Next Article in Journal
Inhaled Corticosteroids
Next Article in Special Issue
Platelet-Derived Growth Factor (PDGF)/PDGF Receptors (PDGFR) Axis as Target for Antitumor and Antiangiogenic Therapy
Previous Article in Journal
Generic Medicine Pricing Policies in Europe: Current Status and Impact
Previous Article in Special Issue
The Vasohibin Family
Open AccessReview

The Chick Embryo Chorioallantoic Membrane as an In Vivo Assay to Study Antiangiogenesis

Department of Human Anatomy and Histology, University of Bari Medical School, Piazza G. Cesare, 11, Policlinico 70124, Bari, Italy
Pharmaceuticals 2010, 3(3), 482-513; https://doi.org/10.3390/ph3030482
Received: 12 January 2010 / Revised: 29 January 2010 / Accepted: 2 March 2010 / Published: 8 March 2010
(This article belongs to the Special Issue Angiogenesis Inhibitors)

Abstract

Antiangiogenesis, e.g., inhibition of blood vessel growth, is being investigated as a way to prevent the growth of tumors and other angiogenesis-dependent diseases. Pharmacological inhibition interferes with the angiogenic cascade or the immature neovasculature with synthetic or semi-synthetic substances, endogenous inhibitors or biological antagonists.The chick embryo chorioallantoic membrane (CAM) is an extraembryonic membrane, which serves as a gas exchange surface and its function is supported by a dense capillary network. Because its extensive vascularization and easy accessibility, CAM has been used to study morphofunctional aspects of the angiogenesis process in vivo and to study the efficacy and mechanism of action of pro- and anti-angiogenic molecules. The fields of application of CAM in the study of antiangiogenesis, including our personal experience, are illustrated in this review article.
Keywords: antiangiogenesis; chorioallantoic membrane; tumor progression antiangiogenesis; chorioallantoic membrane; tumor progression

1. Introduction

Angiogenesis depends on the balance of several stimulating and inhibiting factors [1]. Antiangiogenesis as a way of treating primary tumors and reducing their metastases, was first proposed by Judah Folkman in 1971 [2]. Beginning in the 1980s, the biopharmaceutical industry began exploiting the field of antiangiogenesis for creating new therapeutic compounds for modulating new blood vessel growth in angiogenesis-dependent diseases.
Antiangiogenic approaches fell in two categories: (a) agents that blocked the activity of pro-angiogenic molecules; (b) agents that directly affected endothelial cell function or survival (Table 1).
Table 1. Direct and indirect angiogenesis inhibitors.
Table 1. Direct and indirect angiogenesis inhibitors.
DirectIndirect
Angiostatin; Bevacizumab (Avastin)
Arresten; Canstatin; Combrestatin
Endostatin; Thrombospondin
Tumstatin; methoxyestradiol; Vitaxin
Targeting EGF-receptor tyrosine kinase
Targeting VEGF receptor
Targeting PDGF receptor
Targeting PDGF receptor
Targeting ERBB-2
Targeting interferon alpha receptor*
* Interferon alpha can be considered both a direct angiogenesis inhibitor, because it inhibits endothelial-cell migration, and an indirect angiogenesis inhibitor because it inhibits synthesis of FGF-2 by tumor cells.
Endogenous inhibitors of angiogenesis are defined as proteins or fragments of proteins that are formed in the body and can inhibit the formation of blood vessels (Table 2) [3].
Table 2. Endogenous inhibitors of angiogenesis.
Table 2. Endogenous inhibitors of angiogenesis.
Matrix derivedGrowth factors and cytokines
Arresten
Canstatin
Endorepellin
Endostatin
Fibronectin fragment (Anastellin)
Targeting fibronectin-binding integrins
Fibulin
Thrombospondin-1 and –2
Tumstatin
Interferons
Interleukins
Pigment epithelium derived factor (PEDF)
Fragments of blood coagulation factorsOthers
Angiostatin
Antithrombin-III
Prothrombin kringle 2
Platelet factor-4
Tissue inhibitors of metalloproteinases (TIMPs)
Chondromodulin
2-methoxyestradiol
Prolactin fragments
PEX
Soluble Fms-like tyrosine kinase-1 (S-Flt-1)
Troponin I
Vasostatin
At least 27 different proteins and small molecules exist in the body whose function is to act as inhibitors of angiogenesis. These angiogenesis inhibitors can be detected in blood circulation, suggesting that they function in the angiogenic balance as endogenous angiostatic regulators even under physiological conditions [3].
Today, over 20 angiogenic growth factors and over 300 antiangiogenic molecules targeting different signalling pathways are being tested for their anticancer properties at preclinical and clinical stages. Although the results of the clinical trials are encouraging, the effects are modest. Clinical practice reveals that therapy with angiogenesis inhibitors does not prolong survival of cancer patients for more than months, because tumors elicit resistance.
Owing to its central role in promoting tumor growth, vascular endothelial growth factor (VEGF) has become a key therapeutic target and its function can be blocked at different levels of the signalling pathways. The majority of Food and Drug Adminstration (FDA)-approved angiogenesis inhibitors, as well as those in phase III clinical trials, neutralize VEGF, target its receptors or suppress its expression by tumor cells. Avastin (bevacizumab), a humanized anti-VEGF monoclonal antibody, has been the first angiogenesis inhibitor that was tested in multi-center clinical trials against cancer. In 2004, it was approved by the FDA as a first-line treatment for metastatic clorectal cancer in combination with 5-fluorouracil-based chemotherapy regimens [4].

2. The Chorioallantoic Membrane in the Study of Antiangiogenesis

The classical assays for studying angiogenesis in vivo include the rabbit ear chamber, the mouse dorsal skin and air sac, the chick embryo chorioallantoic membrane (CAM), the iris and avascular cornea of the rodent eye and the zebrafish [5].
In vivo angiogenesis assays have allowed important progress in elucidating the mechanism of action of several angiogenic factors and inhibitors. The main determinants dictating the choice of method are their cost, ease of use, reproducibility, and reliability. However, in vivo angiogenesis assays may be very sensitive to environmental factors and not readily accessible to biochemical analysis. Also, their interpretation is frequently complicated by the fact that the experimental condition adopted may inadvertently favour inflammation. In this case the angiogenic response is elicited indirectly, at least in part, through the activation of inflammatory or other non-endothelial cell types.
The CAM is an extraembryonic membrane formed on day 4 of incubation by fusion of the chorion and the allantois. Immature blood vessels, lacking a complete basal lamina and smooth muscle cells, scattered in the mesoderm grow very rapidly until day 8 and give rise to a capillary plexus, which comes to be intimately associated with the overlying chorionic epithelial cells and mediates gas exchange with the outer environment. At day 14, the capillary plexus is located at the surface of the ectoderm adjacent to the shell membrane. Rapid capillary proliferation continues until day 11; thereafter, the endothelial cell mitotic index declines rapidly, and the vascular system attains its final arrangement on day 18, just before hatching [6].
CAMs are cultured either in ovo or ex-ovo as a shell-less culture in Petri dishes and plastic wrap/cup apparatus. There is no clear evidence that there is any significant difference between data derived using in ovo or shell-less culture method. It has been demonstrated that survival rate of eggs cultured ex ovo is the major success limiting step in this culture technique [6].
Focal application of test and control substances is still the most used method. It is quick and semi-quantifiable, economical, good for the screening of many novel substances. The one limitation of this approach concerns quantification of interaction of antiangiogenic drugs with CAM vessels rather than with pro-angiogenic molecules [6].
There are a variety of application methods or carriers described in literature to test angiogenic or antiangiogenic activity. The test material is usually introduced in the form of small filter disks, or small pieces of polymerized materials, such as gelatin sponges or biologically inert synthetic polymers. Blood vessels can be analyzed in terms of the number, diameter, density, permeability, branch point number and blood flow [6].
We have developed a new method for the quantitation of angiogenesis and antiangiogenesis in the CAM. Gelatin sponges treated with a stimulator or an inhibitor of blood vessel formation are implanted on growing CAM on day 8 [7]. Blood vessels growing vertically into the sponge and at the boundary between sponge and surrounding mesenchyme, are counted morphometrically on day 12. The newly formed blood vessels grow perpendicularly to the plane of the CAM inside the sponge, which does not contain preexisting vessels and can be quantified by morphometric evaluation of histologic CAM sections. More sophisticated techniques have been designed recently to perform reliable quantitative evaluation of vascular density, including in ovo cell proliferation, layered expression scanning to visualize the protein of interest, and fluorescent confocal microscopy of new blood vessels formation at the site of application.
The development of an avascular zone or a zone of inhibition at the site of application is considered indicative of antiangiogenesis. It was initially described by Taylor and Folkman [8] who showed that protamine produced an avascular zone when applied to the leading edge of the CAM. In studies of inhibition of angiogenesis (Table 3), there are two approaches which differs in the target vessels, i.e. those which examine the response in the rapid growing CAM blood vessels and those that evaluate the inhibition of angiogenic response induced by a well known angiogenic cytokine, usually fibroblast growth factor-2 (FGF-2) or VEGF.
Table 3. Testing Antiangiogenic Substances in the CAM Assay.*
Table 3. Testing Antiangiogenic Substances in the CAM Assay.*
AAV-mediated gene transfer of TIMP-1 [9]; AA98V (H)/L [10]; A-beta peptides [11]; Aeroplysinin-1[12]; Adiponectin [13]; Ad-vasostatin[14]; Agkistin [15]; AGM-1470 [16]; Alliin [17]; a4-b1antagonists[18]; Av-b3/av-b5 antagonists and ab [19,20,30,84,85,165,313]; Amifostine [21]; Amiloride [22]; Aminopeptidase-N antagonists [23]; Angioinhibins [24]; Ang-2 [25]; Angiostatin [26]; Angiotensinogen [27,28]; Anthracyclines and titanocene dichloride [29]; Antibacterial substances [31]; Antibiotics [32]; Ab anti-FGF-2 and anti-VEGF [33,34]; Anti-CD146 Mab [35]; Anti-collagen IV ab [36]; Antioxidant molecules [37]; Antithrombin [38]; Apicidin [39]; Aplidine [40]; Apolipoprotein(a) kringle V [41]; Apomorphine [42]; AQP-1 siRNA [43]; Arginine deaminase [44]; 2-aroylindoles [45]; Arresten [46]; Artesunate [47]; Ascorbic acid [48]; Atiprimod [49]; Aurintricarboxylic acid [50]; Azaspirine [51]
Bactericidal/permeability-increasing protein [52]; Bacterium PB[53]; Baicalein/baicalin [54]; Bleomycin [55]; Blockers of volume-regulated anion channels [56]; Beta-cyclodextrintetradecasulfate [57]; Beta-Escin [58]; Beta-HISV[59]; BMP-9 [60]; Bortezomib [61]; Butyric acid [62]
CAI [63]; Campesterol [64]; Canstatin [65]; Capsaicin [66]; Carbon materials [67]; Carrageenan [68]; Cartilage [69]; Catechins [70]; Cerivastatin [71]; Cheiradone [72]; Chemokine antagonist M3 [74]; Chondrocyte derived inhibitor [69]; Chondromodulin-1 [75]; Chrysin [76]; Cigarette smoke condensate [77,191]; Clodronate [78]; Clotrimazole [79]; Contortrostatin [80]; Curcumin [81,82]; COX inhibitors [86,87]; Cyclopeptidic VEGF inhibitor [88]; Cyclosporin [89]; Cytocholasin D [90]
7-Deazaxanthine [91]; Deguelin [92]; Delphinidin [93]; Deoxycholic acid-heparin conjugate [94]; Deoxycytidine nucleoside [95]; DFMO α-difluoromethylornithine [96]; Diaminoanthraquinone [97]; Dichloropy ridodithienenotriazine [98]; Dihydroartemisinin [99]; Dihydrotanshinone I [100]; Digoxin [101]; Ditriazine derivative [102]; DPTH-N10 [103]; Docetaxel [104]; Dominant-negative p65 PAK peptide [105]; Doxazosin [106]; Doxycycline [107]; Doxorubicin [108,209]
Eclipta prostata [109]; Emodin [110]; Endocannabinoid anandamide[111]; Endorepellin [112]; Endostatin [113,114,242]; Enoic acanthonic acid [86]; Eponeomycin [115]; Epoxyeicosatrienoic acid antagonist [116]; Escherichia Coli K5 polysaccharide derivatives [73,299]; Estrogen antagonists [117]; Ets-1 antisense [118,119]; Evodiamine [120]
Fascaplysin [121]; Fenretinide [122]; Flavonoids [123,261]; Fluorosynerazols [124]; Fractalkine [125]; Gangliosides [126]; Gastrodia elata [127]; Genepin [128]; Ghrelin [129] Gleditsia sinesis [130]; Glycine [131]; Goniodomin A [132] Grateloupia longifolia polysaccharide [133]; Green tea [134] ; Grifola frondosa [135]; GRO-beta [136]; GW654652[137]
Heparan sulfate suleparoide [138]; Heparanase [139]; Heparin or heparin fragments+cortisone [57,140,141,142,285]; HGF-like basic hexapeptides [143]; Herbamycin [144]; Histidine-proline-rich glycoprotein [145]; HIV-1 protease inhibitors [146]; Hox D10 [147]; Homocysteine [148]; HST-1 protein [149]; Human neutrophil peptides [151]; Hydroxycamptothecin [152]; Hyperforin [154]; Hypertermia [155]; Hypoestoxide [156]; Hypoxic eytotoxin TX-402 [157]; Hypoxia cytotoxins [158]
Indinavir and saquinavir [146]; Indolin-2-ketone compound [159]; Inhibitors of basement membrane biosynthesis [160,161,162]; Inhibitors of DNA methyltransferase [163]; IGF binding protein [164]; IL-12, -18, -21, 27 [166,167,168,169]; Ionizing radiation [170]; Isoflavones [171]; Isoprostanes [172]; Isosorbide mono-dinitrate [173]; JNI-17029259 [174]; JNI-26076713 [175]
KIN-841 [176]; Kininogen, kininogen-derived polyptides, kinostatin and related Mab [177,178,179,200]; KV11 [180]; Lactacystin [181]; Lambda-carragenan oligosaccharide [68]; Laminin-derived peptide [182]; Lamininarin sulphate [183]; Larg-A [184]; Lebectin [185]; Lebestatin [186]; LMW polysaccharide extracts from Agaricus blazei [187]; Lonicera japonica [188]; LMW undersulfated glycol-split heparin [142]; Low sulphated oligosaccharides from heparan sulphate [189]; Lysozime [190]
Marine-derived oligosaccharide sulfate [192]; Metastatin [193]; 2-Methoxyestradiol [194]; Methylene blue [195]; Methyltransferase inhibitors [163]; Microrganism fermantation [196]; Midkine [197]; Mitoxantrone [198]; Mixture of ascorbic acid, lisine, proline and gree tea [199]; Motuporanines [201]; Multiple RTK inhibitors [202]; Mustard essential oil [203]; Myo-inositol trispyrophosphate [204]
Neomycin [205]; Neridronate [206]; Neuregulin-2 [207]; Neurokinin-B [208]; Nitric oxide [173,210]; Nitrotoluene sulfonate [211]; Nonpeptide topomimetics [212]; Notch 4 [213]; Nucleolin antagonist [214]; Obtustatin [215]
Octacosanol [216]; Oncothanin [217]; 5’-O-trityl nucleoside analogs [218]; Opioid peptides [219]; Oriental herbal [220]; Oxaliplatin [221]; Paclitaxel [104]; PAI-1 [222]; PAK1[105]; PE [223]; Pedicularioside G [224]; PGG [225]; Pentosan polysulfate [226]; Pentraxin 3 [227]; Peptide trivalent arsenical [228]; Perillyl alcohol [229]; PPAR agonists [230]; PEX [231]; Phenethyl isothiocyanate [232]; Phenolic compounds [233]; P-henylenabil selenocyanate [234]; Philinopside A [235]; Phorbol esters [236]; Photodynamic therapy [237]; Piperazine derivative [238,239]; Placental ribonuclease inhibitor [240]; Plasma hyaluronan binding protein [241]; Plasminogen related protein [243]; PF4 [244,245]; PARP inhibitor [247]; Poly-L-lisyne/heparin [248]; Polysulphated derivative of tlaminarin [183]; Pomegranate [249]; Prenylnaringenin [250]; Prolactin [150,246]; Proline analogs [251]; Protamine [252]; PAR-1 antagonists [253]; Prothrombin fragments and rh prothrombin kringles [254,266]; Pyrimidines [255]; Purine analogues [256]; Purine riboside [257]; Pyracoumarin compounds [258]; Pyrazine [259]; p38 MAPK [260]
Quinoline [262]; Radicicol [263]; RDG-peptidomimetic [264]; Rh plasminogen kringle 1-3 [265]; Recombinant kringle domains of plasminogen, tissue-type plasminogen activator and urokinase [267,268,269]; Red wine [134]; Resveratrol [17]; Retinoids [270]; Rhodostomin [271]; Ribavirin [272]; Ribonuclease inhibitor [273]; Rosiglitazone [274]; Ruthenium red [275]
Safrole oxide [276]; Salmosin [277]; Sangivamycin [278]; Sanguinarine [279]; Saurus chinensis [280]; Sedun sarmentosum [281]; Serpin [282]; Sesterterpenes [283]; PF-4 [284]; Short peptide[286]; Simvastatin [287]; SJ-8002 [288]; S-nitrosocaptopril [289]; Sodium caffeate [290]; Solanum nigrum [291]; Somatostatin [292]; Somocystinamide [293]; Soy isoflavones [294]; S-phosphonate [295]; Spironolactone [296]; Squalamine [297]; Staurosporine [298]; Sulphated GAGs[300]; Sulfated polysaccharide-peptidoglican [301,302]; Sulfonated derivative of dystamycin [303,304]; Sulfonic acid polymers [305]; Sulf-2[306]; Sulindac analogue [307]; Sulindac [308]; Suramin [309,310,311]; Synthetic Grb2-Src [312]; Synthetic inhibitor of arylsulfatase [211]
Taraxacum officinale [314]; Taspine [315]; TAU 1120 [316]; Taxol [317]; Temozolomide [318]; Tenasum-C [319]; Terbinafine [320]; Terpenoids [321]; Tetrac [322]; Tetrameric tripeptide [323]; TGF-b[324]; Thalidomide metabolites [153]; 6-Thioguanine [325]; TSP-1 [326,327]; TP inhibitors [327]; Thymosin peptides [328]; Tinzaparin [329]; TIMP-3 [330]; TFPI [331]; Titanocene dichloride [332]; TNP470+ IFNa [333]; Tocotrienol [334]; Tocotrinol [335]; Topoisomerase inhibitors [336,337]; Topotecan [338]; Torilin [339]; Trapidil [340]; Triamcinolone acetonide [341]; Tricyclodecan-9-yl-xanthate [162]; Triphenylmethanem [50]; Tripterygium wilfordii [342]; Triptolide [343]; Triterpene acids [344]; Trypanosoma cruzi calreticulin [345]; Tyrosine phosphatase inhibitor [346]; TZT-1027 [347]
Ulmus davidiana var.japonica [348]; Undersulfated, LMW glycol-split heparin [349]; Ursodeoxycholic acid [350]; Ursolic and oleanolic acid [344]; Valproic acid [351]; Vanillyl alcohol [352]; VEGI [353]; VASH1B [354]; Vasostatin [245,355]; VEGF-toxin conjugate [356]; Vinblastine+rapamycic [357,358]; Vitamin D binding protein [359]; Vitamin D3 analogues [360]; Vitreous [361]; von Hippel-Lindau protein [362]; Wogonin [363]; Zoledronic acid [364]
* References between brackets.

3. Disadvantages of the CAM Assay

The major disadvantage of CAM is that it already contains a well-developed vascular network and the vasodilation that invariably follows its manipulation may be hard to distinguish from the effects of the test substance. Another limitation in nonspecific inflammatory reaction from the implant. Histologic study of CAM sections demonstrates the presence of perivascular inflammatory infiltrate together with any hyperplastic reaction of the chorionic epithelium. Nonspecific inflammatory reactions are much less frequent when the implant is made very early in CAM development and the host’s immune system is relatively immature [6]. Moreover, it might emphasize that species-specific differences might arise if one attempt to test the effects of high affinity antibodies generated against human surface antigens. However, to circumvent this drawback it is useful to perform the experiments early in the CAM development, since at that time the host’s immune system is relatively immature [6].

4. Concluding Remarks

CAM is widely utilized as an in vivo system to study antiangiogenesis. It offers the advantage of being relatively inexpensive and lends itself to large-scale screening, by using various stimulators alone or in combination with an antiangiogenic agent to examine the effectiveness of an inhibitor. The principal restrictions to its use are essentially due to nonspecific inflammatory reactions and to the presence of pre-existing vessels which make it difficult to determine the true extent of antiangiogenesis.

Acknowledgements

Supported in part by MIUR (PRIN 2007), Rome, and Fondazione Cassa di Risparmio di Puglia, Bari, Italy.

References

  1. Ribatti, D.; Nico, B.; Crivellato, E.; Roccaro, A.M.; Vacca, A. The history of the angiogenic switch concept. Leukemia 2007, 21, 44–52. [Google Scholar]
  2. Folkman, J. Tumor angiogenesis: Therapeutic implications. New Engl. J. Med. 1971, 285, 1182–1186. [Google Scholar]
  3. Nyberg, P.; Xie, L.; Kalluri, R. Endogenous inhibitors of angiogenesis. Cancer Res. 2005, 65, 3967–3979. [Google Scholar] [CrossRef] [PubMed]
  4. Ellis, L.M. Bevacizumab. Nat. Rev. Drug Discov. 2005, S8–S9. [Google Scholar]
  5. Norrby, K. In vivo models of angiogenesis. J. Cell. Mol. Med. 2006, 10, 588–612. [Google Scholar] [CrossRef] [PubMed]
  6. Ribatti, D. Chick embryo chorioallantoic membrane as a useful tool to study angiogenesis. Int. Rev.Cell. Mol. Biol. 2008, 270, 181–224. [Google Scholar]
  7. Ribatti, D.; Nico, B.; Vacca, A.; Presta, M. The gelatin sponge-chorioallantoic membrane assays. Nat. Prot. 2006, 1, 85–91. [Google Scholar]
  8. Taylor, S.; Folkman, J. Protamine is an inhibitor of angiogenesis. Nature 1982, 297, 307–312. [Google Scholar]
  9. Zacchigna, S.; Zentilin, L.; Morini, M.; Dell'Eva, R.; Noonan, D.M.; Albini, A.; Giacca, M. AAV-mediated gene transfer of tissue inhibitor of metalloproteinases-1 inhibits vascular tumor growth and angiogenesis in vivo. Cancer Gene Ther. 2004, 11, 73–80. [Google Scholar] [CrossRef] [PubMed]
  10. Lin, Y.; Wu, X.; Shen, Y.; Bu, P.; Yang, D.; Yan, X. A novel antibody AA98 V(H)/L directed against CD146 efficiently inhibits angiogenesis. Anticancer Res. 2007, 27, 4219–4224. [Google Scholar]
  11. Paris, D.; Townsed, K.; Quadros, A.; Humphrey, J.; Sun, J.; Brem, S.; Wotoczek-Obadia, M.; DelleDonne, A.; Patel, N.; Obregon, D.F.; Crescentini, R.; Abdullah, L.; Coppola, D.; Rojiani, A.M.; Crawford, F.; Sebti, S.M.; Mullan, M. Inhibition of angiogenesis by Abeta peptides. Angiogenesis 2004, 7, 75–85. [Google Scholar]
  12. Rodríguez-Nieto, S.; González-Iriarte, M.; Carmona, R.; Muñoz-Chápuli, R.; Medina, M.A.; Quesada, A.R. Antiangiogenic activity of aeroplysinin-1, a brominated compound isolated from a marine sponge. FASEB J. 2002, 16, 261–263. [Google Scholar]
  13. Brakenhielm, E.; Veitonmaki, N.; Cao, R.; Kihara, S.; Matsuzawa, Y.; Zhivotovsky, B.; Funahashi, T.; Cao, Y. Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apotosis. Proc. Natl. Acad. Sci. USA 2004, 101, 2476–2481. [Google Scholar]
  14. Li, L.; Yuan, Y.Z.; Lu, J.; Xia, L.; Zhu, Y.; Zhang, Y.P.; Qiao, M.M. Treatment of pancreatic carcinoma by adenoviral mediated gene transfer of vasostatin in mice. Gut. 2006, 55, 259–265. [Google Scholar]
  15. Yeh, C.H.; Wang, W.C.; Hsieh, T.T.; Huang, T.F. Agkistin, a snake venom-derived glycoprotein Ib antagonist, disrupts von Willebrand factor-endothelial cell interaction and inhibits angiogenesis. J.Biol. Chem. 2000, 275, 18615–18618. [Google Scholar] [PubMed]
  16. Kusaka, M.; Sudo, K.; Fujita, T.; Marui, S.; Itoh, F.; Ingber, D.; Folkman, J. Potent anti-angiogenic action of AGM-1470: Comparison to the fumagillin parent. Biochem. Biophys. Res. Commun. 1991, 174, 1070–1076. [Google Scholar]
  17. Mousa, S.S.; Mousa, S.A. Effect of resveratrol on angiogenesis and platelet/fibrinaccelerated tumor growth in the chick chorioallantoic membrane model. Nutr. Cancer 2005, 52, 59–65. [Google Scholar]
  18. Calzada, M.J.; Zhou, L.; Sipes, J.M.; Zhang, J.; Krutzsch, H.C.; Iruela-Arispe, M.L.; Annis, D.S.; Mosher, D.F.; Roberts, D.D. Alpha4beta1 integrin mediates selective endothelial cell responses to thrombospondins 1 and 2 in vitro and modulates angiogenesis in vivo. Circ. Res. 2004, 94, 462–470. [Google Scholar] [CrossRef] [PubMed]
  19. Fu, Y.; Ponce, M.L.; Thill, M.; Yuan, P.; Wang, N.S.; Csaky, K.G. Angiogenesis inhibition and choroidal neovascularisation suppression by sustained delivery of an integrin antagonist, EMD478761. Invest. Ophtalmol. Vis. Sci. 2007, 48, 5184–5190. [Google Scholar] [CrossRef]
  20. Belvisi, L.; Riccioni, T.; Marcellini, M.; Vesci, L.; Chiarucci, I.; Efrati, D.; Potenza, D.; Scolastico, C.; Manzoni, L.; Lombardo, K.; Stasi, M.A.; Orlandi, A.; Ciucci, A.; Nico, B.; Ribatti, D.; Giannini, G.; Presta, M.; Carminati, P.; Pisano, C. Biological and molecular properties of a new alpha(v)beta3/alpha(v)beta5 integrin antagonist. Mol. Cancer. Ther. 2005, 4, 1670–1680. [Google Scholar] [PubMed]
  21. Giannopoulou, E.; Katsoris, P.; Kardamakis, D.; Papadimitriou, E. Amifostine inhibits angiogenesis in vivo. J. Pharmacol. Exp. Ther. 2003, 304, 729–737. [Google Scholar] [CrossRef] [PubMed]
  22. Knoll, A.; Schmidt, S.; Chapman, M.; Wiley, D.; Bulgrin, J.; Blank, J.; Kirchner, L. A comparison of two controlled-release delivery systems for the delivery of amiloride to control angiogenesis. Microvasc. Res. 1999, 58, 1–9. [Google Scholar]
  23. Bhagwat, S.V.; Ladhdenranta, J.; Giordano, R.; Arap, W.; Pasqualini, R.; Shapiro, L.H. CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood 2001, 97, 652–659. [Google Scholar]
  24. Ingber, D.; Fujita, T.; Kishomoto, S.; Sudo, K.; Kanamaru, T.; Brem, H.; Folkman, J. Angioinhibins: Synthetic analogues of fumagillin which inhibit angiogenesis and suppress tumor growth. Nature 1990, 348, 555–557. [Google Scholar]
  25. Lee, O.H.; Fueyo, J.; Xu, J.; Yung, W.K.; Lemoine, M.G.; Lang, F.F.; Bekele, B.N.; Zhou, X.; Alonso, M.A.; Aldape, K.D.; Fuller, G.N.; Gomez-Manzano, C. Sustained angiopoietin-2 expression disrupts vessel formation and inhibits glioma growth. Neoplasia 2006, 8, 419–428. [Google Scholar]
  26. O’Reilly, M.S.; Holmgren, L.; Shing, Y.; Chen, C.; Rosenthal, R.A.; Moses, M.; Lane, W.S.; Cao, Y.; Sage, E.H.; Folkman, J. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994, 79, 315–328. [Google Scholar]
  27. Brand, M.; Lamandé, N.; Larger, E.; Corvol, P.; Gasc, J.M. Angiotensinogen impairs angiogenesis in the chick chorioallantoic membrane. J. Mol. Med. 2007, 85, 451–460. [Google Scholar]
  28. Célérier, J.; Cruz, A.; Lamandé, N.; Gasc, J.M.; Corvol, P. Angiotensinogen and its cleaved derivatives inhibit angiogenesis. Hypertension 2002, 39, 224–228. [Google Scholar]
  29. Maragoudakis, M.E.; Peristeris, P.; Missirilis, E.; Aletras, A.; Andriopoulou, P.; Haralabopoulos, G. Inhibition of angiogenesis by anthracyclines and titanocene dichloride. Ann. N.Y. Acad. Sci. 1999, 732, 280–293. [Google Scholar]
  30. Drake, C.J.; Cheresh, D.A.; Little, C.D. An antagonist of integrin alpha v beta 3 prevents maturation of blood vessels during embryonic neovascularization. J. Cell Sci. 1995, 108, 2655–2661. [Google Scholar]
  31. Nishikawa, T.; Akiyama, N.; Kunimasa, K.; Oikawa, T.; Ishizuka, M.; Tsujimoto, M.; Natori, S. Inhibition of in vivo angiogenesis by N-betaalanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine. Eur. J. Pharmacol. 2006, 539, 151–157. [Google Scholar] [PubMed]
  32. Ishii, T.; Hida, T.; Iinuma, S.; Muroi, M.; Nozaki, Y. AN-1323 C and D, new concanamycin-group antibiotics; detection of the angiostatic activity with a wide range of macrolide antibiotics. J. Antibiot. 1995, 48, 12–20. [Google Scholar]
  33. Ribatti, D.; Urbinati, C.; Nico, B.; Rusnati, M.; Roncali, L.; Presta, M. Endogenous basic fibroblast growth factor is implicated in the vascularization of the chick embryo chorioallantoic membrane. Dev. Biol. 1995, 170, 39–49. [Google Scholar]
  34. Vitaliti, A.; Wittmer, M.; Steiner, R.; Wyder, L.; Neri, D.; Klemenz, R. Inhibition of tumor angiogenesis by a single-chain antibody directed against vascular endothelial growth factor. Cancer Res. 2000, 60, 4311–4314. [Google Scholar]
  35. Yan, X.; Lin, Y.; Shen, Y.; Shen, Y.; Yuan, M.; Zhang, Z.; Li, P.; Xia, H.; Li, L.; Luo, D.; Liu, Q.; Mann, K.; Bader, B.L. A novel anti-CD146 monoclonal antibody, AA98, inhibits angiogenesis and tumor growth. Blood 2003, 102, 184–191. [Google Scholar] [PubMed]
  36. Pernasetti, F.; Nickel, J.; Clark, D.; Baeuerle, P.A.; Van Epps, D.; Freimark, B. Novel anti-denatured collagen humanized antibody D93 inhibits angiogenesis and tumor growth: An extracellular matrix-based therapeutic approach. Int. J. Oncol. 2006, 29, 1371–1379. [Google Scholar]
  37. Jackson, J.K.; Higo, T.; Hunter, W.L.; Burt, H.M. The antioxidants curcumin and quercetin inhibit inflammatory processes associated with arthritis. Inflamm. Res. 2006, 55, 168–175. [Google Scholar]
  38. Kisker, O.; Onizuka, S.; Banyard, J.; Komiyama, T.; Becker, C.M.; Achilles, E.G.; Barnes, C.M.; O'Reilly, M.S.; Folkman, J.; Pirie-Shepherd, S.R. Generation of multiple angiogenesis inhibitors by human pancreatic cancer. Cancer Res. 2001, 61, 7298–7304. [Google Scholar]
  39. Kim, S.H.; Ahn, S.; Han, J.W.; Lee, H.W.; Lee, H.Y.; Lee, Y.W.; Kim, M.R.; Kim, K.W.; Kim, W.B.; Hong, S. Apicidin is a histone deacetylase inhibitor with anti-invasive and anti-angiogenic potentials. Bichem. Biophys. Res. Commun. 2004, 315, 964–970. [Google Scholar]
  40. Taraboletti, G.; Poli, M.; Dossi, R.; Vanenti, L.; Borsotti, P.; Faircloth, G.T.; Broggini, M.; D'Incalci, M.; Ribatti, D.; Gavazzi, R. Antiangiogenic activity of aplidine, a new agent of marine origin. Br. J. Cancer 2004, 90, 2418–2424. [Google Scholar]
  41. Kim, J.S.; Yu, H.K.; Ahn, J.H.; Lee, H.J.; Hong, S.W.; Jung, K.H.; Chang, S.I.; Hong, Y.K.; Joe, Y.A.; Byun, S.M.; Lee, S.K.; Chung, S.I.; Yoon, Y. Human apolipoprotein(a) kringle V inhibits angiogenesis in vitro and in vivo by interfering with the activation of focal adhesion kinases. Biochem. Biophys. Res. Commun. 2004, 313, 534–540. [Google Scholar] [PubMed]
  42. Kim, H.J.; Koh, P.O.; Kang, S.S.; Paik, W.Y.; Choi, W.S. The localization of dopamine D2 receptor mRNA in the human placenta and the anti-angiogenic effect of apomorphine in the chorionallantoic membrane. Life Science 2001, 68, 1031–1040. [Google Scholar]
  43. Camerino, G.M.; Nicchia, G.P.; Dinardo, M.M.; Ribatti, D.; Svelto, M.; Frigeri, A. In vivo silencing of aquaporin-1 by RNA interference inhibits angiogenesis in the chick embryo chorioallantoic membrane assay. Cell. Mol. Biol. (Noisy-le-grand) 2006, 52, 51–56. [Google Scholar]
  44. Park, I.S.; Kang, S.W.; Shin, Y.J.; Chae, K.Y.; Park, M.O.; Kim, M.Y.; Wheatley, D.N.; Min, B.H. Arginine deiminase: A potential inhibitor of angiogenesis and tumour growth. Br. J. Cancer 2003, 89, 907–914. [Google Scholar]
  45. Mahboobi, S.; Pongratz, H.; Hufsky, H.; Hockemeyer, J.; Frieser, M.; Lyssenko, A.; Paper, D.H.; Bürgermeister, J.; Böhmer, F.D.; Fiebig, H.H.; Burger, A.M.; Baasner, S.; Beckers, T. Synthetic 2-aroylindole derivatives as a new class of potent tubulin-inhibitory, antimitotic agents. J. Med. Chem. 2001, 44, 4535–4553. [Google Scholar]
  46. Zheng, J.P.; Tang, H.Y.; Chen, X.J.; Yu, B.F.; Xie, J.; Wu, T.C. Construction of recombinant plasmid and prokaryotic expression in E. coli and biological activity analysis of human placenta arresten gene. Hepatobiliary Pancreat. Dis. Int. 2006, 5, 74–79. [Google Scholar] [PubMed]
  47. Huan-huan, C.; Li-Li, Y.; Shang-Bin, L. Artesunate reduces chicken chorioallantoic membrane neovascularisation and exhibits antiangiogenic and apoptotic activity on human microvascular dermal endothelial cell. Cancer Lett. 2004, 211, 163–173. [Google Scholar]
  48. Ashino, H.; Shimamura, M.; Nakajima, H.; Dombou, M.; Kawanaka, S.; Oikawa, T.; Iwaguchi, T.; Kawashima, S. Novel function of ascorbic acid as angiostatic factor. Angiogenesis 2003, 6, 259–269. [Google Scholar]
  49. Shailubhai, K.; Dheer, S.; Picker, D.; Kaur, G.; Sausville, E.A.; Jacob, G.S. Atiprimod is an inhibitor of cancer cell proliferation and angiogenesis. J. Exp. Ther. Oncol. 2004, 4, 267–279. [Google Scholar]
  50. Gagliardi, A.R.; Collins, D.C. Inhibition of angiogenesis by aurintricarboxylic acid. Anticancer Res. 1994, 14, 475–479. [Google Scholar]
  51. Asami, Y.; Kakeya, H.; Komi, Y.; Kojima, S.; Nishikawa, K.; Beebe, K.; Neckers, L.; Osada, H. Azaspirine, a fungal product, inhibits angiogenesis by blocking Raf-1 activation. Cancer Sci. 2008, 99, 1853–1858. [Google Scholar] [PubMed]
  52. van der Schaft, D.W.; Toebes, E.A.; Haseman, J.R.; Mayo, K.H.; Griffioen, A.W. Bactericidal/permeability-increasing protein (BPI) inhibits angiogenesis via induction of apoptosis in vascular endothelial cells. Blood 2000, 96, 176–181. [Google Scholar]
  53. Thakur, A.N.; Thakur, N.L.; Indap, M.M.; Pandit, R.A.; Datar, V.V.; Müller, W.E. Antiangiogenic, antimicrobial, and cytotoxic potential of sponge-associated bacteria. Mar. Biotechnol. N.Y. 2005, 7, 245–252. [Google Scholar] [CrossRef]
  54. Liu, J.J.; Huang, T.S.; Cheng, W.F.; Lu, F.J. Baicalein and baicalin are potent inhibitors of angiogenesis: Inhibition of endothelial cell proliferation, migration and differentiation. Int. J. Cancer 2003, 106, 559–565. [Google Scholar]
  55. Oikawa, T.; Hirotani, K.; Ogasawara, H.; Katayama, T.; Ashino-Fuse, H.; Shimamura, M.; Iwaguchi, T.; Nakamura, O. Inhibition of angiogenesis by bleomycin and its copper complex. Chem. Pharm. Bull. 1990, 38, 1790–1792. [Google Scholar] [PubMed]
  56. Manolopoulos, V.G.; Liekens, S.; Koolwijk, P.; Voets, T.; Peters, E.; Droogmans, G.; Lelkes, P.I.; De Clercq, E.; Nilius, B. Inhibition of angiogenesis by blockers of volume-regulated anion channels. Gen. Pharmacol. 2000, 34, 107–116. [Google Scholar]
  57. Folkman, J.; Weisz, P.B.; Joullic, M.M.; Li, W.W.; Ewing, W.R. Control of angiogenesis with synthetic heparin substitutes. Science 1989, 243, 1490–1493. [Google Scholar]
  58. Wang, X.H.; Xu, B.; Liu, J.T.; Cui, J.R. Effect of beta-escin sodium on endothelial cells proliferation, migration and apoptosis. Vascul. Pharmacol. 2008, 49, 158–165. [Google Scholar]
  59. Komi, Y.; Suzuki, Y.; Shimamura, M.; Kajimoto, S.; Nakajo, S.; Masuda, M.; Shibuya, M.; Itabe, H.; Shimokado, K.; Oettgen, P.; Nakaya, K.; Kojima, S. Mechanism of inhibition of tumor angiogenesis by beta-hydroxyisovaleryishikonin. Cancer Sci. 2009, 100, 269–277. [Google Scholar]
  60. David, L.; Mallet, C.; Keramidas, M.; Lamandé, N.; Gasc, J.M.; Dupuis-Girod, S.; Plauchu, H.; Feige, J.J.; Bailly, S. Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ. Res. 2008, 102, 914–922. [Google Scholar]
  61. Roccaro, A.M.; Hideshima, T.; Richardson, P.G.; Russo, D.; Ribatti, D.; Vacca, A.; Dammacco, F.; Anderson, K.C. Bortezomib as an antitumor agent. Curr. Pharm. Biotechnol. 2006, 7, 441–448. [Google Scholar]
  62. Gururaj, A.E.; Belakavadi, M.; Salimath, B.P. Antiangiogenic effects of butyric acid involve inhibition of VEGF/KDR gene expression and endothelial cell proliferation. Mol. Cell. Bichem. 2003, 243, 107–112. [Google Scholar]
  63. Kohn, E.C.; Alessandro, R.; Spoonster, J.; Wersto, R.P.; Liotta, L.A. Angiogenesis: Role of calcium-mediated signal transduction. Proc. Natl. Acad. Sci. USA 1995, 92, 1307–1311. [Google Scholar]
  64. Choi, J.M.; Lee, E.O.; Lee, H.J.; Kim, K.H.; Ahn, K.S.; Shim, B.S.; Kim, N.I.; Song, M.C.; Baek, N.I.; Kim, S.H. Identification of campesterol from Chrysanthemum coronarium L. and its antiangigenic activities. Phytother. Res. 2007, 21, 954–959. [Google Scholar] [CrossRef] [PubMed]
  65. Hou, W.H.; Wang, T.Y.; Yuan, B.M.; Chai, Y.R.; Jia, Y.L.; Tian, F.; Wang, J.M.; Xue, L.X. Recombinant mouse canstatin inhibits chicken embryo chorioallantoic membrane angiogenesis and endothelial cell proliferation. Acta Biochim. Biophys. Sin. (Shanghai) 2004, 36, 845–850. [Google Scholar] [CrossRef] [PubMed]
  66. Min, J.K.; Han, K.Y.; Kim, E.C.; Kim, Y.M.; Lee, S.W.; Kim, O.H.; Kim, K.W.; Gho, Y.S.; Kwon, Y.G. (2004) Capsaicin inhibits in vitro and in vivo angiogenesis. Cancer Res. 2004, 64, 644–651. [Google Scholar] [PubMed]
  67. Murugesan, S.; Mousa, S.A.; O’connor, L.J.; Lincoln, D.W., 2nd; Linhardt, R.J. Carbon inhibits vascular endothelial growth factor- and fibroblast growth factor-promoted angiogenesis. FEBS Lett. 2007, 581, 1157–1160. [Google Scholar] [PubMed]
  68. Chen, H.; Yan, X.; Lin, J.; Wang, F.; Xu, W. Depolymerized products of lambda-carrageenan as a potent angiogenesis inhibitor. J. Agric. Food Chem. 2007, 55, 6910–6917. [Google Scholar]
  69. Eisenstein, R.; Kuettner, K.E.; Neopolitan, C.; Soble, L.W.; Sorgente, N. The resistance of certain tissues to invasion. III. Cartilage extracts inhibit the growth of fibroblasts and endothelial cells in culture. Am. J. Pathol. 1975, 87, 337–348. [Google Scholar]
  70. Maiti, T.K.; Chatterjee, J.; Dasgupta, S. Effect of green tea polyphenols on angiogenesis induced by an angiogenin-like protein. Biochem. Biophys. Res. Commun. 2003, 308, 64–67. [Google Scholar]
  71. Vincent, L.; Soria, C.; Mirshahi, F.; Opolon, P.; Mishal, Z.; Vannier, J.P.; Soria, J.; Hong, L. Cerivastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme a reductase, inhibits endothelial cell proliferation induced by angiogenic factors in vitro and angiogenesis in in vivo models. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 623–629. [Google Scholar] [CrossRef] [PubMed]
  72. Hussain, S.; Slevin, M.; Mesaik, M.A.; Choudhary, M.I.; Elosta, A.H.; Matou, S.; Ahmed, N.; West, D.; Gaffney, J. Cheiradone: A vascular endothelial cell growth factor receptor antagonist. BMC Cell Biol. 2008, 9, 7. [Google Scholar]
  73. Presta, M.; Oreste, P.; Zoppetti, G.; Belleri, M.; Tanghetti, E.; Leali, D.; Urbinati, C.; Bugatti, A.; Ronca, R.; Nicoli, S.; Moroni, E.; Stabile, H.; Camozzi, M.; Hernandez, G.A.; Mitola, S.; Dell'Era, P.; Rusnati, M.; Ribatti, D. Antiangiogenic activity of semisynthetic biotechnological heparins: Low-molecular-weight-sulfated Escherichia coli K5 polysaccharide derivatives as fibroblast growth factor antagonists. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 71–76. [Google Scholar]
  74. Andrés, G.; Leali, D.; Mitola, S.; Coltrini, D.; Camozzi, M.; Corsini, M.; Belleri, M.; Hirsch, E.; Schwendener, R.A.; Christofori, G.; Alcamí, A.; Presta, M. A Pro-inflammatory Segnature Mediates FGF2-induced angiogenesis. J. Cell. Mol. Med. 2008. (Epub ahead of print).. [Google Scholar]
  75. Hiraki, Y.; Mitsui, K.; Endo, N.; Takahashi, K.; Hayami, T.; Inoue, H.; Shukunami, C.; Tokunaga, K.; Kono, T.; Yamada, M.; Takahashi, H.E.; Kondo, J. Molecular cloning of human chondromodulin-I, a cartilage-derived growth modulating factor, and its expression in Chinese hamster ovary cells. Eur. J. Biochem. 1999, 260, 869–878. [Google Scholar] [CrossRef] [PubMed]
  76. Lin, C.M.; Chang, H.; Li, S.Y.; Wu, I.H.; Chiu, J.H. Chrysin inhibits lipopolysaccharide-induced angiogenesis via down-regulation of VEGF/VEGFR-2(KDR) and IL-6/IL-6R pathways. Planta Med. 2006, 72, 708–714. [Google Scholar]
  77. Ejaz, S.; Insan-ud-din; Ashraf, M.; Nawaz, M.; Lim, C.W.; Kim, B. Cigarette smoke condensate and total particulate matter severely distrupts physiological angiogenesis. Food Chem. Toxicol. 2009, 47, 601–614. [Google Scholar] [CrossRef] [PubMed]
  78. Ribatti, D.; Maruotti, N.; Nico, B.; Longo, V.; Manieri, D.; Vacca, A.; Cantatore, F.P. Clodronate inhibits angiogenesis in vitro and in vivo. Oncol. Rep. 2008, 19, 1109–1112. [Google Scholar] [PubMed]
  79. Thapa, D.; Lee, J.S.; Park, S.Y.; Bae, YH.; Bae, SK.; Kwon, J.B.; Kim, K.J.; Kwak, M.K.; Park, Y.J.; Choi, H.G.; Kim, J.A. Clotrimazole ameliorates intestinal inflammation and abnormal angiogenesis by inhibiting interleukin-8 expression through a nuclear factor-kappaB-dependent manner. J. Pharmacol. Exp. Ther. 2008, 327, 353–364. [Google Scholar] [CrossRef] [PubMed]
  80. Zhou, Q.; Nakada, M.T.; Arnold, C.; Shieh, K.Y.; Markland, F.S. Contortrostatin, a dimeric disintegrin from Agkistrodon contortrix contortrix, inhibits angiogenesis. Angiogenesis 1999, 3, 259–269. [Google Scholar] [CrossRef] [PubMed]
  81. Gururaj, A.E.; Belakavadi, M.; Venkatesh, D.A.; Marmé, D.; Salimath, B.P. Molecular mechanisms of anti-angiogenic effect of curcumin. Biochem. Biophys. Res. Commun. 2002, 297, 934–942. [Google Scholar]
  82. Hahm, E.R.; Gho, Y.S.; Park, S.; Park, C.; Kim, K.W.; Yang, C.H. Synthetic curcumin analogs inhibit activator protein-1 transcription and tumor-induced angiogenesis. Biochem. Biophys. Res. Commun. 2004, 321, 337–344. [Google Scholar]
  83. Yadav, VR.; Suresh, S.; Devi, K.; Yadav, S. Novel formulation of solid lipid microparticles of curcumin for anti-angiogenic and anti-infiammatory activity for optimization of therapy of infiammatory bowel disease. J. Pharm. Pharmacol. 2009, 61, 311–321. [Google Scholar] [PubMed]
  84. Brooks, P.C.; Montgomery, A.M.; Rosenfeld, M.; Reisfeld, R.A.; Hu, T.; Klier, G.; Cheresh, D.A. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994, 79, 1157–1164. [Google Scholar]
  85. Friedlander, M.; Brooks, P.C.; Shaffer, R.W.; Kincaid, C.M.; Varner, J.A.; Cheresh, D.A. Definition ot two distinct angiogenic pathways by distinct αv integrins. Science 1995, 270, 1500–1502. [Google Scholar]
  86. Jung, H.J.; Shimm, J.S.; Suh, Y.G.; Kim, Y.M.; Ono, M.; Kwon, H.J. Potent inhibition of in vivo angiogenesis and tumor growth by a novel cyclooxygenase-2 inhibitor, enoic acanthoic acid. Cancer Sci. 2007, 98, 1943–1948. [Google Scholar] [CrossRef] [PubMed]
  87. Park, B.C.; Park, S.Y.; Lee, J.S.; Mousa, S.A.; Kim, J.T.; Kwak, M.K.; Kang, K.W.; Lee, E.S.; Choi, H.G.; Yong, C.S.; Kim, J.A. The anti-angiogenic effects of 1-furan-2-yl-propenone are mediated through the suppression of both VEGF production and VEGF-induced signaling. Vascul. Pharmacol. 2009, 50, 123–131. [Google Scholar]
  88. Zilberberg, L.; Shinkaruk, S.; Leguin, O.; Rousseau, B.; Hagedorn, M.; Costa, F.; Caronzolo, D.; Balke, M.; Canron, X.; Convert, O.; Laïn, G.; Gionnet, K.; Goncalvès, M.; Bayle, M.; Bello, L.; Chassaing, G.; Deleris, G.; Bikfalvi, A. Structure and inhibitory effects on angiogenesis and tumor development of a new vascular endothelial growth inhibitor. J. Biol. Chem. 2003, 278, 35564–35573. [Google Scholar] [PubMed]
  89. Iurlaro, M.; Vacca, A.; Minischetti, M.; Ribatti, D.; Pellegrino, A.; Sardanelli, A.; Giacchetta, F.; Dammacco, F. Antiangiogenesis by cyclosporine. Exp. Hematol. 1998, 26, 1215–1222. [Google Scholar]
  90. Melkonian, G.; Munoz, N.; Chung, J.; Tong, C.; Marr, R.; Talbot, P. Capillary plexus development in the day five to day six chick chorioallantoic membrane is inhibited by cytochalasin D and suramin. J. Exp. Zool. 2002, 292, 241–254. [Google Scholar]
  91. Balzarini, J.; Gamboa, A.E.; Esnouf, R.; Liekens, S.; Neyts, J.; De Clercq, E.; Camarasa, M.J.; Pérez-Pérez, M.J. 7-Deazaxanthine, a novel prototype inhibitor of thymidine phosphorylase. FEBS Lett. 1998, 438, 91–95. [Google Scholar]
  92. Kim, J.H.; Kim, JH.; Yu, Y.S.; Park, K.H.; Kang, H.J.; Lee, H.Y.; Kim, K.W. Antiangiogenic effect of deguelin on choroidal neovascularization. J. Pharmacol. Exp. Ther. 2008, 324, 643–647. [Google Scholar] [PubMed]
  93. Favot, L.; Martin, S.; Keravis, T.; Andriantsitohaina, R.; Lugnier, C. Involvement of cyclin-dependent pathway in the inhibitory effect of delphinidin on angiogenesis. Cardiovasc. Res. 2003, 59, 479–487. [Google Scholar]
  94. Lee, D.Y.; Kim, S.K.; Kim, S.Y.; Son, D.H.; Nam, J.H.; Kim, I.S.; Park, R.W.; Kim, S.Y.; Byun, Y. Suppression of angiogenesis and tumor growth by orally active deoxycholic acid-heparin conjugate. J. Control. Release 2007, 118, 310–317. [Google Scholar]
  95. Roy, A.M.; Tiwari, K.N.; Parker, W.B.; Secrist, J.A., 3rd; Li, R.; Qu, Z. Antiangiogenic activity of 4’-thio-beta-D-arabinofuranosylcytosine. Mol. Cancer. Ther. 2006, 5, 2218–2224. [Google Scholar] [CrossRef] [PubMed]
  96. Takigawa, M.; Enomoto, M.; Nishida, Y.; Pan, H.O.; Kinoshita, A.; Suzuki, F. Tumor angiogenesis and polyamines: Alpha-difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase, inhibits B16 melanoma-induced angiogenesis in ovo and the proliferation of vascular endothelial cells in vitro. Cancer Res. 1990, 50, 4131–4138. [Google Scholar] [PubMed]
  97. Takano, S.; Gately, S.; Jiang, J.B.; Brem, S. A diaminoantraquinone inhibitor of angiogenesis. J. Pharmacol. Exp. Ther. 1994, 271, 1027–1033. [Google Scholar]
  98. Martínez-Poveda, B.; Muñoz-Chápuli, R.; Rodríguez-Nieto, S.; Quintela, J.M.; Fernández, A.; Medina, M.A.; Quesada, A.R. IB05204, a dichloropyridodithienotriazine, inhibits angiogenesis in vitro and in vivo. Mol. Cancer Ther. 2007, 6, 2675–2685. [Google Scholar] [CrossRef] [PubMed]
  99. Chen, H.H.; Zhou, H.J.; Wang, W.Q.; Wu, G.D. Antimalarial dihydroartemisinin also inhibits angiogenesis. Cancer Chemother. Pharmacol. 2004, 53, 423–432. [Google Scholar]
  100. Bian, W.; Chen, F.; Bai, L.; Zhang, P.; Qin, W. Dihydrotanshinone I inhibits angiogenesis both in vitro and in vivo. Acta Biochim. Biophys. Sin. (Shanghai) 2008, 40, 1–6. [Google Scholar] [PubMed]
  101. Svensson, A.; Azarbayjani, F.; Bäckman, U.; Matsumoto, T.; Christofferson, R. Digoxin inhibits neuroblastoma tumor growth in mice. Anticancer Res. 2005, 25, 207–212. [Google Scholar]
  102. Martinéz-Poveda, B.; MunÞoz-Chápuli, R.; Riguera, R.; Fernández, A.; Medina, M.A.; Quesada, A.R. DTD, an anti-inflammatory ditriazine. Inhibits angiogenesis in vitro and in vivo. J. Cell. Mol. Med. 2008, 12, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
  103. Liu, Y.; Wu, J.; Ho, P.Y.; Chen, L.C.; Chen, C.T.; Liang, Y.C.; Cheng, C.K.; Lee, W.S. Anti-angigenic action of 5,5-diphenyl-2-thiohydantoin-N10 (DPTH-N10). Cancer Lett. 2008, 271, 294–305. [Google Scholar]
  104. Vacca, A.; Ribatti, D.; Iurlaro, M.; Merchionne, F.; Nico, B.; Ria, R.; Dammacco, F. Docetaxel versus paclitaxel for antiangiogenesis. J.Hematother. Stem Cell Res. 2002, 11, 103–118. [Google Scholar]
  105. Kiosses, W.B.; Hood, J.; Yang, S.; Gerritsen, M.E.; Cheresh, D.A.; Alderson, N.; Schwartz, M.A. A dominant negative p65 PAK peptide inhibits angiogenesis. Circ. Res. 2002, 90, 697–702. [Google Scholar]
  106. Garrison, J.B.; Shaw, Y.J.; Chen, C.S.; Kyprianou, N. Novel quinazoline-based compounds impair prostate tumorigenesis by targeting tumor vascularity. Cancer Res. 2007, 67, 11344–11352. [Google Scholar]
  107. Richardson, M.; Wong, D.; Lacroix, S.; Stanisz, J.; Singh, G. Inhibition by doxycycline of angiogenesis in the chicken chorioallantoic membrane (CAM). Cancer Chemother. Pharmacol. 2005, 56, 1–9. [Google Scholar]
  108. Splawinski, J.; Michna, M.; Palczak, R.; Konturek, S.; Splawinska, B. Angiogenesis, quantitative assessment by the chick chorioallantoic membrane assay. Meth. Find. Explt. Clin. Pharmacol. 1988, 10, 221–226. [Google Scholar]
  109. Lirdprapamongkol, K.; Kramb, J.P.; Chokchaichamnankit, D.; Srisomsap, C.; Surarit, R.; Sila-Asna, M.; Bunyaratvej, A.; Dannhardt, G.; Svasti, J. Juice of eclipta prostrata inhibits cell migration in vitro and exhibits anti-angiogenic activity in vivo. In Vivo 2008, 22, 363–368. [Google Scholar] [PubMed]
  110. Kwak, H.J.; Park, M.J.; Park, C.M.; Moon, S.I.; Yoo, D.H.; Lee, H.C.; Lee, S.H.; Kim, M.S.; Lee, H.W.; Shin, W.S.; Park, I.C.; Rhee, C.H.; Hong, S.I. Emodin inhibits vascular endothelial growth factor-A-induced angiogenesis by blocking receptor-2 (KDR/Flk-1) phosphorylation. Int. J. Cancer 2006, 118, 2711–2720. [Google Scholar]
  111. Pisanti, S.; Borselli, C.; Oliviero, O.; Laezza, C.; Gazzerro, P.; Bifulco, M. Antiangiogenic activity of the endocannabinoid anandamide: Correlation to its tumor-suppressor efficacy. J. Cell Physiol. 2007, 211, 495–503. [Google Scholar]
  112. Mongiat, M.; Sweeney, S.M.; San Antonio, J.D.; Fu, J.; Iozzo, R.V. Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J. Biol. Chem. 2002, 278, 4238–4249. [Google Scholar]
  113. Ling, Y.; Yang, Y.; Lu, N.; You, Q.D.; Wang, S.; Gao, Y.; Chen, Y.; Guo, Q.L. Endostar, a novel recombinant human endostatin, exerts antiangiogenic effect via blocking VEGF-induced tyrosine phosphorylation of KDR/FLK-1 of endothelial cells. Biochem. Biophys. Res. Commun. 2007, 361, 79–84. [Google Scholar] [CrossRef] [PubMed]
  114. Liu, F.; Tan, G.; Li, J.; Dong, X.; Krissansen, G.W.; Sun, X. Gene transfer of endostatin enhances the efficacy of doxorubicin to suppress human hepatocellular carcinomas in mice. Cancer Sci. 2007, 98, 1381–1387. [Google Scholar]
  115. Oikawa, T.; Haegawa, M.; Shimamura, M.; Ashino, H.; Murota, S.; Morita, I. Eponeomycin, a novel antibiotic, is a high powerful angiogenesis inhibitor. Biochem. Biophys. Res. Commun. 1993, 181, 1070–1076. [Google Scholar]
  116. Michaelis, U.R.; Fisslthaler, B.; Barbosa-Sicard, E.; Falck, J.R.; Fleming, I.; Busse, R. Cytochrome P450 epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogenesis. J. Cell Sci. 2005, 118, 5489–5498. [Google Scholar]
  117. Gagliardi, A.R.; Collins, D.C. Inhibition of angiogenesis by antiestrogens. Cancer Res. 1993, 53, 533–535. [Google Scholar]
  118. Forough, R.; Weylie, B.; Collins, C.; Parker, JL.; Zhu, J.; Barhoumi, R.; Watson, D.K. Transcription factor Ets-1 regulates fibroblast growth factor-1-mediated angiogenesis in vivo: Role of Ets-1 in the regulation of the PI3K/AKT/MMP-1 pathway. J. Vasc. Res. 2006, 43, 327–337. [Google Scholar] [CrossRef] [PubMed]
  119. Wernert, N.; Stanjek, A.; Hügel, A.; Giannis, A. Inhibition of angiogenesis on the chicken chorioallantoic membrane by Ets 1 antisense oligodeoxyribonucleotides. Verh. Dtsch. Ges. Pathol. 1999, 83, 212–215. [Google Scholar]
  120. Shyu, K.G.; Lin, S.; Lee, C.C.; Chen, E.; Lin, L.C.; Wang, B.W.; Tsai, S.C. Evodiamine inhibits in vitro angiogenesis: Implication for antitumorgenicity. Life Sci. 2006, 78, 2234–2243. [Google Scholar]
  121. Lin, J.; Yan, X.J.; Chen, H.M. Fascaplysin, a selective CDK4 inhibitor, exhibit anti-angiogenic activity in vitro and in vivo. Cancer Chemoter. Pharmacol. 2007, 59, 439–445. [Google Scholar] [CrossRef]
  122. Ribatti, D.; Nico, B.; Morbidelli, L.; Donnini, S.; Ziche, M.; Vacca, A.; Roncali, L.; Presta, M. Cell-mediated delivery of fibroblast growth factor-2 and vascular endothelial growth factor onto the chick chorioallantoic membrane: Endothelial fenestrations and angiogenesis. J. Vasc. Res. 2001, 38, 389–397. [Google Scholar]
  123. Lindsay, C.K.; Gomez, D.E.; Thorgeirsson, U.P. Effect of flavone acetic acid on endothelial cell proliferation: Evidence for antiangiogenic properties. Anticancer Res. 1996, 16, 425–431. [Google Scholar]
  124. Igarashi, Y.; Yabuta, Y.; Sekine, A.; Fujii, K.; Harada, K.; Oikawa, T.; Sato, M.; Furumai, T.; Oki, T. Directed biosynthesis of fluorinated pseurotin A, synerazol and gliotoxin. J. Antibiot. (Tokyo) 2004, 57, 748–754. [Google Scholar] [PubMed]
  125. Ryu, J.; Lee, C.W.; Hong, K.H.; Shin, J.A.; Lim, S.H.; Park, C.S.; Shim, J.; Nam, K.B.; Choi, K.J.; Kim, Y.H.; Han, K.H. Activation of fractalkine/CX3CR1 by vascular endothelial cells induces angiogenesis through VEGF-A/KDR and reverses hindlimb ischaemia. Cardiovasc. Res. 2008, 78, 333–340. [Google Scholar]
  126. Chung, T.W.; Kim, S.J.; Choi, H.J.; Kim, K.J.; Kim, M.J.; Kim, S.H.; Lee, H.J.; Ko, J.H.; Lee, Y.C.; Suzuki, A.; Kim, C.H. Ganglioside GM3 inhibits VEGF/VEGFR-2-mediated angiogenesis: Direct interaction of GM3 with VEGFR-2. Glycobiology 2009, 19, 229–239. [Google Scholar]
  127. Ahn, E.K.; Jeon, H.J.; Lim, E.J.; Jung, H.J.; Park, E.H. Anti-inflammatory and anti-angiogenic activities of Gastrodia elata Blume. J. Ethnopharmacol. 2007, 110, 476–482. [Google Scholar]
  128. Koo, H.J.; Song, Y.S.; Kim, H.J.; Lee, Y.H.; Hong, S.M.; Kim, S.J.; Kim, B.C.; Jin, C.; Lim, C.J.; Park, E.H. Antiinflammatory effects of genipin, an active principle of gardenia. Eur. J. Pharmacol. 2004, 495, 201–208. [Google Scholar]
  129. Conconi, M.T.; Nico, B.; Guidolin, D.; Baiguera, S.; Spinazzi, R.; Rebuffat, P.; Malendowicz, L.K.; Vacca, A.; Carraro, G.; Parnigotto, P.P.; Nussdorfer, G.G.; Ribatti, D. Ghrelin inhibits FGF-2-mediated angiogenesis in vitro and in vivo. Peptides 2004, 25, 2179–2185. [Google Scholar] [CrossRef] [PubMed]
  130. Chow, L.M.; Chui, C.H.; Tang, J.C.; Lau, F.Y.; Yau, M.Y.; Cheng, G.Y.; Wong, R.S.; Lai, P.B.; Leung, T.W.; Teo, I.T.; Cheung, F.; Guo, D.; Chan, A.S. Anti-angiogenic potential of Gleditsia sinensis fruit extract. Int. J. Mol. Med. 2003, 12, 269–273. [Google Scholar]
  131. Amin, K.; Li, J.; Chao, W.R.; Dewhirst, M.W.; Haroon, Z.A. Dietary glycine inhibits angiogenesis during wound healing and tumor growth. Cancer Biol. Ther. 2003, 2, 173–178. [Google Scholar]
  132. Abe, M.; Jnoue, D.; Matsunaga, K.; Ohizumi, Y.; Ueda, H.; Asano, T.; Murakami, M.; Sato, Y. Goniodomin A, an antifungal polyether macrolide, exhibits antiangiogenic activities via inhibition of actin reorganization in endothelial cells. J. Cell Physiol. 2002, 190, 109–116. [Google Scholar] [CrossRef] [PubMed]
  133. Zhang, C.; Yang, F.; Zhang, X.W.; Wang, S.C.; Li, M.H.; Lin, L.P.; Ding, J. Grateloupia longifolia polysaccharide inhibits angiogenesis by downregulating tissue factor expression in HMEC-1 endothelial cells. Br. J. Pharmacol. 2006, 148, 741–751. [Google Scholar]
  134. Oak, M.H.; El Bedoui, J.; Schini-Kerth, V.B. Antiangiogenic properties of natural polyphenols from red wine and green tea. J. Nutr. Biochem. 2005, 16, 1–8. [Google Scholar]
  135. Lee, J.S.; Park, B.C.; Ko, Y.J.; Choi, M.K.; Choi, H.G.; Yong, C.S.; Lee, J.S.; Kim, J.A. Grifola frondosa (maitake mushroom) water extract inhibits vascular endothelial growth factor-induced angiogenesis through inhibition of reactive oxygen species and extracellular signal-regulated kinase phosphorylation. J. Med. Food 2008, 11, 643–651. [Google Scholar]
  136. Cao, Y.; Chen, C.; Weatherbee, J.A.; Tsang, M.; Folkman, J. GRO-beta, a -C-X-C- chemokine, is an angiogenesis inhibitor that suppresses the growth of Lewis lung carcinoma in mice. J. Exp. Med. 1995, 182, 2069–2077. [Google Scholar] [CrossRef] [PubMed]
  137. Huh, J.I.; Calvo, A.; Stafford, J.; Cheung, M.; Kumar, R.; Philp, D.; Kleinman, H.K.; Green, J.E. Inhibition of VEGF receptors significantly impairs mammary cancer growth in C3(1)/Tag transgenic mice through antiangiogenic and non-antiangiogenic mechanisms. Oncogene 2005, 24, 790–800. [Google Scholar] [CrossRef] [PubMed]
  138. Benelli, U.; Bocci, G.; Danesi, R.; Lepri, A.; Bernardini, N.; Bianchi, F.; Lupetti, M.; Dolfi, A.; Campagni, A.; Agen, C.; Nardi, M.; Del Tacca, M. The heparan sulfate suleparoide inhibits rat corneal angiogenesis and in vitro neovascularization. Exp. Eye. Res. 1998, 67, 133–142. [Google Scholar]
  139. Sasisekharon, R.; Moses, M.A.; Nugent, M.A.; Cooney, C.L.; Langer, R. Heparinase inhibits neovascularization. Proc. Natl. Acad. Sci. USA 1994, 91, 1524–1528. [Google Scholar]
  140. Folkman, J.; Langer, R.; Linhrdt, RC.; Haudenschild, C.; Taylor, S. Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone. Science 1983, 221, 719–725. [Google Scholar] [PubMed]
  141. Crum, R.; Szabo, S.; Folkman, J. A new class of steroid inhibit angiogenesis in the presence of heparin or a heparin fragment. Science 1985, 230, 1375–1378. [Google Scholar]
  142. Casu, B.; Guerrini, M.; Guglieri, S.; Naggi, A.; Perez, M.; Torri, G.; Cassinelli, G.; Ribatti, D.; Carminati, P.; Giannini, G.; Penco, S.; Pisano, C.; Belleri, M.; Rusnati, M.; Presta, M. Undersulfated and glycol-split heparins endowed with antiangiogenic activity. J. Med. Chem. 2004, 47, 838–848. [Google Scholar]
  143. Fazekas, K.; Janovics, A.; Döme, B.; Koska, P.; Albini, A.; Tímár, J. Effect of HGF-like basic hexapeptides on angiogenesis. Microvasc. Res. 2001, 62, 440–444. [Google Scholar]
  144. Oikawa, T.; Hirotani, K.; Shimamura, M.; Ashino-Fuse, H.; Iwaguchi, T. Powerful antiangiogenic activity of herbamycin (named angiostatic antibiotic). J. Antibiot. 1989, 42, 1202–1204. [Google Scholar]
  145. Juarez, J.C.; Guan, X.; Shipulina, N.V.; Plunkett, M.L.; Parry, G.C.; Shaw, D.E.; Zhang, J.C.; Rabbani, S.A.; McCrae, K.R.; Mazar, A.P.; Morgan, W.T.; Doñate, F. Histidine-proline-rich glycoprotein has potent antiangiogenic activity mediated through the histidine-proline-rich domain. Cancer Res. 2002, 62, 5344–5350. [Google Scholar]
  146. Sgadari, C.; Barillari, G.; Toschi, E.; Carlei, D.; Bacigalupo, I.; Baccarini, S.; Palladino, C.; Leone, P.; Bugarini, R.; Malavasi, L.; Cafaro, A.; Falchi, M.; Valdembri, D.; Rezza, G.; Bussolino, F.; Monini, P.; Ensoli, B. HIV protease inhibitors are potent anti-angiogenic molecole and promote regression of Kaposi sarcoma. Nat. Med. 2002, 8, 225–232. [Google Scholar]
  147. Myers, C.; Charboneau, A.; Cheung, I.; Hanks, D.; Boudreau, N. Sustained expression of homeobox D10 inhibits angiogenesis. Am. J. Pathol. 2002, 161, 2099–2109. [Google Scholar] [CrossRef] [PubMed]
  148. Nagai, Y.; Tasaki, H.; Takatsu, H.; Nihei, S.; Yamashita, K.; Toyokawa, T.; Nakashima, Y. Homocystein inhibits angiogenesis in vitro and in vivo. Biochem. Biophys. Res. Commun. 2001, 281, 726–731. [Google Scholar] [CrossRef] [PubMed]
  149. Yoshida, T.; Ishimaru, K.; Sakamoto, H.; Yokota, J.; Hirohashi, S.; Igarashi, K.; Sudo, K.; Terada, M. Angiogenic activity of the recombinant hst-1 protein. Cancer Lett. 1994, 83, 261–268. [Google Scholar]
  150. Ueda, E.; Ozerdem, U.; Chen, Y.H.; Yao, M.; Huang, K.T.; Sun, H.; Martins-Green, M.; Bartolini, P.; Walker, AM. A molecular mimic demonstrates that phosphorylated human prolactin is a potent anti-angiogenic hormone. Endocr. Relat. Cancer 2006, 13, 95–111. [Google Scholar] [CrossRef] [PubMed]
  151. Chavakis, T.; Cines, D.B.; Rhee, J.S.; Liang, O.D.; Schubert, U.; Hammes, H.P.; Higazi, A.A.; Nawroth, P.P.; Preissner, K.T.; Bdeir, K. Regulation of neovascularization by human neutrophil peptides (alpha-defensins): A link between inflammation and angiogenesis. FASEB J. 2004, 18, 1306–1308. [Google Scholar]
  152. Xiao, D.; Tan, W.; Li, M.; Ding, J. Antiangiogenic potential of 10-hydroxycamptothecin. Life Sci. 2001, 69, 1619–1628. [Google Scholar]
  153. Marks, M.G.; Shi, J.; Fry, M.O.; Xiao, Z.; Trzyna, M.; Pokala, V.; Ihnat, M.A.; Li, P.K. Effects of putative hydroxylated thalidomide metabolites on blood vessel density in the chorioallantoic membrane (CAM) assay and on tumor and endothelial cell proliferation. Bio. Pharm. Bull. 2002, 25, 597–604. [Google Scholar]
  154. Martínez-Poveda, B.; Queseda, A.R.; Medina, M.A. Hyperforin, a bio-active compound of St. John's Wort, is a new inhibitor of angiogenesis targeting several key steps of the process. Int. J. Cancer 2005, 117, 775–780. [Google Scholar] [CrossRef] [PubMed]
  155. Roca, C.; Primo, L.; Valdembri, D.; Cividalli, A.; Declerck, P.; Carmeliet, P.; Gabriele, P.; Bussolino, F. Hyperthermia inhibits angiogenesis by a plasminogen activator inhibitor 1-dependent mechanism. Cancer Res. 2003, 63, 1500–1507. [Google Scholar]
  156. Ojo-Amaize, E.A.; Nchekwube, E.J.; Cottam, H.B.; Bai, R.; Verdier-Pinard, P.; Kakkanaiah, V.N.; Varner, J.A.; Leoni, L.; Okogun, J.I.; Adesomoju, A.A.; Oyemade, O.A.; Hamel, E. Hypoestoxide, a natural nonmutagenic diterpenoid with antiangiogenic and antitumor activity: Possible mechanisms of action. Cancer Res. 2002, 62, 4007–4014. [Google Scholar]
  157. Nagasawa, H.; Mikamo, N.; Nakajima, Y.; Matsumoto, H.; Uto, Y.; Hori, H. Antiangiogenic hypoxic cytotoxin TX-402 inhibits hypoxia-inducible factor 1 signaling pathway. Anticancer Res. 2003, 23, 4427–4434. [Google Scholar]
  158. Nagasawa, H.; Yamashita, S.; Mikamo, N.; Shimamura, M.; Oka, S.; Uto, Y.; Hori, H. Design, synthesis and biological activities of antiangiogenic hypoxic cytotoxin, triazine-N-oxide derivatives. Comp. Biochem. Physiol. A. Mol.Integr. Physiol. 2002, 132, 33–40. [Google Scholar] [CrossRef] [PubMed]
  159. Wang, L.L.; Li, J.J.; Zheng, Z.B.; Liu, H.Y.; Du, G.J.; Li, S. Antitumor activities of a novel indolin-2-ketone compound, Z24: More potent inhibition on bFGF-induced angiogenesis and bcl-2 over-expressing cancer cells. Eur. J. Pharmacol. 2004, 502, 1–10. [Google Scholar]
  160. Maragoudakis, M.E.; Sarmonika, M.; Panoutscacopoulou, M. Inhibition of basement membrane biosynthesis prevents angiogenesis. J. Pharmacol. Exp. Ther. 1988, 244, 729–733. [Google Scholar]
  161. Maragoudakis, M.E.; Sarmonika, M.; Panoutscacopoulou, M. Antiangiogenic action of heparin plus cortisone is associated with decreased collagenous protein synthesis in the CAM system. Pharmacol. Exp. Ther. 1989, 251, 679–682. [Google Scholar]
  162. Maragoudakis, M.E.; Missirlis, E.; Sarmonika, M.; Panoutsacopoulou, M.; Karakiulakis, G. Basement membrane biosynthesis as a target tot umor therapy. J. Pharmacol. Exp. Ther. 1990, 252, 753–757. [Google Scholar]
  163. Hellebrekers, D.M.; Jair, K.W.; Viré, E.; Eguchi, S.; Hoebers, N.T.; Fraga, M.F.; Esteller, M.; Fuks, F.; Baylin, S.B.; van Engeland, M.; Griffioen, A.W. Angiostatic activity of DNA methyltransferase inhibitors. Mol. Cancer Ther. 2006, 5, 467–475. [Google Scholar]
  164. Oh, S.H.; Kim, W.Y.; Kim, J.H.; Younes, M.N.; El-Naggar, A.K.; Myers, J.N.; Kies, M.; Cohen, P.; Khuri, F.; Hong, W.K.; Lee, H.Y. Identification of insulin-like growth factor binding protein-3 as a farnesyl transferase inhibitor SCH66336-induced negative regulator of angiogenesis in head and neck squamous cell carcinoma. Clin. Cancer Res. 2006, 12, 653–661. [Google Scholar]
  165. Kumar, C.C.; Malkowski, M.; Yin, Z.; Tanghetti, E.; Yaremko, B.; Nechuta, T.; Varner, J.; Liu, M.; Smith, E.M.; Neustadt, B.; Presta, M.; Armstrong, L. Inhibition of angiogenesis and tumor growth by SCH221153, a dual alpha(v)beta3 and alpha(v)beta5 integrin receptor antagonist. Cancer Res. 2001, 61, 2232–2238. [Google Scholar]
  166. Airoldi, I.; Di Carlo, E.; Cocco, C.; Taverniti, G.; D'Antuono, T.; Ognio, E.; Watanabe, M.; Ribatti, D.; Pistoia, V. Endogenous IL-12 triggers an antiangiogenic program in melanoma cells. Proc. Natl. Acad. Sci. USA 2007, 104, 3996–4001. [Google Scholar]
  167. Cao, R.; Farnebo, J.; Kurimoto, M.; Cao, Y. Interleukin-18 acts as an angiogenesis and tumor suppressor. FASEB J. 1999, 13, 2195–2202. [Google Scholar]
  168. Castermans, K.; Tabruyn, S.P.; Zeng, R.; van Beijnum, J.R.; Eppolito, C.; Leonard, W.J.; Shrikant, P.A.; Griffioen, A.W. Angiostatic activity of the antitumor cytokine interleukin 21. Blood 2008, 112, 4940–4947. [Google Scholar]
  169. Shimizu, M.; Shimamura, M.; Owaki, T.; Asakawa, M.; Fujita, K.; Kudo, M.; Iwakura, Y.; Takeda, Y.; Luster, A.D.; Mizuguchi, J.; Yoshimoto, T. Antiangiogenic and antitumor activity of IL-27. J. Immunol. 2006, 176, 7317–7324. [Google Scholar]
  170. Karnabatidis, D.; Dimopoulos, J.; Siabilis, D.; Papazafiropoulos, D.; Kalogeropoulou, C.P.; Nikiforidis, G. Quantification of the ionising radiation effect over angiogenesis in the chick embryo chorionallantoic membrane by computerised analysis of angiographic images. Acta Radiologica 2001, 42, 333–338. [Google Scholar]
  171. Kiriakidis, S.; Högemeir, O.; Starcke, S.; Dombrowski, F.; Hahne, J.C.; Pepper, M.; Jha, H.C.; Wernert, N. Novel tempeh (fermented soyabean) isoflavones inhibit in vivo angiogenesis in the chicken chorioallantoic membrane assay. Br. J. Nutr. 2005, 93, 317–323. [Google Scholar]
  172. Benndorf, R.A.; Schwedhelm, E.; Gnann, A.; Taheri, R.; Kom, G.; Didié, M.; Steenpass, A.; Ergün, S.; Böger, R.H. Isoprostanes inhibit vascular endothelial growth factor-induced endothelial cell migration, tube formation, and cardiac vessel sprouting in vitro, as well as, angiogenesis in vivo via activation of the thromboxane A(2) receptor: A potential link between oxidative stress and impaired angogenesis. Circ. Res. 2008, 103, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
  173. Pipìli-Synetos, E.; Sakkoula, E.; Haralabopoulos, G.; Andriopoulou, P.; Peristeris, P.; Maragoudakis, M.E. Evidence that nitric oxide is an endogenous antiangiogenic mediator. R. J. Pharmacol. 1995, 111, 894–902. [Google Scholar]
  174. Emanuel, S.; Gruninger, R.H.; Fuenters-Pesquera, A.; Connolly, P.J.; Seamon, J.A.; Hazel, S.; Tominovich, R.; Hollister, B.; Napier, C.; D'Andrea, M.R.; Reuman, M.; Bignan, G.; Tuman, R.; Johnson, D.; Moffatt, D.; Batchelor, M.; Foley, A.; O'Connell, J.; Allen, R.; Perry, M.; Jolliffe, L.; Middleton, S.A. A vascular endothelial growth factor receptor-2 kinase inhibitor potentiates the activity of the conventional chemotherapeutic agents paclitaxel and doxorubicin in tumor xenograft models. Mol. Pharmacol. 2004, 66, 635–647. [Google Scholar]
  175. Santulli, R.J.; Kinney, W.A.; Ghosh, S.; Decorte, B.L.; Liu, L.; Tuman, R.W.; Zhou, Z.; Huebert, N.; Bursell, S.E.; Clermont, A.C.; Grant, M.B.; Shaw, L.C.; Mousa, S.A.; Galemmo, R.A., Jr.; Johnson, D.L.; Maryanoff, B.E.; Damiano, B.P. Studies with an orally bioavailable alpha V integrin antagonist in animal models of ocular vasculopathy: Retinal neovascularization in mice and retinal vascular permeability in diabetic rats. J. Pharmacol. Exp. Ther. 2008, 324, 894–901. [Google Scholar]
  176. Shimamura, M.; Nagasawa, H.; Ashino, H.; Yamamoto, Y.; Hazato, T.; Uto, Y.; Hori, H.; Inayama, S. A novel hypoxia-dependent 2-nitroimidazole KIN-841 inhibits tumour-specific angiogenesis by blocking production of angiogenic factors. Br. J. Cancer 2003, 88, 307–313. [Google Scholar]
  177. Colman, R.W. Regulation of angiogenesis by the kallikrein-kinin system. Curr. Pharm. Des. 2006, 12, 2599–2607. [Google Scholar]
  178. Zhang, J.C.; Qi, X.; Juraz, J.; Plunkett, M.; Donaté, F.; Sakthivel, R.; Mazar, A.P.; McCrae, K.R. Inhibition of angiogenesis by two-chain high molecular weight kininogen (HKa) and kininogen-derived polyptides. Can. J. Physiol. Pharmacol. 2002, 80, 85–90. [Google Scholar]
  179. Colman, R.W.; Iameson, B.A.; Lin, Y.; Johnson, D.; Mousa, S.A. Domain 5 of high molecular weight kininogen (kininostatin) down-regulates endothelial cell proliferation and migration and inhibits angiogenesis. Blood 2000, 95, 543–550. [Google Scholar]
  180. Yi, Z.F.; Cho, S.G.; Zhao, H.; Wu, Y.Y.; Luo, J.; Li, D.; Yi, T.; Xu, X.; Wu, Z.; Liu, M. A novel peptide from human apolipoprotein(a) inhibits angiogenesis and tumor growth by targeting c-Src phosphorylation in VEGF-induced human umbilical endothelial cells. Int. J. Cancer 2009, 124, 843–852. [Google Scholar]
  181. Oikawa, T.; Sasaki, T.; Nakamura, M.; Shimamura, M.; Tanahashi, N.; Omura, S.; Tanaka, K. The proteasoma is involved in angiogenesis. Biochem. Biophys. Res. Commun. 1998, 246, 243–248. [Google Scholar]
  182. Sakamoto, N.; Iwahana, M.; Tanaka, N.G.; Osada, Y. (1991) Inhibition of angiogenesis and tumor growth by a synthetic laminin peptide, CDPGYIGSR-NH2. Cancer Res. 1991, 51, 903–906. [Google Scholar] [PubMed]
  183. Hoffman, R.; Paper, D.H.; Donaldson, J.; Vogl, H. Inhibition of angiogenesis and murine tumour growth by laminarin sulphate. Brit. J. Cancer 1996, 73, 1183–1186. [Google Scholar]
  184. Dias, P.F.; Siqueira, J.M., Jr.; Vendruscolo, L.F.; de Jesus Neiva, T.; Gagliardi, A.R.; Maraschin, M.; Ribeiro-do-Valle, R.M. Antiangiogenic and antitumoral properties of a polysaccharide isolated from the seaweed Sargassum stenophyllum. Cancer Chemother. Pharmacol. 2005, 56, 436–446. [Google Scholar]
  185. Pilorget, A.; Conesa, M.; Sarray, S.; Michaud-Levesque, J.; Daoud, S.; Kim, K.S.; Demeule, M.; Marvaldi, J.; El Ayeb, M.; Marrakchi, N.; Béliveau, R.; Luis, J. Lebectin, a Macrovipera lebetina venom-derived C-type lectin, inhibits angiogenesis both in vitro and in vivo. J. Cell. Physiol. 2007, 211, 307–315. [Google Scholar] [CrossRef] [PubMed]
  186. Olfa, K.Z.; José, L.; Salma, D.; Amine, B.; Najet, S.A.; Nicolas, A.; Maxime, L.; Raoudha, Z.; Kamel, M.; Jacques, M.; Jean-Marc, S.; Mohamed el, A.; Naziha, M. Lebestatin, a disintegrin from Macrovipera venom, inhibits integrin-mediated cell adhesion, migration and angiogenesis. Lab. Invest. 2005, 85, 1507–1516. [Google Scholar] [PubMed]
  187. Niu, Y.C.; Liu, J.C.; Zhao, X.M.; Wu, X.X. A low molecular weight polysaccharide isolated from Agaricus blazei suppresses tumor growth and angiogenesis in vivo. Oncol. Rep. 2009, 21, 145–152. [Google Scholar] [PubMed]
  188. Yoo, H.J.; Kang, H.J.; Song, Y.S.; Park, E.H.; Lim, C.J. Anti-angiogenic, antinociceptive and anti-inflammatory activities of Lonicera japonica extract. J. Pharm. Pharmacol. 2008, 60, 779–786. [Google Scholar]
  189. Hahnenberger, R.; Jakobson, A.M.; Ansari, A.; Wehler, T.; Svahn, C.M.; Lindahl, U. Low-sulphated oligosaccharides derived from heparan sulphate inhibit normal angiogenesis. Glycobiology 1993, 3, 567–573. [Google Scholar]
  190. Ye, J.; Wang, C.; Chen, X.; Guo, S.; Sun, M. Marine lysozyme from a marine bacterium that inhibits angiogenesis and tumor growth. Appl. Microbiol. Biotechnol. 2008, 77, 1261–1267. [Google Scholar]
  191. Melkonian, G.; Cheung, L.; Marr, R.; Tong, C.; Talbot, P. Mainstream and sidestream cigarette smoke inhibit growth and angiogenesis in the day 5 chick chorioallantoic membrane. Toxicol. Sci. 2002, 68, 237–248. [Google Scholar]
  192. Ma, J.; Xin, X.; Meng, L.; Tong, L.; Lin, L.; Geng, M.; Ding, J. The marine-derived oligosaccaride sul fate (MdOS), anovel multiple tyrosine kinase inhibitor, combats tumor angiogenesis both in vitro and in vivo. PloS ONE 2008, 3, e3774. [Google Scholar] [PubMed]
  193. Liu, N.; Lapcevich, R.K.; Underhill, C.B.; Han, Z.; Gao, F.; Swartz, G.; Plum, S.M.; Zhang, L.; Green, S.J. Metastatin: A hyaluronan-binding complex from cartilage that inhibits tumor growth. Cancer Res. 2001, 61, 1022–1028. [Google Scholar]
  194. D’Amato, R.J.; Lin, C.M.; Flynn, E.; Folkman, J.; Hamel, E. 2-Methoxyestradiol, an endogenous mammalian metabolita, inhibits tubulin polymerization by interacting at the colchicine site. Proc. Natl. Acad. Sci. USA 1994, 91, 3964–3968. [Google Scholar] [CrossRef]
  195. Zacharakis, N.; Tone, P.; Flordellis, C.S.; Maragoudakis, M.E.; Tsopanoglou, N.E. Methylene blue inhibits angiogenesis in chick chorioallantoic membrane through a nitric oxide-independent mechanism. J. Cell. Mol. Med. 2006, 10, 493–548. [Google Scholar]
  196. Chui, C.H.; Gambari, R.; Lau, F.Y.; Hau, DK.; Wong, R.S.; Cheng, G.Y.; Kok, S.H.; Higa, T.; Ke, B.; Chan, A.S.; Fong, D.W.; Tang, J.C. Antiangiogenic activity of a concentrated effective microorganism fermentation extract. Int. J. Mol. Med. 2006, 18, 975–979. [Google Scholar]
  197. Van der Horst, E.H.; Leupold, J.H.; Schubbert, R.; Ullrich, A.; Allgayer, H. TaqMan-based quantification of invasive cells in the chick embryo metastasis assay. Biotechniques 2004, 37, 940–945. [Google Scholar]
  198. Iigo, M.; Shimamura, M.; Sagawa, K.; Tsuda, H. Characteristics of the inhibitory effect of mitoxantrone and pirarubicin on lung metastases of colon carcinoma 26. Jpn. J. Cancer Res. 1995, 86, 867–872. [Google Scholar]
  199. Roomi, M.W.; Roomi, N.; Ivanov, V.; Kalinovsky, T.; Niedzwiecki, A.; Rath, M. Inhibitory effect of a mixuture containing ascorbic acid, lysine, proline and green tea extract on critical parameters in angiogenesis. Oncol. Rep. 2005, 14, 807–815. [Google Scholar] [PubMed]
  200. Colman, R.W. Inhibition of angiogenesis by a monoclonal antibody to kininogen as well as by kininostatin which block proangiogenic high molecular weight kininogen. Int. Immunopharmacol. 2002, 2, 1887–1894. [Google Scholar]
  201. Roskelly, C.D.; Williams, D.E.; McHardy, L.M.; Leong, KG.; Troussard, A.; Karsan, A.; Andersen, R.J.; Dedhar, S.; Roberge, M. Inhibition of tumor cell invasion and angiogenesis by motuporamines. Cancer Res. 2001, 61, 6788–6794. [Google Scholar] [PubMed]
  202. Gangjee, A.; Namjoshi, O.A.; Yu, J.; Ihnat, M.A.; Thorpe, J.E.; Warnke, L.A. (2008) Design, synthesis and biological evaluation of substituted pyrrol[2,3-d]pyrimidines as multiple receptor tyrosine kinase inhibitors and antiangiogenic agents. Bioorg. Med. Chem. 2008, 16, 5514–5528. [Google Scholar] [CrossRef] [PubMed]
  203. Kumar, A.; D’Souza, S.S.; Tickoo, S.; Salimath, B.P.; Singh, H.B. Antiangiogenic and proapoptotic activities of allyl isothiocyanate inhibit ascites tumor growth in vivo. Integr. Cancer Ther. 2009, 8, 75–87. [Google Scholar] [CrossRef] [PubMed]
  204. Sihn, G.; Walter, T.; Klein, J.C.; Queguiner, I.; Iwao, H.; Nicolau, C.; Lehn, J.M.; Corvol, P.; Gasc, J.M. Anti-angiogenic properties of myo-inositol trispyrophosphate in ovo and growth reduction of implanted glioma. FEBS Lett. 2007, 581, 962–966. [Google Scholar]
  205. Hu, G.F. Neomycin inhibits angiogenin-induced angiogenesis. Proc. Natl. Acad. Sci. USA 1998, 95, 9791–9795. [Google Scholar]
  206. Ribatti, D.; Nico, B.; Mangieri, D.; Maruotti, N.; Longo, V.; Vacca, A.; Cantatore, F.P. Neridronate inhibits angiogenesis in vitro and in vivo. Clin. Rheumatol. 2007, 26, 1094–1098. [Google Scholar] [CrossRef] [PubMed]
  207. Nakano, N.; Higashiyama, S.; Ohmoto, H.; Ishiguro, H.; Taniguchi, N.; Wada, Y. The N-terminal region of NTAK/neuregulin-2 isoforms has an inhibitory activity on angiogenesis. J. Biol. Chem. 2004, 279, 11465–11470. [Google Scholar]
  208. Pal, S.; Wu, J.; Murray, J.K.; Gellman, S.H.; Wozniak, M.A.; Keely, P.J.; Boyer, M.E.; Gomez, T.M.; Hasso, S.M.; Fallon, J.F.; Bresnick, E.H. An antiangiogenic neurokinin-B/thromboxane A2 regulatory axis. J. Cell Biol. 2006, 174, 1047–1058. [Google Scholar]
  209. Pastorino, F.; Brignole, C.; Di Paolo, D.; Nico, B.; Pezzolo, A.; Marimpietri, D.; Pagnan, G.; Piccardi, F.; Cilli, M.; Longhi, R.; Ribatti, D.; Corti, A.; Allen, T.M.; Ponzoni, M. Targeting liposomal chemotherapy via both tumor cell-specific and tumor-vasculature-specific ligands potentiates therapeutic efficacy. Cancer Res. 2006, 66, 10073–10082. [Google Scholar]
  210. Powell, J.A.; Mohamed, S.N.; Kerr, J.S.; Mousa, S.A. Antiangiogenesis efficacy of nitric oxide donors. J. Cell. Biochem. 2000, 80, 104–114. [Google Scholar]
  211. Chen, N.T.; Corey, E.J.; Folkman, J. Potentation of angiostatic steroids by a synthetic inhibitor of arylsulfatase. Lab. Invest. 1988, 59, 493–499. [Google Scholar]
  212. Dings, R.P.; Chen, X.; Hellebrekers, D.M.; van Eijk, L.I.; Zhang, Y.; Hoye, T.R.; Griffioen, A.W.; Mayo, K.H. Design of nonpeptidic topomimetics of antiangiogenic proteins with antitumor activities. J. Natl. Cancer Inst. 2006, 98, 932–936. [Google Scholar]
  213. Leong, K.G.; Hu, X.; Li, L.; Noseda, M.; Larrivée, B.; Hull, C.; Hood, L.; Wong, F.; Karsan, A. Activated Notch4 inhibits angiogenesis: Role of beta 1-integrin activation. Mol. Cell. Biol. 2002, 22, 2830–2841. [Google Scholar]
  214. Destouches, D.; El Khoury, D.; Hamma-Kourbali, Y.; Krust, B.; Albanese, P.; Katsoris, P.; Guichard, G.; Briand, J.P.; Courty, J.; Hovanessian, A.G. Suppression of tumor growth and angiogenesis by a specific antagonist of the cell-surface expressed nucleolin. PLoS ONE 2008, 3, e2518. [Google Scholar]
  215. Marcinkiewicz, C.; Weinreb, P.H.; Calvete, J.J.; Kisiel, D.G.; Mousa, S.A.; Tuszynski, G.P.; Lobb, R.R. Obtustatin: A potent selective inhibitor of alpha1beta1 integrin in vitro and angiogenesis in vivo. Cancer Res. 2003, 63, 2020–2023. [Google Scholar] [PubMed]
  216. Thippeswamy, G.; Sheela, M.L.; Salimath, B.P. Octacosanol isolated from Tinospora cordifolia downregulates VEGF gene expression by inhibiting nuclear translocation of NF-<kappa>B and its DNA binding activity. Eur. J. Pharmacol. 2008, 588, 141–150. [Google Scholar]
  217. Shahan, T.; Grant, D.; Tootell, M.; Ziaie, Z.; Ohno, N.; Mousa, S.; Mohamad, S.; Delisser, H.; Kefalides, N. Oncothanin, a peptide from the alpha3 chain of type IV collagen, modifies endothelial cell function and inhibits angiogenesis. Connect. Tissue Res. 2004, 45, 151–163. [Google Scholar] [CrossRef] [PubMed]
  218. Liekens, S.; Bronckaers, A.; Hernández, A.I.; Priego, E.M.; Casanova, E.; Camarasa, M.J.; Pérez-Pérez, M.J.; Balzarini, J. 5’-O-tritylated nucleoside derivatives: Inhibition of thymidine phosphorylase and angiogenesis. Mol. Pharmacol. 2006, 70, 501–509. [Google Scholar]
  219. Dai, X.; Cui, S.G.; Wang, T.; Liu, Q.; Song, H.J.; Wang, R. Endogenous opioid peptides, endomorphin-1 and deltorphin I, stimulate angiogenesis in the CAM assay. Eur. J. Pharmacol. 2008, 579, 269–275. [Google Scholar] [CrossRef] [PubMed]
  220. Lee, H.J.; Lee, E.O.; Rhee, Y.H.; Ahn, KS.; Li, G.X.; Jiang, C.; Lü, J.; Kim, S.H. An oriental herbal cocktail, ka-mi-kae-kyuk-tang, exerts anti-cancer activities by targeting angiogenesis, apoptosis and metastasis. Carcinogenesis 2006, 27, 2455–2463. [Google Scholar] [CrossRef] [PubMed]
  221. Qian, X.P.; Liu, BR.; Li, M.; Hu, J.; Hu, W.J.; Zou, Z.Y.; Wang, L.F.; Yu, L.X. Inhibitory effect of oxaliplatin in combination with hyperthermia on angiogenesis. Zhonghua Zhong Liu Za Zhi 2007, 29, 826–829. [Google Scholar] [PubMed]
  222. Stefansson, S.; Petitclere, E.; Wong, M.K.; McMahon, G.A.; Brooks, P.C.; Lawrence, D.A. Inhibition of angiogenesis in vivo by plasminogen activator inhibitor-1. J. Biol. Chem. 2001, 276, 8135–8141. [Google Scholar] [PubMed]
  223. Tian, F.; Zhang, X.; Tong, Y.; Yi, Y.; Zhang, S.; Li, L.; Sun, P.; Lin, L.; Ding, J. PE, a new sulfated saponin from sea cucumber, exhibits anti-angiogenic and anti-tumor activities in vitro and in vivo. Cancer Biol. Ther. 2005, 4, 874–882. [Google Scholar] [CrossRef] [PubMed]
  224. Mu, P.; Gao, X.; Jia, ZJ.; Zheng, R.L. Natural antioxidant pedicularioside G inhibits angiogenesis and tumourigenesis in vitro and in vivo. Basic. Clin. Pharmacol. Toxicol. 2008, 102, 30–34. [Google Scholar] [PubMed]
  225. Huh, J.E.; Lee, E.O.; Kim, M.S.; Kang, K.S.; Kim, C.H.; Cha, B.C.; Surh, Y.J.; Kim, S.H. Penta-O-galloyl-beta-D-glucose suppresses tumor growth via inhibition of angiogenesis and stimulation of apoptosis: Roles of cyclooxygenase-2 and mitogen-activated protein kinase pathways. Carcinogenesis 2005, 26, 1436–1445. [Google Scholar]
  226. Rusnati, M.; Urbinati, C.; Caputo, A.; Possati, L.; Lortat-Jacob, H.; Giacca, M; Ribatti, D; Presta, M. Pentosan polysulfate as an inhibitor of extracellular HIV-1 Tat. J. Biol. Chem. 2001, 276, 22420–22425. [Google Scholar] [PubMed]
  227. Rusnati, M.; Camozzi, M.; Moroni, E.; Bottazzi, B.; Peri, G.; Indraccolo, S.; Amadori, A.; Mantovani, A.; Presta, M. Selective recognition of fibroblast growth factor-2 by the long pentraxin PTX3 inhibits angiogenesis. Blood 2004, 104, 92–99. [Google Scholar]
  228. Don, A.S.; Kisker, O.; Dilda, P.; Donoghue, N.; Zhao, X.; Decollogne, S.; Creighton, B.; Flynn, E.; Folkman, J.; Hogg, P.J. A peptide trivalent arsenical inhibits tumor angiogenesis by perturbing mitochondrial function in angiogenic endothelial cells. Cancer Cell 2003, 3, 497–509. [Google Scholar]
  229. Loutrari, H.; Hatziapostolou, M.; Skouridou, V.; Papadimitriou, E.; Roussos, C.; Kolisis, F.N.; Papapetropoulos, A. Perillyl alcohol is an angiogenesis inhibitor. J. Pharmacol. Exp. Ther. 2004, 311, 568–575. [Google Scholar]
  230. Aljada, A.; O’Connor, L.; Fu, Y.Y.; Mousa, S.A. PPAR gamma ligands, rosiglitazone and pioglitazone, inhibit bFGF- and VEGF-mediated angiogenesis. Angiogenesis 2008, 11, 361–367. [Google Scholar] [CrossRef] [PubMed]
  231. Brooks, P.C.; Silletti, S.; von Schalscha, T.; Friedlander, M.; Cheresh, D.A. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 1998, 92, 391–400. [Google Scholar]
  232. Xiao, D.; Singh, S.V. Phenethyl isothiocyanate inhibits angiogenesis in vitro and ex vivo. Cancer Res. 2007, 67, 2239–2246. [Google Scholar] [CrossRef] [PubMed]
  233. Lim, E.J.; Kang, H.J.; Jung, H.J.; Park, E.H. Anti-angiogenic, anti-nociceptive activity of 4-hydroxybenzyl alcohol. J. Pharm. Pharmacol. 2007, 59, 1235–1240. [Google Scholar]
  234. Schumacher, J.J.; Upadhyaya, P.; Ramaktishnan, S. Inhibition of vascular endothelial cells by 1,4-phenylenebis (methylene)selenocyanate--a novel chemopreventive organoselenium compound. Anticancer Res. 2001, 21, 1945–1951. [Google Scholar]
  235. Tong, Y.; Zhang, X.; Tian, F.; Yi, Y.; Xu, Q.; Li, L.; Tong, L.; Lin, L.; Ding, J. Philinopside A, a novel marine-derived compound possessing dual anti-angiogenic and anti-tumor effects. Int. J. Cancer 2005, 114, 843–853. [Google Scholar]
  236. Tsopanoglou, N.E.; Pipili-Synetos, E.; Maragoudakis, M.E. Thrombin promotes angiogenesis by a mechanism independent of fibrin formation. Am. J. Physiol. 1993, 264, C1302–C1307. [Google Scholar]
  237. Gottfried, V.; Lindenboum, E.S.; Kimel, S. The chick chorionallantoic membrane (CAM) as an in vivo model for photodynamic therapy. J. Photochem. Photobiol. B. 1992, 12, 204–207. [Google Scholar] [CrossRef] [PubMed]
  238. Yi, E.Y.; Jeong, E.J.; Kang, D.W.; Joo, J.H.; Kwon, H.S.; Lee, S.H.; Park, S.K.; Chung, S.G.; Cho, E.H.; Kim, Y.J. Anti-angiogenic and anti-tumor apoptotic activities of a topoisomerase II inhibiting agent SJ-8026. Int. J. Oncol. 2005, 26, 1613–1620. [Google Scholar]
  239. Kumar, C.S.; Chandru, H.; Sharada, A.C.; Thimmegowda, N.R.; Prasad, S.B.; Kumar, M.K.; Rangappa, K.S. Synthesis and evaluation of 1-benzhydryl-sulfonyl-piperazine derivatives as inhibitors of tumor angiogenesis of mouse ehrlich ascites tumor in vivo. Med. Chem. 2008, 4, 466–472. [Google Scholar] [CrossRef] [PubMed]
  240. Shapiro, R.; Vallee, B.L. Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activities of angiogenin. Proc. Natl. Acad. Sci. USA 1987, 84, 2238–2241. [Google Scholar]
  241. Jeon, J.W.; Song, H.S.; Moon, E.J.; Park, S.Y.; Son, M.J.; Jung, S.Y.; Kim, J.T.; Nam, D.H.; Choi-Miura, N.H.; Kim, K.W.; Kim, Y.J. Anti-angiogenic action of plasma hyaluronan binding protein in human umbilical vein endothelial cells. Int. J. Oncol. 2006, 29, 209–215. [Google Scholar]
  242. Li, J.; Dong, X.; Xu, Z.; Jiang, X.; Jiang, H.; Krissansen, G.W.; Sun, X. Endostatin gene therapy enhances the efficacy of paclitaxel to suppress breast cancers and metastases in mice. J. Biomed. Sci. 2008, 15, 99–109. [Google Scholar]
  243. Morioka, H.; Morii, T.; Vogel, T.; Hornicek, F.J.; Weissbach, L. Interaction of plasminogen-related protein B with endothelial and smooth muscle cells in vitro. Exp. Cell Res. 2003, 287, 166–177. [Google Scholar] [CrossRef] [PubMed]
  244. Maione, T.E.; Gray, G.S.; Petro, J.; Hunt, A.J.; Donner, A.L.; Bauer, S.I.; Carson, H.F.; Sharpe, R.J. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 1990, 247, 77–79. [Google Scholar]
  245. Li, X.; Jiang, L.; Wang, Y.; Xiao, Y.; Huang, Y.; Yao, Q.; Yang, Y.; Wu, X. Inhibition of angiogenesis by a novel small peptide consisting of the active fragments of platet factor-4 and vasostatin. Cancer Lett. 2007, 256, 29–32. [Google Scholar]
  246. Clapp, C.; Martial, J.A.; Guzman, R.C.; Rentier-Delure, F.; Weiner, R.I. The 16-kilodaldon N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology 1993, 133, 1292–1299. [Google Scholar]
  247. Pyriochou, A.; Olah, G.; Deitch, E.A.; Szabó, C.; Papapetropoulos, A. Inhibition of angigenesis by the poly(ADP-ribose) polymerase inhibior PJ-34. Int. J. Mol. Med. 2008, 22, 113–118. [Google Scholar]
  248. Pacini, S.; Gulisano, M.; Vannucchi, S.; Ruggiero, M. Poly-L-lysine/heparin stimulates angiogenesis in chick embryo chorioallantoic membrane. Biochem. Biophys. Res. Commun. 2002, 290, 820–823. [Google Scholar]
  249. Toi, M.; Bando, H.; Ramaschandan, C.; Melnick, S.J.; Imai, A.; Fife, R.S.; Carr, R.E.; Oikawa, T.; Lansky, E.P. Preliminary studies on the anti-angiogenic potential of pomegranate fractions in vitro and in vivo. Angiogenesis 2003, 6, 121–128. [Google Scholar] [CrossRef] [PubMed]
  250. Pepper, M.S.; Hazel, S.J.; Hümpel, M.; Schleuning, W.D. 8-prenylnaringenin, a novel phytoestrogen, inhibits angiogenesis in vitro and in vivo. J. Cell Physiol. 2004, 199, 98–107. [Google Scholar] [CrossRef] [PubMed]
  251. Ingber, D.; Folkman, J. Inhibition of angiogenesis through modulation of collagen metabolism. Lab. Invest. 1988, 59, 44–51. [Google Scholar]
  252. Taylor, S.; Folkman, J. Protamine is an inhibitor of angiogenesis. Nature 1982, 297, 307–312. [Google Scholar]
  253. Zania, P.; Kritikou, S.; Flordellis, C.S.; Maragoudakis, M.E.; Tsopanoglou, N.E. Blockade of angiogenesis by small molecule antagonists to protease-activated receptor-1: Association with endothelial cell growth suppression and induction of apoptosis. J. Pharmacol. Exp. Ther. 2006, 318, 246–254. [Google Scholar]
  254. Rhim, T.Y.; Park, C.S.; Kim, E.; Kim, S.S. Human prothrombin fragment 1 and 2 inhibit bFGF-induced BCE cell growth. Biochem. Biophys. Res. Commun. 1998, 252, 513–516. [Google Scholar]
  255. Gangjee, A.; Zeng, Y.; Ihnat, M.; Warnke, LA.; Green, D.W.; Kisliuk, R.L.; Lin, F.T. Novel 5-substituted, 2,4-diaminofuro[2,3-d]pyrimidines as multireceptor tyrosinen kinase and dihydrofolate reductase inhibitors with antiangiogenic and antitumor activity. Bioorg. Med. Chem. 2005, 13, 5475–5491. [Google Scholar] [CrossRef] [PubMed]
  256. Presta, M.; Rusnati, M.; Belleri, M.; Morbidelli, L.; Ziche, M.; Ribatti, D. Purine analogue 6-methylmercaptopurine riboside inhibits early and late phase of the angiogenic process. Cancer Res. 1999, 59, 2417–2424. [Google Scholar]
  257. Liekens, S.; Hernandez, A.I.; Ribatti, D.; De Clercq, E.; Camarasa, M.J.; Pérez-Pérez, M.J.; Balzarini, J. The nucleoside derivative 5’-O-trytyl-inosine (KIN59) suppresses thymidine phosphorylase-triggered angiogenesis via a noncompetitive mechanism of action. J. Biol. Chem. 2004, 279, 29598–29605. [Google Scholar]
  258. Jung, M.H.; Lee, S.H.; Ahn, E.M.; Lee, Y.M. Decursin and decursinol angelate inhibit VEGF-induced angiogenesis via suppression of the VEGFR-2 signaling pathway. Carcinogenesis 2009, 30, 655–661. [Google Scholar]
  259. Melkonian, G.; Eckelhoefer, H.; Wu, M.; Wang, Y.; Tong, C.; Riveles, K.; Talbot, P. Growth and angiogenesis are inhibited in vivo in developing tissues by pyrazine and its derivatives. Toxicol. Sci. 2003, 75, 393–401. [Google Scholar] [CrossRef] [PubMed]
  260. Matsumoto, T.; Turesson, I.; Book, M.; Gerwins, P.; Claesson-Welsh, L. p38 MAP kinase negatively regulates endothelial cell survival, proliferation, and differentiation in FGF-2-stimulated angiogenesis. J. Cell. Biol. 2002, 156, 149–160. [Google Scholar] [CrossRef] [PubMed]
  261. Tan, W.F.; Lin, L.P.; Li, Mh.; Zhang, Y.X.; Tong, Y.G.; Xiao, D.; Ding, J. Quercetin, a dietary-derived flavonoid, possesses antiangiogenic potential. Eur. J. Pharmacol. 2003, 459, 255–262. [Google Scholar] [CrossRef] [PubMed]
  262. Isaacs, J.T.; Pili, R.; Qian, D.Z.; Dalrymple, S.L.; Garrison, J.B.; Kyprianou, N.; Björk, A.; Olsson, A.; Leanderson, T. Identification of ABR-215050 as lead second generation quinoline-3-carboxamide anti-angiogenic agent for the treatment of prostate cancer. Prostate 2006, 66, 1768–1778. [Google Scholar]
  263. Oikawa, T.; Ito, H.; Ashino, H.; Toi, M.; Tominaga, T.; Morita, I.; Murota, S. Radicilor, a microbial cell differentiation modulator, inhibits in vivo angiogenesis. Eur. J. Pharmacol. 1993, 241, 221–227. [Google Scholar] [CrossRef] [PubMed]
  264. Urbinati, C.; Mitola, S.; Tanghetti, E.; Kumar, C.; Waltenberger, J.; Ribatti, D.; Presta, M.; Rusnati, M. Integrin alphavbeta3 as a target for blocking HIV-1 Tat-induced cell activation in vitro and angiogenesis in vivo. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2315–2320. [Google Scholar] [CrossRef] [PubMed]
  265. Youn, M.R.; Park, M.H.; Choi, C.K.; Ahn, B.C.; Kim, H.Y.; Kang, S.S.; Hong, Y.K.; Joe, Y.A.; Kim, J.S.; You, W.K.; Lee, H.S.; Chung, S.I.; Chang, S.I. Direct binding of recombinant plasminogen kringle 1-3 to angiogenin inhibits angiogenin-induced angiogenesis in the chick embryo CAM. Biochem. Biophys. Res. Commun. 2006, 343, 917–923. [Google Scholar]
  266. Kim, T.H.; Kim, E.; Yoon, D.; Kim, J.; Rhim, T.Y.; Kim, S.S. Recombinant human prothrombin kringles have potent anti-angiogenic activities and inhibit Lewis lung carcinoma tumor growth and metastases. Angiogenesis 2002, 5, 191–201. [Google Scholar]
  267. Kim, H.K.; Lee, S.Y.; Oh, H.K.; Kang, B.H.; Ku, H.J.; Lee, Y.; Shin, J.Y.; Hong, Y.K.; Joe, Y.A. Inhibition of endothelial cell proliferation by the recombinant kringle domain of tissue-type plasminogen activator. Biochem. Biophys. Res. Commun. 2003, 304, 740–746. [Google Scholar]
  268. Kim, KS.; Hong, Y.K.; Joe, Y.A.; Lee, Y.; Shin, J.Y.; Park, H.E.; Lee, I.H.; Lee, S.Y.; Kang, D.K.; Chang, S.I.; Chung, S.I. Anti-angiogenic activity of the recombinant kringle domain of urokinase and its specific entry into endothelial cells. J. Biol. Chem. 2003, 278, 11449–11456. [Google Scholar]
  269. Jia, X.; Bian, L. Two-step chromatographic method for the separation and purification of recombinant angiogenesis inhibitor Kringle 5. SE. Pu. 2007, 25, 344–347. [Google Scholar]
  270. Oikawa, T.; Hirotani, K.; Nakamura, O.; Shudo, K.; Hiragun, A.; Iwaguchi, T. A highly potent antiangiogenic activity of retinoids. Cancer Lett. 1989, 48, 157–162. [Google Scholar]
  271. Yeh, C.H.; Peng, H.C.; Yang, R.S.; Huang, T.F. Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective alpha(v)beta(3) blockade of endothelial cells. Mol. Pharmacol. 2001, 59, 1333–1342. [Google Scholar]
  272. Michaelis, M.; Michaelis, R.; Suhan, T.; Schmidt, H.; Mohamed, A.; Doerr, H.W.; Cinatl, J., Jr. Ribavirin inhibits angiogenesis by tetrahydrobiopterin depletion. FASEB J. 2007, 21, 81–87. [Google Scholar]
  273. Chatterjee, J.; Maiti, T.K.; Dasgupta, S. Isolation and partial characterization of ribonuclease inhibitor from goat liver. Protein Pept. Lett. 2006, 13, 779–783. [Google Scholar]
  274. Panigrahy, D.; Singer, S.; Shen, L.Q.; Butterfield, C.E.; Freedman, D.A.; Chen, E.J.; Moses, M.A.; Kilroy, S.; Duensing, S.; Fletcher, C.; Fletcher, J.A.; Hlatky, L.; Hahnfeldt, P.; Folkman, J.; Kaipainen, A. PPARgamma ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J. Clin. Invest. 2002, 110, 923–932. [Google Scholar]
  275. Vacca, A.; Bruno, M.; Boccarelli, A.; Coluccia, M.; Ribatti, D.; Bergamo, A.; Garbisa, S.; Sartor, L.; Sava, G. Inhibition of endothelial cell functions and of angiogenesis by the metastasis inhibitor NAMI-A. Br. J. Cancer 2002, 86, 993–998. [Google Scholar]
  276. Zhao, J.; Miao, J.; Zhao, B.; Zhang, S.; Yin, D. Safrole oxide inhibits angiogenesis by inducing apoptosis. FEBS Lett. 2005, 43, 69–74. [Google Scholar]
  277. Kang, I.C.; Lee, Y.D.; Kim, D.S. A novel disintegrin salmosin inhibits tumor angiogenesis. Cancer Res. 1999, 59, 3754–3760. [Google Scholar]
  278. Komi, Y.; Ohno, O.; Suzuki, Y.; Shimamura, M.; Shimokado, K.; Umezawa, K.; Kojima, S. Inhibition of tumor angiogenesis by targeting endothelial surface ATP synthase with sangivamycin. Jpn. J. Clin. Oncol. 2007, 37, 867–873. [Google Scholar]
  279. Eun, J.P.; Koh, G.Y. Suppression of angiogenesis by the plant alkaloid, sanguinarine. Biochem. Biophys. Res. Commun. 2004, 317, 618–624. [Google Scholar]
  280. Yoo, H.J.; Kang, H.J.; Jung, H.J.; Kim, K.; Lim, C.J.; Park, E.H. Anti-inflammatory, anti- antinociceptive and anti-inflammatory activities of Saururus chinensis extract. J. Ethnopharmacol. 2008, 120, 282–286. [Google Scholar]
  281. Jung, HJ.; Kang, HJ.; Song, YS.; Park, E.H.; Kim, Y.M.; Lim, C.J. Anti-inflammatory , anti-angiogenic and anti-nociceptive activities of Sedum sarmentosum extract. J. Ethnopharmacol. 2008, 116, 138–143. [Google Scholar] [CrossRef] [PubMed]
  282. Richardson, M.; Liu, L.; Dunphy, L.; Wong, D.; Sun, Y.; Viswanathan, K.; Singh, G.; Lucas, A. Viral serpin, Serp-1, inhibits endogenous angiogenesis in the chicken chorioallantoic membrane model. Cardiovasc. Pathol. 2007, 16, 191–202. [Google Scholar] [CrossRef] [PubMed]
  283. Hussain, S.; Slevin, M.; Matou, S.; Ahmed, N.; Choudhary, M.I.; Ranjit, R.; West, D.; Gaffney, J. Anti-angiogenic activity of sesterterpenes; natural product inhibitors of FGF-2 induced angiogenesis. Angiogenesis 2008, 11, 245–256. [Google Scholar] [CrossRef] [PubMed]
  284. Hagedorn, M.; Zilberberg, L.; Wilting, J.; Canron, X.; Carrabba, G.; Giussani, C.; Pluderi, M.; Bello, L.; Bikfalvi, A. Domain swapping in a COOH-terminal fragment of platelet factor 4 generates potent angiogenesis inhibitors. Cancer Res. 2002, 62, 6884–6890. [Google Scholar]
  285. Casu, B.; Guerrini, M.; Naggi, A.; Perez, M.; Torri, G.; Ribatti, D.; Carminati, P.; Giannini, G.; Penco, S.; Pisano, C.; Belleri, M.; Rusnati, M.; Presta, M. Short heparin sequences spaced by glycol-split uronate residues are antagonists of fibroblast growth factor 2 and angiogenesis inhibitors. Biochemistry 2002, 41, 10519–10528. [Google Scholar]
  286. Tournaire, R.; Simon, M.P.; le Noble, F.; Eichmann, A.; England, P.; Pouysségur, J. A short synthetic peptide inhibits signal transduction, migration and angiogenesis mediated by Tie2 receptor. EMBO Rep. 2004, 5, 262–267. [Google Scholar]
  287. Park, H.J.; Kong, D.; Iruela-Arispe, L.; Begley, U.; Tang, D.; Galper, J.B. 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors interfere with angiogenesis by inhibiting the geranylgeranylation of RhoA. Circ. Res. 2002, 91, 143–150. [Google Scholar]
  288. Yi, E.Y.; Jeong, E.J.; Song, H.S.; Lee, M.S.; Kang, D.W.; Joo, J.H.; Kwon, H.S.; Lee, S.H.; Park, S.K.; Chung, S.G.; Cho, E.H.; Kim, Y.J. Anti-angiogenic and anti-tumor apoptotic activities of SJ-8002, a new piperazine derivative. Int. J. Oncol. 2004, 25, 365–372. [Google Scholar]
  289. Jia, L.; Wu, C.C.; Guo, W.; Young, X. Antiangiogenic effects of S-nitrosocaptopril crystals as a nitric oxide donor. Eur. J. Pharmacol. 2000, 391, 137–144. [Google Scholar]
  290. Xu, F.; Song, D.; Zhen, Y. Inhibition of tumor metastasis by sodium caffeate and its effect on angiogenesis. Oncology 2004, 67, 88–92. [Google Scholar]
  291. Xu, Y.; Pan, R.L.; Chang, Q.; Qin, M.; Liu, Y.; Tang, J.T. Experimental study of Solanum nigrum on inhibiting angiogenesis in chick chorioallantoic membrane. Zhongguo Zhong Yao Za Zhi 2008, 33, 549–552. [Google Scholar]
  292. Woltering, E.A.; Barrie, R.; O’Dorisio, T.M.; Arce, D.; Ure, T.; Cramer, A.; Holmes, D.; Robertson, J.; Fassler, J. Somatostatin analogues inhibit angiogenesis in the chick chorioallantoic membrane. J. Surg. Res. 1991, 50, 245–251. [Google Scholar]
  293. Wrasidlo, W.; Mielgo, A.; Torres, V.A.; Barbero, S.; Stoletov, K.; Suyama, T.L.; Klemke, R.L.; Gerwick, W.H.; Carson, D.A.; Stupack, D.G. The marine lipopeptide somocystinamide A triggers apoptosis via caspase 8. Proc. Natl. Acad. Sci. USA 2008, 105, 2313–2318. [Google Scholar]
  294. Su, S.J.; Yeh, T.M.; Chuang, W.J.; Ho, C.L.; Chang, K.L.; Cheng, H.L.; Liu, H.S.; Cheng, H.L.; Hsu, P.Y.; Chow, N.H. The novel targets for anti-angiogenesis of genistein on human cancer cells. Biochem. Pharmacol. 2005, 69, 307–318. [Google Scholar]
  295. Jackson, J.K.; Burt, H.M.; Oktaba, A.M.; Hunter, W.; Scheid, M.P.; Mouhajir, F.; Lauener, R.W.; Shen, Y.; Salari, H.; Duronio, V. The antineoplastic ether lipid, s-phosphonate, selectively induces apoptosis in human leukemic cells and exhibits antiangiogenic and apoptotic activity on the chorioallantoic membrane of the chick embryo. Cancer Chemother. Pharmacol. 1998, 41, 326–332. [Google Scholar] [CrossRef] [PubMed]
  296. Klauber, N.; Browne, F.; Anand-Apte, B.; D'Amato, R.J. New activity of spironolactone. Inhibition of angiogenesis in vitro and in vivo. Circulation 1996, 94, 2566–2571. [Google Scholar] [PubMed]
  297. Sills, A.K.; Williams, J.I.; Tyler, B.M.; Epstein, D.S.; Sipos, E.P.; Davis, J.D.; McLane, M.P.; Pitchford, S.; Cheshire, K.; Gannon, F.H.; Kinney, W.A.; Chao, T.L.; Donowitz, M.; Laterra, J.; Zasloff, M.; Brem, H. Squalamine inhibits angiogenesis and solid tumor growth in vivo and perturbs embryonic vasculature. Cancer Res. 1998, 58, 2784–2792. [Google Scholar]
  298. Oikawa, T.; Shimamura, M.; Ashino, H. Inhibition of angiogenesis by staurosporine, a potent protein kinase inhibitor. J. Antibiot. 1992, 45, 1155–1160. [Google Scholar]
  299. Leali, D.; Belleri, M.; Urbinati, C.; Coltrini, D.; Oreste, P.; Zoppetti, G.; Ribatti, D.; Rusnati, M.; Presta, M. Fibroblast growth factor-2 antagonist activity and angiostatic capacity of solfate Escherìchia coli K5 polysaccharide derivatives. J. Biol. Chem. 2001, 176, 37900–37908. [Google Scholar]
  300. Jakobson, A.M.; Hahnenberger, R.; Magnusson, A. Antiangiogenic effect of heparin and other sulphated glycosamynoglicans in the chick embryo chorioallantoic membrane. Pharmac. Toxic. 1991, 69, 122–126. [Google Scholar]
  301. Tanaka, N.G.; Sakampto, N.; Inoue, K.; Korenaga, H.; Kadoya, S.; Ogawa, H.; Osada, Y. Antitumor effects of an antiangiogenic polysaccharide from an Arthrobacter species with or without a steroid. Cancer Res. 1989, 49, 6727–6730. [Google Scholar]
  302. Inoue, K.; Korenaga, H.; Tanaka, N.G. The sulfated polysaccharide peptidoglycan complex potently inhibits embryonic angiogenesis and tumor growth in the presence of cortisone acetate. Carboydr Res. 1988, 181, 135–142. [Google Scholar]
  303. Sola, F.; Farao, M.; Pesenti, E.; Marsiglio, A.; Mongelli, N.; Grandi, M. Antitumor activity of FCE 26644 a new growth-factor complexing molecule. Cancer Chemother. Pharmacol. 1995, 36, 217–222. [Google Scholar]
  304. Ciomei, M.; Pastori, W.; Mariani, M.; Sola, F.; Grandi, M.; Mongelli, N. New sulfonated distamycin A derivatives with bFGF complexing activity. Biochem. Pharmacol. 1994, 47, 295–302. [Google Scholar] [PubMed]
  305. Liekens, S.; Neyts, J.; Degrève, B.; De Clercq, E. The sulfonic acid polymers PAMPS [poly(2-acrylamido-2-methyl-1-propanesulfonic acid)] and related analogues are highly potent inhibitors of angiogenesis. Oncol. Res. 1997, 9, 173–181. [Google Scholar] [PubMed]
  306. Morimoto-Tomita, M.; Uchimura, K.; Bistrup, A.; Lum, D.H.; Egeblad, M.; Boudreau, N.; Werb, Z.; Rosen, S.D. Sulf-2, a proangiogenic separa sulfate endosulfatase, is upregulated in breast cancer. Neoplasia 2005, 7, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
  307. Pyriochou, A.; Tsigkos, S.; Vassilakopoulos, S.; Cottin, T.; Zhou, Z.; Gourzoulidou, E.; Roussos, C.; Waldmann, H.; Giannis, A.; Papapetropoulos, A. Anti-angiogenic properties of a sulindac analogue. Br. J. Pharmacol. 2007, 152, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
  308. Elwich-Fils, S.; Soltysiak-Pawluczuk, D.; Splawiński, J. Anti-angiogenic and apoptotic effects of metabolites of sulindac on chick embryo chorioallantoic membrane. Hybrid Hybridomics 2003, 22, 55–60. [Google Scholar]
  309. Danesi, R.; Del Bianchi, S.; Soldani, P.; Campagni, A.; La Rocca, R.V.; Myers, C.E.; Paparelli, A.; Del Tacca, M. Suramin inhibits bFGF-induced endothelial cell proliferation and angiogenesis in the chick chorioallantoic membrane. Br. J. Cancer 1993, 68, 932–938. [Google Scholar]
  310. Gagliardi, A.R.; Kassack, M.; Kreimeyer, A.; Muller, G.; Nickel, P.; Collins, D.C. Antiangiogenic and antiproliferative activity of suramin analogues. Cancer Chemother. Pharmacol. 1998, 41, 117–124. [Google Scholar]
  311. Wilks, J.W.; Scott, P.A.; Vrba, LK.; Cocuzza, J.M. Inhibition of angiogenesis with combination treatments of angiostatic steroids and suramin. Int. J. Radiol. 1991, 60, 73–77. [Google Scholar] [CrossRef]
  312. Soriano, J.V.; Liu, N.; Gao, Y.; Yao, Z.J.; Ishibashi, T.; Underhill, C.; Burke, T.R.; Bottaro, D.P. Inhibition of angiogenesis by growth factor receptor bound protein 2-Src homology 2 domain bound antagonists. Mol. Cancer Ther. 2004, 3, 1289–1299. [Google Scholar]
  313. Mousa, SA.; Mohamed, S.; Wexler, E.J.; Kerr, J.S. Antiangiogenesis and anticancer efficacy of TA138, a novel alphavbeta3 antagonist. Anticancer Res. 2005, 25, 197–206. [Google Scholar] [PubMed]
  314. Jeon, H.J.; Kang, H.J.; Jung, H.J.; Kang, Y.S.; Lim, C.J.; Kim, Y.M.; Park, E.H. Anti-inflammatory activity of Taraxacum officinale. J. Ethnopharmacol. 2008, 115, 82–88. [Google Scholar]
  315. Zhang, Y.; He, L.; Meng, L.; Luo, W.; Xu, X. Suppression of tumor-induced angiogenesis by taspine isolated from Radix et Rhizoma Leonticis and its mechanism of action in vitro. Cancer Lett. 2008, 262, 103–113. [Google Scholar] [CrossRef] [PubMed]
  316. Nozaki, Y.; Hida, T.; Iinuma, S.; Ishii, T.; Sudo, K.; Muroi, M.; Kanamaru, T. Tau-1120, a new anthracycline with potent angiostatic activity. J. Antibiot. 1993, 46, 569–579. [Google Scholar]
  317. Dordunoo, S.K.; Jackson, J.K.; Arsenault, L.A.; Oktaba, A.M.; Hunter, W.L.; Burt, H.M. Taxol encapsulation in poly(epsilon-caprolactone) microspheres. Cancer Chemother. Pharmacol. 1995, 36, 279–282. [Google Scholar]
  318. Kurzen, H.; Schmitt, S.; Näher, H.; Möhler, T. Inhibition of angiogenesis by non-toxic doses of temozolomide. Anticancer Drugs 2003, 14, 515–522. [Google Scholar] [CrossRef] [PubMed]
  319. Saito, Y.; Shiota, Y.; Nishisaka, M.; Owaki, T.; Shimamura, M.; Fukai, F. Inhibition of angiogenesis by a tenascin-c peptide which is capable of activating beta1-integrins. Biol. Pharm. Bull. 2008, 31, 1003–1007. [Google Scholar]
  320. Ho, P.Y.; Liang, Y.C.; Ho, Y.S.; Chen, C.T.; Lee, W.S. Inhibition of human vascular endothelial cells proliferation by terbinafine. Int. J. Cancer 2004, 111, 51–59. [Google Scholar]
  321. Liu, M.Z.; Tang, J.Z.; Zhang, J.S.; Chou, Q.; Huang, Y.Y. Angiogenesis inhibition in vascular endothelial cells by terpenoid compounds from Bletilla striata is via apoptosis pathway. Fen Zi Xi Bao Sheng Wu Xue Bao 2008, 41, 383–392. [Google Scholar]
  322. Mousa, S.A.; Bergh, J.J.; Dier, E.; Rebbaa, A.; O'Connor, L.J.; Yalcin, M.; Aljada, A.; Dyskin, E.; Davis, F.B.; Lin, H.Y.; Davis, P.J. Tetraiodothyroacetic acid, a small molecule integrin ligand, blocks angiogenesis induced by vascular endothelial growth factor and basic fibroblast growth factor. Angiogenesis 2008, 11, 183–190. [Google Scholar] [CrossRef] [PubMed]
  323. Ponticelli, S.; Marasco, D.; Tarallo, V.; Albuquerque, R.J.; Mitola, S.; Takeda, A.; Stassen, J.M.; Presta, M.; Ambati, J.; Ruvo, M.; De Falco, S. Modulation of angiogenesis by a tetrameric tripeptide that antagonizes vascular endothelial growth factor receptor 1. J. Biol. Chem. 2008, 283, 34250–34259. [Google Scholar]
  324. Parson-Wingerter, P.; Elliott, K.E.; Farr, A.G.; Radhakrishnan, K.; Clark, J.I.; Sage, E.H. Generational analysis reveals that TGF-beta 1 inhibits the rate of angiogenesis in vivo by selective decrease in the number of new vessels. Microvasc. Res. 2000, 59, 221–232. [Google Scholar] [CrossRef] [PubMed]
  325. Presta, M.; Belleri, M.; Vacca, A.; Ribatti, D. Anti-angiogenic activity of the purine analog 6-thioguanine. Leukemia 2002, 16, 1490–1499. [Google Scholar] [CrossRef] [PubMed]
  326. Chandrasekaran, L.; He, C.Z.; Al-Barazi, H.; Krutzsch, H.C.; Iruela-Arispe, M.L.; Roberts, D.D. Cell contact-dependent activation of alpha3beta1 integrin modulates endothelial cell responses to thrombospondin-1. Mol. Biol. Cell. 2000, 11, 2885–2900. [Google Scholar]
  327. Margosio, B.; Rusnati, M.; Bonezzi, K.; Cordes, BL.; Annis, D.S.; Urbinati, C.; Giavazzi, R.; Presta, M.; Ribatti, D.; Mosher, D.F.; Taraboletti, G. Fibroblast growth factor-2 binding to the thrombospondin-1 type lll repeats, a novel antiangiogenic domain. Int. J. Biochem. Cell Biol. 2008, 40, 700–709. [Google Scholar] [CrossRef] [PubMed]
  328. Koutrafouri, V.; Leondiadis, L.; Avgoustakis, K.; Livaniou, E.; Czarnecki, J.; Ithakissios, D.S.; Evangelatos, G.P. Effect of thymosin peptides on the chick chorioallantoic membrane angiogenesis model. Biochim. Biophys. Acta 2001, 1568, 60–66. [Google Scholar] [PubMed]
  329. Mousa, S.A.; Mohamed, S. Anti-angiogenic mechanisms and efficacy of the low molecular weight heparin, tinzaparin: Anti-cancer efficacy. Oncol. Rep. 2004, 12, 683–688. [Google Scholar]
  330. Anand-Apte, B.; Pepper, M.S.; Yost, E.; Montesano, R.; Olsen, B.; Murphy, G.; Apte, S.S.; Zetter, B. Inhibition of angiogenesis by tissue inhibitor of metalloproteinase-3. Invest. Ophthalmol. Vis. Sci. 1997, 38, 817–823. [Google Scholar]
  331. Hembrough, T.A.; Ruiz, J.F.; Swerdlow, B.M.; Swartz, G.M.; Hammers, H.J.; Zhang, L.; Plum, S.M.; Williams, M.S.; Strickland, D.K.; Pribluda, V.S. Identification and characterization of a very low density lipoprotein receptor-binding peptide from tissue factor pathway inhibitor that has antitumor and antiangiogenic activity. Blood 2004, 103, 3374–3380. [Google Scholar]
  332. Bastaki, M.; Missirlis, E.; Klouras, N.; Karakiulakis, G.; Maragoudakis, M.E. Suppression of angiogenesis by the antitumor agent titanocene dichloride. Eur. J. Pharmacol. 1994, 251, 263–269. [Google Scholar]
  333. Minischetti, M.; Vacca, A.; Ribatti, D.; Iurlaro, M.; Ria, R.; Pellegrino, A.; Gasparini, G.; Dammacco, A.F. TNP-470 and recombinant human interferon-α2a inhibit angiogenesis synergistically. Br. J. Haematol. 2000, 109, 829–837. [Google Scholar]
  334. Nakagawa, K.; Shibata, A.; Yamashita, S.; Tsuzuki, T.; Kariya, J.; Oikawa, S.; Miyazawa, T. In vivo angiogenesis is suppressed by unsaturated vitamin E, tocotrienol. J. Nutr. 2007, 137, 1938–1943. [Google Scholar] [PubMed]
  335. Miyazawa, T.; Tsuzuki, T.; Nakagawa, K.; Igarashi, M. Antiangiogenic potency of vitamin E. Ann. N.Y. Acad. Sci. 2004, 1031, 401–404. [Google Scholar]
  336. Jackson, J.K.; Higo, T.; Hunter, W.L.; Burt, H.M. Topoisomerase inhibitors as anti-arthritic agents. Inflamm. Res. 2008, 57, 126–134. [Google Scholar]
  337. Yang, X.; Luo, P.; Yang, B.; He, Q. Antiangiogenesis response of endothelial cells to the antitumor drug 10-methoxy-9-nitrocamptothecin. Pharmacol. Res. 2006, 54, 334–340. [Google Scholar] [CrossRef] [PubMed]
  338. Puppo, M.; Battaglia, F.; Ottaviano, C.; Delfino, S.; Ribatti, D.; Varesio, L.; Bosco, M.C. Topotecan inhibits vascular endothelial growth factor production and angigenic activity induced by hypoxia in human neuroblastoma by targeting hypoxia-inducible factor-1alpha and -2alpha. Mol. Cancer Ther. 2008, 7, 1974–1984. [Google Scholar]
  339. Kim, M.S.; Lee, Y.M.; Moon, E.J.; Kim, S.E.; Lee, J.J.; Kim, K.W. Anti-angiogenic activity of torilin, a sesquiterpene compound isolated from Torilis japonica. Int. J. Cancer 2000, 87, 269–275. [Google Scholar]
  340. Benelli, U.; Lepri, A.; Nardi, M.; Danesi, R.; Del Tacca, M. Trapidil inhibits endothelial cell proliferation and angiogenesis in the chick chorioallantoic membrane and in the rat cornea. J. Ocul. Pharmacol. Ther. 1995, 11, 157–166. [Google Scholar]
  341. McKay, T.L.; Gedeon, D.J.; Vickerman, M.B.; Hylton, A.G.; Ribita, D.; Olar, H.H.; Kaiser, P.K.; Parsons-Wingerter, P. Selective inhibition of angiogenesis in small blood vessels and decrease in vessel diameter throughout the vascular tree by triamcinolone acetonide. Invest. Ophthalmol. Vis. Sci. 2008, 49, 1184–1190. [Google Scholar]
  342. Zhu, G.F.; Zhang, H.Q.; Hou, A.J.; Yang, Y.L.; Li, Q.S.; Zhang, C.C. Effects of three compounds extracted from Tripterygium wilfordii Hook on angiogenesis in chick chorioallantoic membrane. Zhong Xi Yi Jie Xue Bao 2007, 5, 517–520. [Google Scholar]
  343. Ding, Y.; Zhang, J.; Hou, L.; Zhang, J.; Wang, Q.; Wang, S. Effects of triptolide on anti-angiogenesis by reducing expression of urokinase plasminogen activator. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2005, 22, 778–781. [Google Scholar]
  344. Sohn, K.H.; Lee, H.Y.; Chung, H.Y.; Young, H.S.; Yi, S.Y.; Kim, K.W. Anti-angiogenic activity of triterpene acids. Cancer Lett. 1995, 94, 213–218. [Google Scholar]
  345. Molina, M.C.; Ferreira, V.; Valck, C.; Aguilar, L.; Orellana, J.; Rojas, A.; Ramirez, G.; Billetta, R.; Schwaeble, W.; Lemus, D.; Ferreira, A. An in vivo role for Trypanosoma cruzi calreticulin in antiangiogenesis. Mol. Biochem. Parasitol. 2005, 140, 133–140. [Google Scholar] [CrossRef] [PubMed]
  346. Mannell, H.; Hellwig, N.; Gloe, T.; Plank, C.; Sohn, H.Y.; Groesser, L.; Walzog, B.; Pohl, U.; Krotz, F. Inhibition of the tyrosine phosphatase SHP-2 suppresses angiogenesis in vitro and in vivo. J. Vasc. Res. 2008, 45, 153–163. [Google Scholar] [CrossRef] [PubMed]
  347. Watanabe, J.; Endo, Y.; Shimada, N.; Natsume, T.; Sasaki, T.; Kobayashi, M. Antiangiogenic activity of TZT-1027 (soblidotin) on chick chorioallantoic membrane and human umbilical vein endothelial cells. In Vivo 2007, 21, 297–304. [Google Scholar]
  348. Jung, H.J.; Leon, H.J.; Lim, E.J.; Ahn, E.K.; Song, Y.S.; Lee, S.; Shin, K.H.; Lim, C.J.; Park, E.H. Anti-angiogenic activity of the methanol extract and its fractions of Ulmus davidiana var. japonica. J. Ethnopharmacol. 2007, 112, 406–409. [Google Scholar] [CrossRef] [PubMed]
  349. Pisano, C.; Aulicino, C.; Vesci, L.; Casu, B.; Naggi, A.; Torri, G.; Ribatti, D.; Belleri, M.; Rusnati, M.; Presta, M. Undersulfated, low-molecular-weight glycol-split heparin as an antiangiogenic VEGF antagonist. Glycobiology 2005, 15, 1–6. [Google Scholar]
  350. Suh, H.; Jung, E.J.; Kim, T.H.; Lee, H.Y.; Park, Y.H.; Kim, K.W. Anti-angiogenic activity of ursodeoxycholic acid and its derivatives. Cancer Lett. 1997, 113, 117–122. [Google Scholar]
  351. Michaelis, M.; Michaelis, U.R.; Fleming, I.; Suhan, T.; Cinatl, J.; Blaheta, R.A.; Hoffmann, K.; Kotchetkov, R.; Busse, R.; Nau, H.; Cinatl, J., Jr. Valproic acid inhibits angiogenesis in vitro and in vivo. Mol. Pharmacol. 2004, 65, 520–527. [Google Scholar] [CrossRef] [PubMed]
  352. Jung, H.J.; Song, Y.S.; Lim, C.J.; Park, E.H. Anti-angiogenic, anti-inflammatory and anti-nociceptive activities of vanillyl alcohol. Arch. Pharm. Res. 2008, 31, 1275–1279. [Google Scholar]
  353. Zhai, Y.; Yu, J.; Irucla-Arispe, M.L.; Huang, W.Q.; Wang, Z.; Hayes, A.J.; Lu, J.; Jiang, G.; Rajas, L.; Lippman, M.E.; Ni, J.; Yu, G.L.; Li, LY. Inhibition of angiogenesis and breast cancer xenograft tumor graft growth by VEGI, a novel cytokine of the TNF superfamily. Int. J. Cancer 1999, 82, 131–136. [Google Scholar] [CrossRef] [PubMed]
  354. Kern, J.; Bauer, M.; Rychli, K.; Wojta, J.; Ritsch, A.; Gastl, G.; Gunsilius, E.; Untergasser, G. Alternative splicing of vasohibin-1 generates an inhibitor of endothelial cell proliferation, migration, and capillary tube formation. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 478–484. [Google Scholar] [CrossRef] [PubMed]
  355. Ma, L.; Luo, L.; Qiao, H.; Dong, X.; Pan, S.; Jiang, H.; Krissansen, G.W.; Sun, X. Complete eradication of hepatocellular carcinomas by combined vasostatin gene therapy and B7H3-mediated immunotherapy. J. Hepatol. 2007, 46, 98–106. [Google Scholar]
  356. Ramakrishnan, S.; Olson, T.A.; Bautch, V.L.; Mohanraj, D. Vascular endothelial growth factor-toxin conjugate specifically inhibits KDR/FLK-1-positive endothelial cell proliferation in vitro and angiogenesis in vivo. Cancer Res. 1996, 56, 1324–1330. [Google Scholar] [PubMed]
  357. Vacca, A.; Iurlaro, M.; Ribatti, D.; Minischetti, M.; Nico, B.; Ria, R.; Pellegrino, A.; Dammacco, F. Antiangiogenesis is produced by nontoxic doses of vinblastine. Blood 1999, 94, 4143–4155. [Google Scholar]
  358. Marimpietri, D.; Nico, B.; Vacca, A.; Mangieri, D.; Catarsi, P.; Ponzoni, M.; Ribatti, D. Synergistic inhibition of human neuroblastoma-related angiogenesis by vinblastine and rapamycin. Oncogene 2005, 24, 6785–6795. [Google Scholar]
  359. Kisker, O.; Onizuka, S.; Becker, C.M.; Fannon, M.; Flynn, E.; D'Amato, R.; Zetter, B.; Folkman, J.; Ray, R.; Swamy, N.; Pirie-Shepherd, S. Vitamin D binding protein-macrophage activating factor (DBP-maf) inhibits angiogenesis and tumor growth in mice. Neoplasia 2003, 5, 32–40. [Google Scholar]
  360. Oikawa, T.; Hirotani, K.; Ogasawara, H.; Katayama, T.; Nakamura, O.; Iwaguchi, T.; Hiragun, A. Inhibition of angiogenesis by vitamin D3 analogues. Eur. J. Pharmacol. 1990, 178, 247–250. [Google Scholar]
  361. Lutty, G.A.; Thompson, D.C.; Gallup, J.Y.; Mello, R.J.; Patz, A.; Fenselau, A. Vitreous: An inhibitor of retinal extract-induced neovascularization. Invest. Ophthalmol. Vis. Sci. 1983, 24, 52–56. [Google Scholar]
  362. Bae, M.K.; Jeong, J.W.; Kim, S.H.; Kim, S.Y.; Kang, H.J.; Kim, D.M.; Bae, S.K.; Yun, I.; Trentin, G.A.; Rozakis-Adcock, M.; Kim, K.W. Tid-1 interacts with the von Hippel-Lindau protein and modulates angiogenesis by destabilization of HIF-1alpha. Cancer Res. 2005, 65, 2520–2525. [Google Scholar]
  363. Lin, C.M.; Chang, H.; Chen, Y.H.; Wu, I.H.; Chiu, J.H. Wogonin inhibits IL-6-induced angiogenesis via down-regulation of VEGF and VEGFR-1, not VEGFR-2. Planta MED. 2006, 72, 1305–1310. [Google Scholar]
  364. Scavelli, C.; Di Pietro, G.; Cirulli, T.; Coluccia, M.; Boccarelli, A.; Giannini, T.; Mangialardi, G.; Bertieri, R.; Coluccia, A.M.; Ribatti, D.; Dammacco, F.; Vacca, A. Zoledronic acid affects over-angiogenesis phenotype of endothelial cells in patients with multiple myeloma. Mol. Cancer Ther. 2007, 6, 3256–3262. [Google Scholar] [CrossRef] [PubMed]
Back to TopTop