicentre, open-label, phase 3 randomised controlled trial. Lancet 2012, 380, 358–365. [Google Scholar]
- Anforth, R.M.; Blumetti, T.C.; Kefford, R.F.; Sharma, R.; Scolyer, R.A.; Kossard, S.; Long, G.V.; Fernandez-Peñas, P. Cutaneous manifestations of dabrafenib (GSK2118436): A selective inhibitor of mutant BRAF in patients with metastatic melanoma. Br. J. Dermatol. 2012, 167, 1153–1160. [Google Scholar] [CrossRef]
- Klein, O.; Clements, A.; Menzies, A.M.; O’Toole, S.; Kefford, R.F.; Long, G.V. BRAF inhibitor activity in V600R metastatic melanoma. Eur. J. Cancer 2013, 49, 1073–1079. [Google Scholar] [CrossRef]
- Hatzivassiliou, G.; Song, K.; Yen, I.; Brandhuber, B.J.; Anderson, D.J.; Alvarado, R.; Ludlam, M.J.; Stokoe, D.; Gloor, S.L.; Vigers, G.; et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 2010, 464, 431–435. [Google Scholar]
- Halaban, R.; Zhang, W.; Bacchiocchi, A.; Cheng, E.; Parisi, F.; Ariyan, S.; Krauthammer, M.; McCusker, J.P.; Kluger, Y.; Sznol, M. PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF melanoma cells. Pigment. Cell. Melanoma Res. 2010, 23, 190–200. [Google Scholar] [CrossRef]
- Flaherty, K.T.; Robert, C.; Hersey, P.; Nathan, P.; Garbe, C.; Milhem, M.; Demidov, L.V.; Hassel, J.C.; Rutkowski, P.; Mohr, P.; Metric study group. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl. J. Med. 2012, 367, 107–114. [Google Scholar] [CrossRef]
- Flaherty, K.T.; Infante, J.R.; Daud, A.; Gonzalez, R.; Kefford, R.F.; Sosman, J.; Hamid, O.; Schuchter, L.; Cebon, J.; Ibrahim, N.; et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl. J. Med. 2012, 367, 1694–1703. [Google Scholar] [CrossRef]
- Mangana, J.; Levesque, M.P.; Karpova, M.B.; Dummer, R. Sorafenib in melanoma. Expert Opin. Investig. Drugs 2012, 21, 557–568. [Google Scholar] [CrossRef]
- Iyer, R.; Fetterly, G.; Lugade, A.; Thanavala, Y. Sorafenib: A clinical and pharmacologic review. Expert Opin. Pharmacother. 2010, 11, 1943–1955. [Google Scholar] [CrossRef]
- Hauschild, A.; Agarwala, S.S.; Trefzer, U.; Hogg, D.; Robert, C.; Hersey, P.; Eggermont, A.; Grabbe, S.; Gonzalez, R.; Gille, J.; et al. Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J. Clin. Oncol. 2009, 27, 2823–2830. [Google Scholar] [CrossRef]
- Egberts, F.; Kahler, K.C.; Livingstone, E.; Hauschild, A. Metastatic melanoma: Scientific rationale for sorafenib treatment and clinical results. Onkologie 2008, 31, 398–403. [Google Scholar] [CrossRef]
- McDermott, D.F.; Sosman, J.A.; Gonzalez, R.; Hodi, F.S.; Linette, G.P.; Richards, J.; Jakub, J.W.; Beeram, M.; Tarantolo, S.; Agarwala, S.; et al. Double-blind randomized phase II study of the combination of sorafenib and dacarbazine in patients with advanced melanoma: A report from the 11715 Study Group. J. Clin. Oncol. 2008, 26, 2178–2185. [Google Scholar] [CrossRef]
- Amaravadi, R.K.; Schuchter, L.M.; McDermott, D.F.; Kramer, A.; Giles, L.; Gramlich, K.; Carberry, M.; Troxel, A.B.; Letrero, R.; Nathanson, K.L.; et al. Phase II Trial of Temozolomide and Sorafenib in Advanced Melanoma Patients with or without Brain Metastases. Clin. Cancer Res. 2009, 15, 7711–7718. [Google Scholar] [CrossRef]
- Ferguson, J.; Arozarena, I.; Ehrhardt, M.; Wellbrock, C. Combination of MEK and SRC inhibition suppresses melanoma cell growth and invasion. Oncogene 2013, 32, 86–96. [Google Scholar] [CrossRef]
- Gangadhar, T.C.; Clark, J.I.; Karrison, T.; Gajewski, T.F. Phase II study of the Src kinase inhibitor saracatinib (AZD0530) in metastatic melanoma. Invest. New Drugs 2012, 30, 23151808. [Google Scholar]
- Agata, Y.; Kawasaki, A.; Nishimura, H.; Ishida, Y.; Tsubata, T.; Yagita, H.; Honjo, T. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol. 1996, 8, 765–772. [Google Scholar] [CrossRef]
- Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 2008, 26, 677–704. [Google Scholar] [CrossRef]
- Okazaki, T.; Honjo, T. The PD-1-PD-L pathway in immunological tolerance. Trends Immunol. 2006, 27, 195–201. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Drake, C.G.; Wollner, I.; Powderly, J.D.; Picus, J.; Sharfman, W.H.; Stankevich, E.; Pons, A.; Salay, T.M.; McMiller, T.L.; et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: Safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 2010, 28, 3167–3175. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl. J. Med. 2012, 366, 2455–2465. [Google Scholar] [CrossRef]
- Bordignon, M.; Rottoli, P.; Agostini, C.; Alaibac, M. Adaptive immune responses in primary cutaneous sarcoidosis. Clin. Dev. Immunol. 2011, 2011, 235142. [Google Scholar]
- Facco, M.; Cabrelle, A.; Teramo, A.; Olivieri, V.; Gnoato, M.; Teolato, S.; Ave, E.; Gattazzo, C.; Fadini, G.P.; Calabrese, F.; Semenzato, G.; Agostini, C. Sarcoidosis is a Th1/Th17 multisystem disorder. Thorax 2011, 66, 144–150. [Google Scholar] [CrossRef]
- Marques, L.J.; Zheng, L.; Poulakis, N.; Guzman, J.; Costabel, U. Pentoxifylline inhibits TNF-alpha production from human alveolar macrophages. Am. J. Respir. Crit. Care Med. 1999, 159, 508–511. [Google Scholar] [CrossRef]
- Tuchinda, P.; Bremmer, M.; Gaspari, A.A. A case series of refractory cutaneous sarcoidosis successfully treated with infliximab. Dermatol. Ther. (Heidelb) 2012, 2, 11. [Google Scholar] [CrossRef]
- Wanat, K.A.; Rosenbach, M. Case series demonstrating improvement in chronic cutaneous sarcoidosis following treatment with TNF inhibitors. Arch. Dermatol. 2012, 148, 1097–1100. [Google Scholar] [CrossRef]
- Sené, T.; Juillard, C.; Rybojad, M.; Cordoliani, F.; Lebbé, C.; Morel, P.; Tazi, A.; Guibal, F. Infliximab as a steroid-sparing agent in refractory cutaneous sarcoidosis: Single-center retrospective study of 9 patients. J. Am. Acad. Dermatol. 2012, 66, 328–332. [Google Scholar] [CrossRef]
- Tuchinda, C.; Wong, H.K. Etanercept for chronic progressive cutaneous sarcoidosis. J. Drugs Dermatol. 2006, 5, 538–540. [Google Scholar]
- Khanna, D.; Liebling, M.R.; Louie, J.S. Etanercept ameliorates sarcoidosis arthritis and skin disease. J. Rheumatol. 2003, 30, 1864–1867. [Google Scholar]
- Gregoriou, S.; Chiolou, Z.; Stefanaki, C.; Zakopoulou, N.; Rigopoulos, D.; Kontochristopoulos, G. Pityriasis rubra pilaris presenting with an abnormal autoimmune profile: Two case reports. J. Med. Case Rep. 2009, 3, 123. [Google Scholar] [CrossRef]
- Magro, C.M.; Crowson, A.N. The clinical and histomorphological features of pityriasis rubra pilaris. A comparative analysis with psoriasis. J. Cutan. Pathol. 1997, 24, 416–424. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhou, Y.; Ball, N.; Su, M.W.; Xu, J.H.; Zheng, Z.Z. Type I pityriasis rubra pilaris: Upregulation of tumor necrosis factor alpha and response to adalimumab therapy. J. Cutan. Med. Surg. 2010, 14, 185–188. [Google Scholar]
- Müller, H.; Gattringer, C.; Zelger, B.; Höpfl, R.; Eisendle, K. Infliximab monotherapy as first-line treatment for adult-onset pityriasis rubra pilaris: Case report and review of the literature on biologic therapy. J. Am. Acad. Dermatol. 2008, 59 (Suppl. 5), S65–S70. [Google Scholar]
- Garcovich, S.; Di Giampetruzzi, A.R.; Antonelli, G.; Garcovich, A.; Didona, B. Treatment of refractory adult-onset pityriasis rubra pilaris with TNF-alpha antagonists: A case series. J. Eur. Acad. Dermatol. Venereol. 2010, 24, 881–884. [Google Scholar]
- Ruiz Villaverde, R.; Sánchez Cano, D. Successful treatment of type 1 pityriasis rubra pilaris with ustekinumab therapy. Eur. J. Dermatol. 2010, 20, 630–631. [Google Scholar]
- Wohlrab, J.; Kreft, B. Treatment of pityriasis rubra pilaris with ustekinumab. Br. J. Dermatol. 2010, 163, 655–656. [Google Scholar] [CrossRef]
- Shellow, W.V.; Edwards, J.E.; Koo, J.Y. Profile of alopecia areata: A questionnaire analysis of patient and family. Int. J. Dermatol. 1992, 31, 186–189. [Google Scholar] [CrossRef]
- Bröcker, E.B.; Echternacht-Happle, K.; Hamm, H.; Happle, R. Abnormal expression of class I and class II major histocompatibility antigens in alopecia areata: Modulation by topical immunotherapy. J. Invest. Dermatol. 1987, 88, 564–568. [Google Scholar]
- Mcdonagh, A.J.; Snowden, J.A.; Stierle, C.; Elliott, K.; Messenger, A.G. HLA and ICAM-1 expression in alopecia areata in vivo and in vitro: The role of cytokines. Br. J. Dermatol. 1993, 129, 250–256. [Google Scholar]
- McElwee, K.J.; Hoffmann, R.; Freyschmidt-Paul, P.; Wenzel, E.; Kissling, S.; Sundberg, J.P.; Zöller, M. Resistance to alopecia areata in C3H/HeJ mice is associated with increased expression of regulatory cytokines and a failure to recruit CD4+ and CD8+ cells. J. Invest. Dermatol. 2002, 119, 1426–1433. [Google Scholar] [CrossRef]
- Le Bidre, E.; Chaby, G.; Martin, L.; Perrussel, M.; Sassolas, B.; Sigal, M.L.; Kaassis, C.; Lespessailles, E.; Nseir, A.; Estève, E. Alopecia areata during anti-TNF alpha therapy: Nine cases. Ann. Dermatol. Venereol. 2011, 138, 285–293. [Google Scholar] [CrossRef]
- Heffernan, M.P.; Hurley, M.Y.; Martin, K.S.; Smith, D.I.; Anadkat, M.J. Alefacept for alopecia areata. Arch. Dermatol. 2005, 141, 1513–1516. [Google Scholar] [CrossRef]
- Strober, B.E.; Menon, K.; McMichael, A.; Hordinsky, M.; Krueger, G.; Panko, J.; Siu, K.; Lustgarten, J.L.; Ross, E.K.; Shapiro, J. Alefacept for severe alopecia areata: A randomized, double-blind, placebo-controlled study. Arch. Dermatol. 2009, 145, 1262–1266. [Google Scholar] [CrossRef]
- Kaelin, U.; Hassan, A.S.; Braathen, L.R.; Yawalkar, N. Treatment of alopecia areata partim universalis with efalizumab. J. Am. Acad. Dermatol. 2006, 55, 529–532. [Google Scholar] [CrossRef]
- Kolde, G.; Meffert, H.; Rowe, E. Successful treatment of alopecia areata with efalizumab. J. Eur. Acad. Dermatol. Venereol. 2008, 22, 1519–1520. [Google Scholar] [CrossRef]
- Price, V.H.; Hordinsky, M.K.; Olsen, E.A.; Roberts, J.L.; Siegfried, E.C.; Rafal, E.S.; Korman, N.J.; Altrabulsi, B.; Leung, H.M.; Garovoy, M.R.; et al. Subcutaneous efalizumab is not effective in the treatment of alopecia areata. J. Am. Acad. Dermatol. 2008, 58, 395–402. [Google Scholar] [CrossRef]
- Confino-Cohen, R.; Chodick, G.; Shalev, V.; Leshno, M.; Kimhi, O.; Goldberg, A. Chronic urticaria and autoimmunity: Associations found in a large population study. J. Allergy Clin. Immunol. 2012, 129, 1307–1313. [Google Scholar]
- Kaplan, A.P. Treatment of chronic spontaneous urticaria. Allergy Asthma Immunol. Res. 2012, 4, 326–331. [Google Scholar] [CrossRef]
- Kaplan, A.P.; Joseph, K.; Maykut, R.J.; Geba, G.P.; Zeldin, R.K. Treatment of chronic autoimmune urticaria with omalizumab. J. Allergy Clin. Immunol. 2008, 122, 569–573. [Google Scholar] [CrossRef]
- Saini, S.; Rosen, K.E.; Hsieh, H.J.; Wong, D.A.; Conner, E.; Kaplan, A.; Spector, S.; Maurer, M. A randomized, placebo-controlled, dose-ranging study of single-dose omalizumab in patients with H1-antihistamine-refractory chronic idiopathic urticaria. J. Allergy Clin. Immunol. 2011, 128, 567–573. [Google Scholar] [CrossRef]
- Ferrer, M.; Gamboa, P.; Sanz, M.L.; Goikoetxea, M.J.; Cabrera-Freitag, P.; Javaloyes, G.; Berroa, F.; Kaplan, A.P. Omalizumab is effective in nonautoimmune urticaria. J. Allergy Clin. Immunol. 2011, 127, 1300–1302. [Google Scholar] [CrossRef]
- Ivyanskiy, I.; Sand, C.; Thomsen, S.F. Omalizumab for chronic urticaria: A case series and overview of the literature. Case Rep. Dermatol. 2012, 4, 19–26. [Google Scholar] [CrossRef]
- NICE clinical guideline 57. Atopic eczema in children: Management of atopic eczema in children from birth up to the age of 12 years. Issued December 2007. Available online: http://www.nice.org.uk/CG057/ (accessed on 10 April 2013).
- Koga, C.; Kabashima, K.; Shiraishi, N.; Kobayashi, M.; Tokura, Y. Possible pathogenic role of Th17 cells for atopic dermatitis. J. Invest. Dermatol. 2008, 128, 2625–2630. [Google Scholar] [CrossRef]
- Hanifin, J.M.; Schneider, L.C.; Leung, D.Y.; Ellis, C.N.; Jaffe, H.S.; Izu, A.E.; Bucalo, L.R.; Hirabayashi, S.E.; Tofte, S.J.; Cantu-Gonzales, G.; et al. Recombinant interferon gamma therapy for atopic dermatitis. J. Am. Acad. Dermatol. 1993, 28, 189–197. [Google Scholar] [CrossRef]
- Schneider, L.C.; Baz, Z.; Zarcone, C.; Zurakowski, D. Long-term therapy with recombinant interferon-gamma (rIFN-gamma) for atopic dermatitis. Ann. Allergy Asthma Immunol. 1998, 80, 263–268. [Google Scholar] [CrossRef]
- Jang, I.G.; Yang, J.K.; Lee, H.J.; Yi, J.Y.; Kim, H.O.; Kim, C.W.; Kim, T.Y. Clinical improvement and immunohistochemical findings in severe atopic dermatitis treated with interferon gamma. J. Am. Acad. Dermatol. 2000, 42, 1033–1040. [Google Scholar] [CrossRef]
- Nielsen, B.W.; Reimert, C.M.; Hammer, R.; Schiøtz, P.O.; Thestrup-Pedersen, K. Interferon therapy for atopic dermatitis reduces basophil histamine release, but does not reduce serum IgE or eosinophilic proteins. Allergy 1994, 49, 120–128. [Google Scholar] [CrossRef]
- Jullien, D.; Nicolas, J.F.; Frappaz, A.; Thivolet, J. Alpha interferon treatment in atopic dermatitis. Acta. Derm. Venereol. 1993, 73, 130–132. [Google Scholar]
- Noh, G.W.; Lee, K.Y. Blood eosinophils and serum IgE as predictors for prognosis of interferon-gamma therapy in atopic dermatitis. Allergy 1998, 53, 1202–1207. [Google Scholar] [CrossRef]
- Jolles, S.; Hughes, J.; Rustin, M. The treatment of atopic dermatitis with adjunctive high-dose intravenous immunoglobulin: A report of three patients and review of the literature. Br. J. Dermatol. 2000, 142, 551–554. [Google Scholar] [CrossRef]
- Jolles, S.; Sewell, C.; Webster, D.; Ryan, A.; Heelan, B.; Waite, A.; Rustin, M. Adjunctive high-dose intravenous immunoglobulin treatment for resistant atopic dermatitis: Efficacy and effects on intracellular cytokine levels and CD4 counts. Acta. Derm. Venereol. 2003, 83, 433–437. [Google Scholar] [CrossRef]
- Paul, C.; Lahfa, M.; Bachelez, H.; Chevret, S.; Dubertret, L. A randomized controlled evaluator-blinded trial of intravenous immunoglobulin in adults with severe atopic dermatitis. Br. J. Dermatol. 2002, 147, 518–522. [Google Scholar]
- Bemanian, M.H.; Movahedi, M.; Farhoudi, A.; Gharagozlou, M.; Seraj, M.H.; Pourpak, Z.; Nabavi, M.; Aghamohammadi, A.; Shirkhoda, Z. High doses intravenous immunoglobulin versus oral cyclosporine in the treatment of severe atopic dermatitis. Iran. J. Allergy Asthma Immunol. 2005, 4, 139–143. [Google Scholar]
- Moul, D.K.; Routhouska, S.B.; Robinson, M.R.; Korman, N.J. Alefacept for moderate to severe atopic dermatitis: A pilot study in adults. J. Am. Acad. Dermatol. 2008, 58, 984–989. [Google Scholar] [CrossRef]
- Takiguchi, R.; Tofte, S.; Simpson, B.; Harper, E.; Blauvelt, A.; Hanifin, J.; Simpson, E. Efalizumab for severe atopic dermatitis: A pilot study in adults. J. Am. Acad. Dermatol. 2007, 56, 222–227. [Google Scholar]
- Simon, D.; Hösli, S.; Kostylina, G.; Yawalkar, N.; Simon, H.U. Anti-CD20 (rituximab) treatment improves atopic eczema. J. Allergy Clin. Immunol. 2008, 121, 122–128. [Google Scholar] [CrossRef]
- Sheinkopf, L.E.; Rafi, A.W.; Do, L.T.; Katz, R.M.; Klaustermeyer, W.B. Efficacy of omalizumab in the treatment of atopic dermatitis: A pilot study. Allergy Asthma Proc. 2008, 29, 530–537. [Google Scholar] [CrossRef]
- Phipps, S.; Flood-Page, P.; Menzies-Gow, A.; Ong, Y.E.; Kay, A.B. Intravenous anti-IL-5 monoclonal antibody reduces eosinophils and tenascin deposition in allergen-challenged human atopic skin. J. Invest. Dermatol. 2004, 122, 1406–1412. [Google Scholar] [CrossRef]
- Rullan, P.; Murase, J. Two cases of chronic atopic dermatitis treated with soluble tumor necrosis factor receptor therapy. J. Drugs Dermatol. 2009, 8, 873–876. [Google Scholar]
- Jacobi, A.; Antoni, C.; Manger, B.; Schuler, G.; Hertl, M. Infliximab in the treatment of moderate to severe atopic dermatitis. J. Am. Acad. Dermatol. 2005, 52, 522–526. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chandler, D.; Bewley, A. Biologics in Dermatology. Pharmaceuticals 2013, 6, 557-578. https://doi.org/10.3390/ph6040557
Chandler D, Bewley A. Biologics in Dermatology. Pharmaceuticals. 2013; 6(4):557-578. https://doi.org/10.3390/ph6040557
Chicago/Turabian StyleChandler, David, and Anthony Bewley. 2013. "Biologics in Dermatology" Pharmaceuticals 6, no. 4: 557-578. https://doi.org/10.3390/ph6040557
APA StyleChandler, D., & Bewley, A. (2013). Biologics in Dermatology. Pharmaceuticals, 6(4), 557-578. https://doi.org/10.3390/ph6040557