The Chick Embryo Chorioallantoic Membrane as an In Vivo Assay to Study Antiangiogenesis
Abstract
:1. Introduction
Direct | Indirect |
---|---|
Angiostatin; Bevacizumab (Avastin) Arresten; Canstatin; Combrestatin Endostatin; Thrombospondin Tumstatin; methoxyestradiol; Vitaxin | Targeting EGF-receptor tyrosine kinase Targeting VEGF receptor Targeting PDGF receptor Targeting PDGF receptor Targeting ERBB-2 Targeting interferon alpha receptor* |
Matrix derived | Growth factors and cytokines |
---|---|
Arresten Canstatin Endorepellin Endostatin Fibronectin fragment (Anastellin) Targeting fibronectin-binding integrins Fibulin Thrombospondin-1 and –2 Tumstatin | Interferons Interleukins Pigment epithelium derived factor (PEDF) |
Fragments of blood coagulation factors | Others |
Angiostatin Antithrombin-III Prothrombin kringle 2 Platelet factor-4 | Tissue inhibitors of metalloproteinases (TIMPs) Chondromodulin 2-methoxyestradiol Prolactin fragments PEX Soluble Fms-like tyrosine kinase-1 (S-Flt-1) Troponin I Vasostatin |
2. The Chorioallantoic Membrane in the Study of Antiangiogenesis
AAV-mediated gene transfer of TIMP-1 [9]; AA98V (H)/L [10]; A-beta peptides [11]; Aeroplysinin-1[12]; Adiponectin [13]; Ad-vasostatin[14]; Agkistin [15]; AGM-1470 [16]; Alliin [17]; a4-b1antagonists[18]; Av-b3/av-b5 antagonists and ab [19,20,30,84,85,165,313]; Amifostine [21]; Amiloride [22]; Aminopeptidase-N antagonists [23]; Angioinhibins [24]; Ang-2 [25]; Angiostatin [26]; Angiotensinogen [27,28]; Anthracyclines and titanocene dichloride [29]; Antibacterial substances [31]; Antibiotics [32]; Ab anti-FGF-2 and anti-VEGF [33,34]; Anti-CD146 Mab [35]; Anti-collagen IV ab [36]; Antioxidant molecules [37]; Antithrombin [38]; Apicidin [39]; Aplidine [40]; Apolipoprotein(a) kringle V [41]; Apomorphine [42]; AQP-1 siRNA [43]; Arginine deaminase [44]; 2-aroylindoles [45]; Arresten [46]; Artesunate [47]; Ascorbic acid [48]; Atiprimod [49]; Aurintricarboxylic acid [50]; Azaspirine [51] |
Bactericidal/permeability-increasing protein [52]; Bacterium PB[53]; Baicalein/baicalin [54]; Bleomycin [55]; Blockers of volume-regulated anion channels [56]; Beta-cyclodextrintetradecasulfate [57]; Beta-Escin [58]; Beta-HISV[59]; BMP-9 [60]; Bortezomib [61]; Butyric acid [62] |
CAI [63]; Campesterol [64]; Canstatin [65]; Capsaicin [66]; Carbon materials [67]; Carrageenan [68]; Cartilage [69]; Catechins [70]; Cerivastatin [71]; Cheiradone [72]; Chemokine antagonist M3 [74]; Chondrocyte derived inhibitor [69]; Chondromodulin-1 [75]; Chrysin [76]; Cigarette smoke condensate [77,191]; Clodronate [78]; Clotrimazole [79]; Contortrostatin [80]; Curcumin [81,82]; COX inhibitors [86,87]; Cyclopeptidic VEGF inhibitor [88]; Cyclosporin [89]; Cytocholasin D [90] |
7-Deazaxanthine [91]; Deguelin [92]; Delphinidin [93]; Deoxycholic acid-heparin conjugate [94]; Deoxycytidine nucleoside [95]; DFMO α-difluoromethylornithine [96]; Diaminoanthraquinone [97]; Dichloropy ridodithienenotriazine [98]; Dihydroartemisinin [99]; Dihydrotanshinone I [100]; Digoxin [101]; Ditriazine derivative [102]; DPTH-N10 [103]; Docetaxel [104]; Dominant-negative p65 PAK peptide [105]; Doxazosin [106]; Doxycycline [107]; Doxorubicin [108,209] |
Eclipta prostata [109]; Emodin [110]; Endocannabinoid anandamide[111]; Endorepellin [112]; Endostatin [113,114,242]; Enoic acanthonic acid [86]; Eponeomycin [115]; Epoxyeicosatrienoic acid antagonist [116]; Escherichia Coli K5 polysaccharide derivatives [73,299]; Estrogen antagonists [117]; Ets-1 antisense [118,119]; Evodiamine [120] |
Fascaplysin [121]; Fenretinide [122]; Flavonoids [123,261]; Fluorosynerazols [124]; Fractalkine [125]; Gangliosides [126]; Gastrodia elata [127]; Genepin [128]; Ghrelin [129] Gleditsia sinesis [130]; Glycine [131]; Goniodomin A [132] Grateloupia longifolia polysaccharide [133]; Green tea [134] ; Grifola frondosa [135]; GRO-beta [136]; GW654652[137] |
Heparan sulfate suleparoide [138]; Heparanase [139]; Heparin or heparin fragments+cortisone [57,140,141,142,285]; HGF-like basic hexapeptides [143]; Herbamycin [144]; Histidine-proline-rich glycoprotein [145]; HIV-1 protease inhibitors [146]; Hox D10 [147]; Homocysteine [148]; HST-1 protein [149]; Human neutrophil peptides [151]; Hydroxycamptothecin [152]; Hyperforin [154]; Hypertermia [155]; Hypoestoxide [156]; Hypoxic eytotoxin TX-402 [157]; Hypoxia cytotoxins [158] |
Indinavir and saquinavir [146]; Indolin-2-ketone compound [159]; Inhibitors of basement membrane biosynthesis [160,161,162]; Inhibitors of DNA methyltransferase [163]; IGF binding protein [164]; IL-12, -18, -21, 27 [166,167,168,169]; Ionizing radiation [170]; Isoflavones [171]; Isoprostanes [172]; Isosorbide mono-dinitrate [173]; JNI-17029259 [174]; JNI-26076713 [175] |
KIN-841 [176]; Kininogen, kininogen-derived polyptides, kinostatin and related Mab [177,178,179,200]; KV11 [180]; Lactacystin [181]; Lambda-carragenan oligosaccharide [68]; Laminin-derived peptide [182]; Lamininarin sulphate [183]; Larg-A [184]; Lebectin [185]; Lebestatin [186]; LMW polysaccharide extracts from Agaricus blazei [187]; Lonicera japonica [188]; LMW undersulfated glycol-split heparin [142]; Low sulphated oligosaccharides from heparan sulphate [189]; Lysozime [190] |
Marine-derived oligosaccharide sulfate [192]; Metastatin [193]; 2-Methoxyestradiol [194]; Methylene blue [195]; Methyltransferase inhibitors [163]; Microrganism fermantation [196]; Midkine [197]; Mitoxantrone [198]; Mixture of ascorbic acid, lisine, proline and gree tea [199]; Motuporanines [201]; Multiple RTK inhibitors [202]; Mustard essential oil [203]; Myo-inositol trispyrophosphate [204] |
Neomycin [205]; Neridronate [206]; Neuregulin-2 [207]; Neurokinin-B [208]; Nitric oxide [173,210]; Nitrotoluene sulfonate [211]; Nonpeptide topomimetics [212]; Notch 4 [213]; Nucleolin antagonist [214]; Obtustatin [215] |
Octacosanol [216]; Oncothanin [217]; 5’-O-trityl nucleoside analogs [218]; Opioid peptides [219]; Oriental herbal [220]; Oxaliplatin [221]; Paclitaxel [104]; PAI-1 [222]; PAK1[105]; PE [223]; Pedicularioside G [224]; PGG [225]; Pentosan polysulfate [226]; Pentraxin 3 [227]; Peptide trivalent arsenical [228]; Perillyl alcohol [229]; PPAR agonists [230]; PEX [231]; Phenethyl isothiocyanate [232]; Phenolic compounds [233]; P-henylenabil selenocyanate [234]; Philinopside A [235]; Phorbol esters [236]; Photodynamic therapy [237]; Piperazine derivative [238,239]; Placental ribonuclease inhibitor [240]; Plasma hyaluronan binding protein [241]; Plasminogen related protein [243]; PF4 [244,245]; PARP inhibitor [247]; Poly-L-lisyne/heparin [248]; Polysulphated derivative of tlaminarin [183]; Pomegranate [249]; Prenylnaringenin [250]; Prolactin [150,246]; Proline analogs [251]; Protamine [252]; PAR-1 antagonists [253]; Prothrombin fragments and rh prothrombin kringles [254,266]; Pyrimidines [255]; Purine analogues [256]; Purine riboside [257]; Pyracoumarin compounds [258]; Pyrazine [259]; p38 MAPK [260] |
Quinoline [262]; Radicicol [263]; RDG-peptidomimetic [264]; Rh plasminogen kringle 1-3 [265]; Recombinant kringle domains of plasminogen, tissue-type plasminogen activator and urokinase [267,268,269]; Red wine [134]; Resveratrol [17]; Retinoids [270]; Rhodostomin [271]; Ribavirin [272]; Ribonuclease inhibitor [273]; Rosiglitazone [274]; Ruthenium red [275] |
Safrole oxide [276]; Salmosin [277]; Sangivamycin [278]; Sanguinarine [279]; Saurus chinensis [280]; Sedun sarmentosum [281]; Serpin [282]; Sesterterpenes [283]; PF-4 [284]; Short peptide[286]; Simvastatin [287]; SJ-8002 [288]; S-nitrosocaptopril [289]; Sodium caffeate [290]; Solanum nigrum [291]; Somatostatin [292]; Somocystinamide [293]; Soy isoflavones [294]; S-phosphonate [295]; Spironolactone [296]; Squalamine [297]; Staurosporine [298]; Sulphated GAGs[300]; Sulfated polysaccharide-peptidoglican [301,302]; Sulfonated derivative of dystamycin [303,304]; Sulfonic acid polymers [305]; Sulf-2[306]; Sulindac analogue [307]; Sulindac [308]; Suramin [309,310,311]; Synthetic Grb2-Src [312]; Synthetic inhibitor of arylsulfatase [211] |
Taraxacum officinale [314]; Taspine [315]; TAU 1120 [316]; Taxol [317]; Temozolomide [318]; Tenasum-C [319]; Terbinafine [320]; Terpenoids [321]; Tetrac [322]; Tetrameric tripeptide [323]; TGF-b[324]; Thalidomide metabolites [153]; 6-Thioguanine [325]; TSP-1 [326,327]; TP inhibitors [327]; Thymosin peptides [328]; Tinzaparin [329]; TIMP-3 [330]; TFPI [331]; Titanocene dichloride [332]; TNP470+ IFNa [333]; Tocotrienol [334]; Tocotrinol [335]; Topoisomerase inhibitors [336,337]; Topotecan [338]; Torilin [339]; Trapidil [340]; Triamcinolone acetonide [341]; Tricyclodecan-9-yl-xanthate [162]; Triphenylmethanem [50]; Tripterygium wilfordii [342]; Triptolide [343]; Triterpene acids [344]; Trypanosoma cruzi calreticulin [345]; Tyrosine phosphatase inhibitor [346]; TZT-1027 [347] |
Ulmus davidiana var.japonica [348]; Undersulfated, LMW glycol-split heparin [349]; Ursodeoxycholic acid [350]; Ursolic and oleanolic acid [344]; Valproic acid [351]; Vanillyl alcohol [352]; VEGI [353]; VASH1B [354]; Vasostatin [245,355]; VEGF-toxin conjugate [356]; Vinblastine+rapamycic [357,358]; Vitamin D binding protein [359]; Vitamin D3 analogues [360]; Vitreous [361]; von Hippel-Lindau protein [362]; Wogonin [363]; Zoledronic acid [364] |
3. Disadvantages of the CAM Assay
4. Concluding Remarks
Acknowledgements
References
- Ribatti, D.; Nico, B.; Crivellato, E.; Roccaro, A.M.; Vacca, A. The history of the angiogenic switch concept. Leukemia 2007, 21, 44–52. [Google Scholar]
- Folkman, J. Tumor angiogenesis: Therapeutic implications. New Engl. J. Med. 1971, 285, 1182–1186. [Google Scholar]
- Nyberg, P.; Xie, L.; Kalluri, R. Endogenous inhibitors of angiogenesis. Cancer Res. 2005, 65, 3967–3979. [Google Scholar] [CrossRef] [PubMed]
- Ellis, L.M. Bevacizumab. Nat. Rev. Drug Discov. 2005, S8–S9. [Google Scholar]
- Norrby, K. In vivo models of angiogenesis. J. Cell. Mol. Med. 2006, 10, 588–612. [Google Scholar] [CrossRef] [PubMed]
- Ribatti, D. Chick embryo chorioallantoic membrane as a useful tool to study angiogenesis. Int. Rev.Cell. Mol. Biol. 2008, 270, 181–224. [Google Scholar]
- Ribatti, D.; Nico, B.; Vacca, A.; Presta, M. The gelatin sponge-chorioallantoic membrane assays. Nat. Prot. 2006, 1, 85–91. [Google Scholar]
- Taylor, S.; Folkman, J. Protamine is an inhibitor of angiogenesis. Nature 1982, 297, 307–312. [Google Scholar]
- Zacchigna, S.; Zentilin, L.; Morini, M.; Dell'Eva, R.; Noonan, D.M.; Albini, A.; Giacca, M. AAV-mediated gene transfer of tissue inhibitor of metalloproteinases-1 inhibits vascular tumor growth and angiogenesis in vivo. Cancer Gene Ther. 2004, 11, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wu, X.; Shen, Y.; Bu, P.; Yang, D.; Yan, X. A novel antibody AA98 V(H)/L directed against CD146 efficiently inhibits angiogenesis. Anticancer Res. 2007, 27, 4219–4224. [Google Scholar]
- Paris, D.; Townsed, K.; Quadros, A.; Humphrey, J.; Sun, J.; Brem, S.; Wotoczek-Obadia, M.; DelleDonne, A.; Patel, N.; Obregon, D.F.; Crescentini, R.; Abdullah, L.; Coppola, D.; Rojiani, A.M.; Crawford, F.; Sebti, S.M.; Mullan, M. Inhibition of angiogenesis by Abeta peptides. Angiogenesis 2004, 7, 75–85. [Google Scholar]
- Rodríguez-Nieto, S.; González-Iriarte, M.; Carmona, R.; Muñoz-Chápuli, R.; Medina, M.A.; Quesada, A.R. Antiangiogenic activity of aeroplysinin-1, a brominated compound isolated from a marine sponge. FASEB J. 2002, 16, 261–263. [Google Scholar]
- Brakenhielm, E.; Veitonmaki, N.; Cao, R.; Kihara, S.; Matsuzawa, Y.; Zhivotovsky, B.; Funahashi, T.; Cao, Y. Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apotosis. Proc. Natl. Acad. Sci. USA 2004, 101, 2476–2481. [Google Scholar]
- Li, L.; Yuan, Y.Z.; Lu, J.; Xia, L.; Zhu, Y.; Zhang, Y.P.; Qiao, M.M. Treatment of pancreatic carcinoma by adenoviral mediated gene transfer of vasostatin in mice. Gut. 2006, 55, 259–265. [Google Scholar]
- Yeh, C.H.; Wang, W.C.; Hsieh, T.T.; Huang, T.F. Agkistin, a snake venom-derived glycoprotein Ib antagonist, disrupts von Willebrand factor-endothelial cell interaction and inhibits angiogenesis. J.Biol. Chem. 2000, 275, 18615–18618. [Google Scholar] [PubMed]
- Kusaka, M.; Sudo, K.; Fujita, T.; Marui, S.; Itoh, F.; Ingber, D.; Folkman, J. Potent anti-angiogenic action of AGM-1470: Comparison to the fumagillin parent. Biochem. Biophys. Res. Commun. 1991, 174, 1070–1076. [Google Scholar]
- Mousa, S.S.; Mousa, S.A. Effect of resveratrol on angiogenesis and platelet/fibrinaccelerated tumor growth in the chick chorioallantoic membrane model. Nutr. Cancer 2005, 52, 59–65. [Google Scholar]
- Calzada, M.J.; Zhou, L.; Sipes, J.M.; Zhang, J.; Krutzsch, H.C.; Iruela-Arispe, M.L.; Annis, D.S.; Mosher, D.F.; Roberts, D.D. Alpha4beta1 integrin mediates selective endothelial cell responses to thrombospondins 1 and 2 in vitro and modulates angiogenesis in vivo. Circ. Res. 2004, 94, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Ponce, M.L.; Thill, M.; Yuan, P.; Wang, N.S.; Csaky, K.G. Angiogenesis inhibition and choroidal neovascularisation suppression by sustained delivery of an integrin antagonist, EMD478761. Invest. Ophtalmol. Vis. Sci. 2007, 48, 5184–5190. [Google Scholar] [CrossRef]
- Belvisi, L.; Riccioni, T.; Marcellini, M.; Vesci, L.; Chiarucci, I.; Efrati, D.; Potenza, D.; Scolastico, C.; Manzoni, L.; Lombardo, K.; Stasi, M.A.; Orlandi, A.; Ciucci, A.; Nico, B.; Ribatti, D.; Giannini, G.; Presta, M.; Carminati, P.; Pisano, C. Biological and molecular properties of a new alpha(v)beta3/alpha(v)beta5 integrin antagonist. Mol. Cancer. Ther. 2005, 4, 1670–1680. [Google Scholar] [PubMed]
- Giannopoulou, E.; Katsoris, P.; Kardamakis, D.; Papadimitriou, E. Amifostine inhibits angiogenesis in vivo. J. Pharmacol. Exp. Ther. 2003, 304, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Knoll, A.; Schmidt, S.; Chapman, M.; Wiley, D.; Bulgrin, J.; Blank, J.; Kirchner, L. A comparison of two controlled-release delivery systems for the delivery of amiloride to control angiogenesis. Microvasc. Res. 1999, 58, 1–9. [Google Scholar]
- Bhagwat, S.V.; Ladhdenranta, J.; Giordano, R.; Arap, W.; Pasqualini, R.; Shapiro, L.H. CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood 2001, 97, 652–659. [Google Scholar]
- Ingber, D.; Fujita, T.; Kishomoto, S.; Sudo, K.; Kanamaru, T.; Brem, H.; Folkman, J. Angioinhibins: Synthetic analogues of fumagillin which inhibit angiogenesis and suppress tumor growth. Nature 1990, 348, 555–557. [Google Scholar]
- Lee, O.H.; Fueyo, J.; Xu, J.; Yung, W.K.; Lemoine, M.G.; Lang, F.F.; Bekele, B.N.; Zhou, X.; Alonso, M.A.; Aldape, K.D.; Fuller, G.N.; Gomez-Manzano, C. Sustained angiopoietin-2 expression disrupts vessel formation and inhibits glioma growth. Neoplasia 2006, 8, 419–428. [Google Scholar]
- O’Reilly, M.S.; Holmgren, L.; Shing, Y.; Chen, C.; Rosenthal, R.A.; Moses, M.; Lane, W.S.; Cao, Y.; Sage, E.H.; Folkman, J. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994, 79, 315–328. [Google Scholar]
- Brand, M.; Lamandé, N.; Larger, E.; Corvol, P.; Gasc, J.M. Angiotensinogen impairs angiogenesis in the chick chorioallantoic membrane. J. Mol. Med. 2007, 85, 451–460. [Google Scholar]
- Célérier, J.; Cruz, A.; Lamandé, N.; Gasc, J.M.; Corvol, P. Angiotensinogen and its cleaved derivatives inhibit angiogenesis. Hypertension 2002, 39, 224–228. [Google Scholar]
- Maragoudakis, M.E.; Peristeris, P.; Missirilis, E.; Aletras, A.; Andriopoulou, P.; Haralabopoulos, G. Inhibition of angiogenesis by anthracyclines and titanocene dichloride. Ann. N.Y. Acad. Sci. 1999, 732, 280–293. [Google Scholar]
- Drake, C.J.; Cheresh, D.A.; Little, C.D. An antagonist of integrin alpha v beta 3 prevents maturation of blood vessels during embryonic neovascularization. J. Cell Sci. 1995, 108, 2655–2661. [Google Scholar]
- Nishikawa, T.; Akiyama, N.; Kunimasa, K.; Oikawa, T.; Ishizuka, M.; Tsujimoto, M.; Natori, S. Inhibition of in vivo angiogenesis by N-betaalanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine. Eur. J. Pharmacol. 2006, 539, 151–157. [Google Scholar] [PubMed]
- Ishii, T.; Hida, T.; Iinuma, S.; Muroi, M.; Nozaki, Y. AN-1323 C and D, new concanamycin-group antibiotics; detection of the angiostatic activity with a wide range of macrolide antibiotics. J. Antibiot. 1995, 48, 12–20. [Google Scholar]
- Ribatti, D.; Urbinati, C.; Nico, B.; Rusnati, M.; Roncali, L.; Presta, M. Endogenous basic fibroblast growth factor is implicated in the vascularization of the chick embryo chorioallantoic membrane. Dev. Biol. 1995, 170, 39–49. [Google Scholar]
- Vitaliti, A.; Wittmer, M.; Steiner, R.; Wyder, L.; Neri, D.; Klemenz, R. Inhibition of tumor angiogenesis by a single-chain antibody directed against vascular endothelial growth factor. Cancer Res. 2000, 60, 4311–4314. [Google Scholar]
- Yan, X.; Lin, Y.; Shen, Y.; Shen, Y.; Yuan, M.; Zhang, Z.; Li, P.; Xia, H.; Li, L.; Luo, D.; Liu, Q.; Mann, K.; Bader, B.L. A novel anti-CD146 monoclonal antibody, AA98, inhibits angiogenesis and tumor growth. Blood 2003, 102, 184–191. [Google Scholar] [PubMed]
- Pernasetti, F.; Nickel, J.; Clark, D.; Baeuerle, P.A.; Van Epps, D.; Freimark, B. Novel anti-denatured collagen humanized antibody D93 inhibits angiogenesis and tumor growth: An extracellular matrix-based therapeutic approach. Int. J. Oncol. 2006, 29, 1371–1379. [Google Scholar]
- Jackson, J.K.; Higo, T.; Hunter, W.L.; Burt, H.M. The antioxidants curcumin and quercetin inhibit inflammatory processes associated with arthritis. Inflamm. Res. 2006, 55, 168–175. [Google Scholar]
- Kisker, O.; Onizuka, S.; Banyard, J.; Komiyama, T.; Becker, C.M.; Achilles, E.G.; Barnes, C.M.; O'Reilly, M.S.; Folkman, J.; Pirie-Shepherd, S.R. Generation of multiple angiogenesis inhibitors by human pancreatic cancer. Cancer Res. 2001, 61, 7298–7304. [Google Scholar]
- Kim, S.H.; Ahn, S.; Han, J.W.; Lee, H.W.; Lee, H.Y.; Lee, Y.W.; Kim, M.R.; Kim, K.W.; Kim, W.B.; Hong, S. Apicidin is a histone deacetylase inhibitor with anti-invasive and anti-angiogenic potentials. Bichem. Biophys. Res. Commun. 2004, 315, 964–970. [Google Scholar]
- Taraboletti, G.; Poli, M.; Dossi, R.; Vanenti, L.; Borsotti, P.; Faircloth, G.T.; Broggini, M.; D'Incalci, M.; Ribatti, D.; Gavazzi, R. Antiangiogenic activity of aplidine, a new agent of marine origin. Br. J. Cancer 2004, 90, 2418–2424. [Google Scholar]
- Kim, J.S.; Yu, H.K.; Ahn, J.H.; Lee, H.J.; Hong, S.W.; Jung, K.H.; Chang, S.I.; Hong, Y.K.; Joe, Y.A.; Byun, S.M.; Lee, S.K.; Chung, S.I.; Yoon, Y. Human apolipoprotein(a) kringle V inhibits angiogenesis in vitro and in vivo by interfering with the activation of focal adhesion kinases. Biochem. Biophys. Res. Commun. 2004, 313, 534–540. [Google Scholar] [PubMed]
- Kim, H.J.; Koh, P.O.; Kang, S.S.; Paik, W.Y.; Choi, W.S. The localization of dopamine D2 receptor mRNA in the human placenta and the anti-angiogenic effect of apomorphine in the chorionallantoic membrane. Life Science 2001, 68, 1031–1040. [Google Scholar]
- Camerino, G.M.; Nicchia, G.P.; Dinardo, M.M.; Ribatti, D.; Svelto, M.; Frigeri, A. In vivo silencing of aquaporin-1 by RNA interference inhibits angiogenesis in the chick embryo chorioallantoic membrane assay. Cell. Mol. Biol. (Noisy-le-grand) 2006, 52, 51–56. [Google Scholar]
- Park, I.S.; Kang, S.W.; Shin, Y.J.; Chae, K.Y.; Park, M.O.; Kim, M.Y.; Wheatley, D.N.; Min, B.H. Arginine deiminase: A potential inhibitor of angiogenesis and tumour growth. Br. J. Cancer 2003, 89, 907–914. [Google Scholar]
- Mahboobi, S.; Pongratz, H.; Hufsky, H.; Hockemeyer, J.; Frieser, M.; Lyssenko, A.; Paper, D.H.; Bürgermeister, J.; Böhmer, F.D.; Fiebig, H.H.; Burger, A.M.; Baasner, S.; Beckers, T. Synthetic 2-aroylindole derivatives as a new class of potent tubulin-inhibitory, antimitotic agents. J. Med. Chem. 2001, 44, 4535–4553. [Google Scholar]
- Zheng, J.P.; Tang, H.Y.; Chen, X.J.; Yu, B.F.; Xie, J.; Wu, T.C. Construction of recombinant plasmid and prokaryotic expression in E. coli and biological activity analysis of human placenta arresten gene. Hepatobiliary Pancreat. Dis. Int. 2006, 5, 74–79. [Google Scholar] [PubMed]
- Huan-huan, C.; Li-Li, Y.; Shang-Bin, L. Artesunate reduces chicken chorioallantoic membrane neovascularisation and exhibits antiangiogenic and apoptotic activity on human microvascular dermal endothelial cell. Cancer Lett. 2004, 211, 163–173. [Google Scholar]
- Ashino, H.; Shimamura, M.; Nakajima, H.; Dombou, M.; Kawanaka, S.; Oikawa, T.; Iwaguchi, T.; Kawashima, S. Novel function of ascorbic acid as angiostatic factor. Angiogenesis 2003, 6, 259–269. [Google Scholar]
- Shailubhai, K.; Dheer, S.; Picker, D.; Kaur, G.; Sausville, E.A.; Jacob, G.S. Atiprimod is an inhibitor of cancer cell proliferation and angiogenesis. J. Exp. Ther. Oncol. 2004, 4, 267–279. [Google Scholar]
- Gagliardi, A.R.; Collins, D.C. Inhibition of angiogenesis by aurintricarboxylic acid. Anticancer Res. 1994, 14, 475–479. [Google Scholar]
- Asami, Y.; Kakeya, H.; Komi, Y.; Kojima, S.; Nishikawa, K.; Beebe, K.; Neckers, L.; Osada, H. Azaspirine, a fungal product, inhibits angiogenesis by blocking Raf-1 activation. Cancer Sci. 2008, 99, 1853–1858. [Google Scholar] [PubMed]
- van der Schaft, D.W.; Toebes, E.A.; Haseman, J.R.; Mayo, K.H.; Griffioen, A.W. Bactericidal/permeability-increasing protein (BPI) inhibits angiogenesis via induction of apoptosis in vascular endothelial cells. Blood 2000, 96, 176–181. [Google Scholar]
- Thakur, A.N.; Thakur, N.L.; Indap, M.M.; Pandit, R.A.; Datar, V.V.; Müller, W.E. Antiangiogenic, antimicrobial, and cytotoxic potential of sponge-associated bacteria. Mar. Biotechnol. N.Y. 2005, 7, 245–252. [Google Scholar] [CrossRef]
- Liu, J.J.; Huang, T.S.; Cheng, W.F.; Lu, F.J. Baicalein and baicalin are potent inhibitors of angiogenesis: Inhibition of endothelial cell proliferation, migration and differentiation. Int. J. Cancer 2003, 106, 559–565. [Google Scholar]
- Oikawa, T.; Hirotani, K.; Ogasawara, H.; Katayama, T.; Ashino-Fuse, H.; Shimamura, M.; Iwaguchi, T.; Nakamura, O. Inhibition of angiogenesis by bleomycin and its copper complex. Chem. Pharm. Bull. 1990, 38, 1790–1792. [Google Scholar] [PubMed]
- Manolopoulos, V.G.; Liekens, S.; Koolwijk, P.; Voets, T.; Peters, E.; Droogmans, G.; Lelkes, P.I.; De Clercq, E.; Nilius, B. Inhibition of angiogenesis by blockers of volume-regulated anion channels. Gen. Pharmacol. 2000, 34, 107–116. [Google Scholar]
- Folkman, J.; Weisz, P.B.; Joullic, M.M.; Li, W.W.; Ewing, W.R. Control of angiogenesis with synthetic heparin substitutes. Science 1989, 243, 1490–1493. [Google Scholar]
- Wang, X.H.; Xu, B.; Liu, J.T.; Cui, J.R. Effect of beta-escin sodium on endothelial cells proliferation, migration and apoptosis. Vascul. Pharmacol. 2008, 49, 158–165. [Google Scholar]
- Komi, Y.; Suzuki, Y.; Shimamura, M.; Kajimoto, S.; Nakajo, S.; Masuda, M.; Shibuya, M.; Itabe, H.; Shimokado, K.; Oettgen, P.; Nakaya, K.; Kojima, S. Mechanism of inhibition of tumor angiogenesis by beta-hydroxyisovaleryishikonin. Cancer Sci. 2009, 100, 269–277. [Google Scholar]
- David, L.; Mallet, C.; Keramidas, M.; Lamandé, N.; Gasc, J.M.; Dupuis-Girod, S.; Plauchu, H.; Feige, J.J.; Bailly, S. Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ. Res. 2008, 102, 914–922. [Google Scholar]
- Roccaro, A.M.; Hideshima, T.; Richardson, P.G.; Russo, D.; Ribatti, D.; Vacca, A.; Dammacco, F.; Anderson, K.C. Bortezomib as an antitumor agent. Curr. Pharm. Biotechnol. 2006, 7, 441–448. [Google Scholar]
- Gururaj, A.E.; Belakavadi, M.; Salimath, B.P. Antiangiogenic effects of butyric acid involve inhibition of VEGF/KDR gene expression and endothelial cell proliferation. Mol. Cell. Bichem. 2003, 243, 107–112. [Google Scholar]
- Kohn, E.C.; Alessandro, R.; Spoonster, J.; Wersto, R.P.; Liotta, L.A. Angiogenesis: Role of calcium-mediated signal transduction. Proc. Natl. Acad. Sci. USA 1995, 92, 1307–1311. [Google Scholar]
- Choi, J.M.; Lee, E.O.; Lee, H.J.; Kim, K.H.; Ahn, K.S.; Shim, B.S.; Kim, N.I.; Song, M.C.; Baek, N.I.; Kim, S.H. Identification of campesterol from Chrysanthemum coronarium L. and its antiangigenic activities. Phytother. Res. 2007, 21, 954–959. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.H.; Wang, T.Y.; Yuan, B.M.; Chai, Y.R.; Jia, Y.L.; Tian, F.; Wang, J.M.; Xue, L.X. Recombinant mouse canstatin inhibits chicken embryo chorioallantoic membrane angiogenesis and endothelial cell proliferation. Acta Biochim. Biophys. Sin. (Shanghai) 2004, 36, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Min, J.K.; Han, K.Y.; Kim, E.C.; Kim, Y.M.; Lee, S.W.; Kim, O.H.; Kim, K.W.; Gho, Y.S.; Kwon, Y.G. (2004) Capsaicin inhibits in vitro and in vivo angiogenesis. Cancer Res. 2004, 64, 644–651. [Google Scholar] [PubMed]
- Murugesan, S.; Mousa, S.A.; O’connor, L.J.; Lincoln, D.W., 2nd; Linhardt, R.J. Carbon inhibits vascular endothelial growth factor- and fibroblast growth factor-promoted angiogenesis. FEBS Lett. 2007, 581, 1157–1160. [Google Scholar] [PubMed]
- Chen, H.; Yan, X.; Lin, J.; Wang, F.; Xu, W. Depolymerized products of lambda-carrageenan as a potent angiogenesis inhibitor. J. Agric. Food Chem. 2007, 55, 6910–6917. [Google Scholar]
- Eisenstein, R.; Kuettner, K.E.; Neopolitan, C.; Soble, L.W.; Sorgente, N. The resistance of certain tissues to invasion. III. Cartilage extracts inhibit the growth of fibroblasts and endothelial cells in culture. Am. J. Pathol. 1975, 87, 337–348. [Google Scholar]
- Maiti, T.K.; Chatterjee, J.; Dasgupta, S. Effect of green tea polyphenols on angiogenesis induced by an angiogenin-like protein. Biochem. Biophys. Res. Commun. 2003, 308, 64–67. [Google Scholar]
- Vincent, L.; Soria, C.; Mirshahi, F.; Opolon, P.; Mishal, Z.; Vannier, J.P.; Soria, J.; Hong, L. Cerivastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme a reductase, inhibits endothelial cell proliferation induced by angiogenic factors in vitro and angiogenesis in in vivo models. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Slevin, M.; Mesaik, M.A.; Choudhary, M.I.; Elosta, A.H.; Matou, S.; Ahmed, N.; West, D.; Gaffney, J. Cheiradone: A vascular endothelial cell growth factor receptor antagonist. BMC Cell Biol. 2008, 9, 7. [Google Scholar]
- Presta, M.; Oreste, P.; Zoppetti, G.; Belleri, M.; Tanghetti, E.; Leali, D.; Urbinati, C.; Bugatti, A.; Ronca, R.; Nicoli, S.; Moroni, E.; Stabile, H.; Camozzi, M.; Hernandez, G.A.; Mitola, S.; Dell'Era, P.; Rusnati, M.; Ribatti, D. Antiangiogenic activity of semisynthetic biotechnological heparins: Low-molecular-weight-sulfated Escherichia coli K5 polysaccharide derivatives as fibroblast growth factor antagonists. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 71–76. [Google Scholar]
- Andrés, G.; Leali, D.; Mitola, S.; Coltrini, D.; Camozzi, M.; Corsini, M.; Belleri, M.; Hirsch, E.; Schwendener, R.A.; Christofori, G.; Alcamí, A.; Presta, M. A Pro-inflammatory Segnature Mediates FGF2-induced angiogenesis. J. Cell. Mol. Med. 2008. (Epub ahead of print).. [Google Scholar]
- Hiraki, Y.; Mitsui, K.; Endo, N.; Takahashi, K.; Hayami, T.; Inoue, H.; Shukunami, C.; Tokunaga, K.; Kono, T.; Yamada, M.; Takahashi, H.E.; Kondo, J. Molecular cloning of human chondromodulin-I, a cartilage-derived growth modulating factor, and its expression in Chinese hamster ovary cells. Eur. J. Biochem. 1999, 260, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.M.; Chang, H.; Li, S.Y.; Wu, I.H.; Chiu, J.H. Chrysin inhibits lipopolysaccharide-induced angiogenesis via down-regulation of VEGF/VEGFR-2(KDR) and IL-6/IL-6R pathways. Planta Med. 2006, 72, 708–714. [Google Scholar]
- Ejaz, S.; Insan-ud-din; Ashraf, M.; Nawaz, M.; Lim, C.W.; Kim, B. Cigarette smoke condensate and total particulate matter severely distrupts physiological angiogenesis. Food Chem. Toxicol. 2009, 47, 601–614. [Google Scholar] [CrossRef] [PubMed]
- Ribatti, D.; Maruotti, N.; Nico, B.; Longo, V.; Manieri, D.; Vacca, A.; Cantatore, F.P. Clodronate inhibits angiogenesis in vitro and in vivo. Oncol. Rep. 2008, 19, 1109–1112. [Google Scholar] [PubMed]
- Thapa, D.; Lee, J.S.; Park, S.Y.; Bae, YH.; Bae, SK.; Kwon, J.B.; Kim, K.J.; Kwak, M.K.; Park, Y.J.; Choi, H.G.; Kim, J.A. Clotrimazole ameliorates intestinal inflammation and abnormal angiogenesis by inhibiting interleukin-8 expression through a nuclear factor-kappaB-dependent manner. J. Pharmacol. Exp. Ther. 2008, 327, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Nakada, M.T.; Arnold, C.; Shieh, K.Y.; Markland, F.S. Contortrostatin, a dimeric disintegrin from Agkistrodon contortrix contortrix, inhibits angiogenesis. Angiogenesis 1999, 3, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Gururaj, A.E.; Belakavadi, M.; Venkatesh, D.A.; Marmé, D.; Salimath, B.P. Molecular mechanisms of anti-angiogenic effect of curcumin. Biochem. Biophys. Res. Commun. 2002, 297, 934–942. [Google Scholar]
- Hahm, E.R.; Gho, Y.S.; Park, S.; Park, C.; Kim, K.W.; Yang, C.H. Synthetic curcumin analogs inhibit activator protein-1 transcription and tumor-induced angiogenesis. Biochem. Biophys. Res. Commun. 2004, 321, 337–344. [Google Scholar]
- Yadav, VR.; Suresh, S.; Devi, K.; Yadav, S. Novel formulation of solid lipid microparticles of curcumin for anti-angiogenic and anti-infiammatory activity for optimization of therapy of infiammatory bowel disease. J. Pharm. Pharmacol. 2009, 61, 311–321. [Google Scholar] [PubMed]
- Brooks, P.C.; Montgomery, A.M.; Rosenfeld, M.; Reisfeld, R.A.; Hu, T.; Klier, G.; Cheresh, D.A. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994, 79, 1157–1164. [Google Scholar]
- Friedlander, M.; Brooks, P.C.; Shaffer, R.W.; Kincaid, C.M.; Varner, J.A.; Cheresh, D.A. Definition ot two distinct angiogenic pathways by distinct αv integrins. Science 1995, 270, 1500–1502. [Google Scholar]
- Jung, H.J.; Shimm, J.S.; Suh, Y.G.; Kim, Y.M.; Ono, M.; Kwon, H.J. Potent inhibition of in vivo angiogenesis and tumor growth by a novel cyclooxygenase-2 inhibitor, enoic acanthoic acid. Cancer Sci. 2007, 98, 1943–1948. [Google Scholar] [CrossRef] [PubMed]
- Park, B.C.; Park, S.Y.; Lee, J.S.; Mousa, S.A.; Kim, J.T.; Kwak, M.K.; Kang, K.W.; Lee, E.S.; Choi, H.G.; Yong, C.S.; Kim, J.A. The anti-angiogenic effects of 1-furan-2-yl-propenone are mediated through the suppression of both VEGF production and VEGF-induced signaling. Vascul. Pharmacol. 2009, 50, 123–131. [Google Scholar]
- Zilberberg, L.; Shinkaruk, S.; Leguin, O.; Rousseau, B.; Hagedorn, M.; Costa, F.; Caronzolo, D.; Balke, M.; Canron, X.; Convert, O.; Laïn, G.; Gionnet, K.; Goncalvès, M.; Bayle, M.; Bello, L.; Chassaing, G.; Deleris, G.; Bikfalvi, A. Structure and inhibitory effects on angiogenesis and tumor development of a new vascular endothelial growth inhibitor. J. Biol. Chem. 2003, 278, 35564–35573. [Google Scholar] [PubMed]
- Iurlaro, M.; Vacca, A.; Minischetti, M.; Ribatti, D.; Pellegrino, A.; Sardanelli, A.; Giacchetta, F.; Dammacco, F. Antiangiogenesis by cyclosporine. Exp. Hematol. 1998, 26, 1215–1222. [Google Scholar]
- Melkonian, G.; Munoz, N.; Chung, J.; Tong, C.; Marr, R.; Talbot, P. Capillary plexus development in the day five to day six chick chorioallantoic membrane is inhibited by cytochalasin D and suramin. J. Exp. Zool. 2002, 292, 241–254. [Google Scholar]
- Balzarini, J.; Gamboa, A.E.; Esnouf, R.; Liekens, S.; Neyts, J.; De Clercq, E.; Camarasa, M.J.; Pérez-Pérez, M.J. 7-Deazaxanthine, a novel prototype inhibitor of thymidine phosphorylase. FEBS Lett. 1998, 438, 91–95. [Google Scholar]
- Kim, J.H.; Kim, JH.; Yu, Y.S.; Park, K.H.; Kang, H.J.; Lee, H.Y.; Kim, K.W. Antiangiogenic effect of deguelin on choroidal neovascularization. J. Pharmacol. Exp. Ther. 2008, 324, 643–647. [Google Scholar] [PubMed]
- Favot, L.; Martin, S.; Keravis, T.; Andriantsitohaina, R.; Lugnier, C. Involvement of cyclin-dependent pathway in the inhibitory effect of delphinidin on angiogenesis. Cardiovasc. Res. 2003, 59, 479–487. [Google Scholar]
- Lee, D.Y.; Kim, S.K.; Kim, S.Y.; Son, D.H.; Nam, J.H.; Kim, I.S.; Park, R.W.; Kim, S.Y.; Byun, Y. Suppression of angiogenesis and tumor growth by orally active deoxycholic acid-heparin conjugate. J. Control. Release 2007, 118, 310–317. [Google Scholar]
- Roy, A.M.; Tiwari, K.N.; Parker, W.B.; Secrist, J.A., 3rd; Li, R.; Qu, Z. Antiangiogenic activity of 4’-thio-beta-D-arabinofuranosylcytosine. Mol. Cancer. Ther. 2006, 5, 2218–2224. [Google Scholar] [CrossRef] [PubMed]
- Takigawa, M.; Enomoto, M.; Nishida, Y.; Pan, H.O.; Kinoshita, A.; Suzuki, F. Tumor angiogenesis and polyamines: Alpha-difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase, inhibits B16 melanoma-induced angiogenesis in ovo and the proliferation of vascular endothelial cells in vitro. Cancer Res. 1990, 50, 4131–4138. [Google Scholar] [PubMed]
- Takano, S.; Gately, S.; Jiang, J.B.; Brem, S. A diaminoantraquinone inhibitor of angiogenesis. J. Pharmacol. Exp. Ther. 1994, 271, 1027–1033. [Google Scholar]
- Martínez-Poveda, B.; Muñoz-Chápuli, R.; Rodríguez-Nieto, S.; Quintela, J.M.; Fernández, A.; Medina, M.A.; Quesada, A.R. IB05204, a dichloropyridodithienotriazine, inhibits angiogenesis in vitro and in vivo. Mol. Cancer Ther. 2007, 6, 2675–2685. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.H.; Zhou, H.J.; Wang, W.Q.; Wu, G.D. Antimalarial dihydroartemisinin also inhibits angiogenesis. Cancer Chemother. Pharmacol. 2004, 53, 423–432. [Google Scholar]
- Bian, W.; Chen, F.; Bai, L.; Zhang, P.; Qin, W. Dihydrotanshinone I inhibits angiogenesis both in vitro and in vivo. Acta Biochim. Biophys. Sin. (Shanghai) 2008, 40, 1–6. [Google Scholar] [PubMed]
- Svensson, A.; Azarbayjani, F.; Bäckman, U.; Matsumoto, T.; Christofferson, R. Digoxin inhibits neuroblastoma tumor growth in mice. Anticancer Res. 2005, 25, 207–212. [Google Scholar]
- Martinéz-Poveda, B.; MunÞoz-Chápuli, R.; Riguera, R.; Fernández, A.; Medina, M.A.; Quesada, A.R. DTD, an anti-inflammatory ditriazine. Inhibits angiogenesis in vitro and in vivo. J. Cell. Mol. Med. 2008, 12, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, J.; Ho, P.Y.; Chen, L.C.; Chen, C.T.; Liang, Y.C.; Cheng, C.K.; Lee, W.S. Anti-angigenic action of 5,5-diphenyl-2-thiohydantoin-N10 (DPTH-N10). Cancer Lett. 2008, 271, 294–305. [Google Scholar]
- Vacca, A.; Ribatti, D.; Iurlaro, M.; Merchionne, F.; Nico, B.; Ria, R.; Dammacco, F. Docetaxel versus paclitaxel for antiangiogenesis. J.Hematother. Stem Cell Res. 2002, 11, 103–118. [Google Scholar]
- Kiosses, W.B.; Hood, J.; Yang, S.; Gerritsen, M.E.; Cheresh, D.A.; Alderson, N.; Schwartz, M.A. A dominant negative p65 PAK peptide inhibits angiogenesis. Circ. Res. 2002, 90, 697–702. [Google Scholar]
- Garrison, J.B.; Shaw, Y.J.; Chen, C.S.; Kyprianou, N. Novel quinazoline-based compounds impair prostate tumorigenesis by targeting tumor vascularity. Cancer Res. 2007, 67, 11344–11352. [Google Scholar]
- Richardson, M.; Wong, D.; Lacroix, S.; Stanisz, J.; Singh, G. Inhibition by doxycycline of angiogenesis in the chicken chorioallantoic membrane (CAM). Cancer Chemother. Pharmacol. 2005, 56, 1–9. [Google Scholar]
- Splawinski, J.; Michna, M.; Palczak, R.; Konturek, S.; Splawinska, B. Angiogenesis, quantitative assessment by the chick chorioallantoic membrane assay. Meth. Find. Explt. Clin. Pharmacol. 1988, 10, 221–226. [Google Scholar]
- Lirdprapamongkol, K.; Kramb, J.P.; Chokchaichamnankit, D.; Srisomsap, C.; Surarit, R.; Sila-Asna, M.; Bunyaratvej, A.; Dannhardt, G.; Svasti, J. Juice of eclipta prostrata inhibits cell migration in vitro and exhibits anti-angiogenic activity in vivo. In Vivo 2008, 22, 363–368. [Google Scholar] [PubMed]
- Kwak, H.J.; Park, M.J.; Park, C.M.; Moon, S.I.; Yoo, D.H.; Lee, H.C.; Lee, S.H.; Kim, M.S.; Lee, H.W.; Shin, W.S.; Park, I.C.; Rhee, C.H.; Hong, S.I. Emodin inhibits vascular endothelial growth factor-A-induced angiogenesis by blocking receptor-2 (KDR/Flk-1) phosphorylation. Int. J. Cancer 2006, 118, 2711–2720. [Google Scholar]
- Pisanti, S.; Borselli, C.; Oliviero, O.; Laezza, C.; Gazzerro, P.; Bifulco, M. Antiangiogenic activity of the endocannabinoid anandamide: Correlation to its tumor-suppressor efficacy. J. Cell Physiol. 2007, 211, 495–503. [Google Scholar]
- Mongiat, M.; Sweeney, S.M.; San Antonio, J.D.; Fu, J.; Iozzo, R.V. Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J. Biol. Chem. 2002, 278, 4238–4249. [Google Scholar]
- Ling, Y.; Yang, Y.; Lu, N.; You, Q.D.; Wang, S.; Gao, Y.; Chen, Y.; Guo, Q.L. Endostar, a novel recombinant human endostatin, exerts antiangiogenic effect via blocking VEGF-induced tyrosine phosphorylation of KDR/FLK-1 of endothelial cells. Biochem. Biophys. Res. Commun. 2007, 361, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Tan, G.; Li, J.; Dong, X.; Krissansen, G.W.; Sun, X. Gene transfer of endostatin enhances the efficacy of doxorubicin to suppress human hepatocellular carcinomas in mice. Cancer Sci. 2007, 98, 1381–1387. [Google Scholar]
- Oikawa, T.; Haegawa, M.; Shimamura, M.; Ashino, H.; Murota, S.; Morita, I. Eponeomycin, a novel antibiotic, is a high powerful angiogenesis inhibitor. Biochem. Biophys. Res. Commun. 1993, 181, 1070–1076. [Google Scholar]
- Michaelis, U.R.; Fisslthaler, B.; Barbosa-Sicard, E.; Falck, J.R.; Fleming, I.; Busse, R. Cytochrome P450 epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogenesis. J. Cell Sci. 2005, 118, 5489–5498. [Google Scholar]
- Gagliardi, A.R.; Collins, D.C. Inhibition of angiogenesis by antiestrogens. Cancer Res. 1993, 53, 533–535. [Google Scholar]
- Forough, R.; Weylie, B.; Collins, C.; Parker, JL.; Zhu, J.; Barhoumi, R.; Watson, D.K. Transcription factor Ets-1 regulates fibroblast growth factor-1-mediated angiogenesis in vivo: Role of Ets-1 in the regulation of the PI3K/AKT/MMP-1 pathway. J. Vasc. Res. 2006, 43, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Wernert, N.; Stanjek, A.; Hügel, A.; Giannis, A. Inhibition of angiogenesis on the chicken chorioallantoic membrane by Ets 1 antisense oligodeoxyribonucleotides. Verh. Dtsch. Ges. Pathol. 1999, 83, 212–215. [Google Scholar]
- Shyu, K.G.; Lin, S.; Lee, C.C.; Chen, E.; Lin, L.C.; Wang, B.W.; Tsai, S.C. Evodiamine inhibits in vitro angiogenesis: Implication for antitumorgenicity. Life Sci. 2006, 78, 2234–2243. [Google Scholar]
- Lin, J.; Yan, X.J.; Chen, H.M. Fascaplysin, a selective CDK4 inhibitor, exhibit anti-angiogenic activity in vitro and in vivo. Cancer Chemoter. Pharmacol. 2007, 59, 439–445. [Google Scholar] [CrossRef]
- Ribatti, D.; Nico, B.; Morbidelli, L.; Donnini, S.; Ziche, M.; Vacca, A.; Roncali, L.; Presta, M. Cell-mediated delivery of fibroblast growth factor-2 and vascular endothelial growth factor onto the chick chorioallantoic membrane: Endothelial fenestrations and angiogenesis. J. Vasc. Res. 2001, 38, 389–397. [Google Scholar]
- Lindsay, C.K.; Gomez, D.E.; Thorgeirsson, U.P. Effect of flavone acetic acid on endothelial cell proliferation: Evidence for antiangiogenic properties. Anticancer Res. 1996, 16, 425–431. [Google Scholar]
- Igarashi, Y.; Yabuta, Y.; Sekine, A.; Fujii, K.; Harada, K.; Oikawa, T.; Sato, M.; Furumai, T.; Oki, T. Directed biosynthesis of fluorinated pseurotin A, synerazol and gliotoxin. J. Antibiot. (Tokyo) 2004, 57, 748–754. [Google Scholar] [PubMed]
- Ryu, J.; Lee, C.W.; Hong, K.H.; Shin, J.A.; Lim, S.H.; Park, C.S.; Shim, J.; Nam, K.B.; Choi, K.J.; Kim, Y.H.; Han, K.H. Activation of fractalkine/CX3CR1 by vascular endothelial cells induces angiogenesis through VEGF-A/KDR and reverses hindlimb ischaemia. Cardiovasc. Res. 2008, 78, 333–340. [Google Scholar]
- Chung, T.W.; Kim, S.J.; Choi, H.J.; Kim, K.J.; Kim, M.J.; Kim, S.H.; Lee, H.J.; Ko, J.H.; Lee, Y.C.; Suzuki, A.; Kim, C.H. Ganglioside GM3 inhibits VEGF/VEGFR-2-mediated angiogenesis: Direct interaction of GM3 with VEGFR-2. Glycobiology 2009, 19, 229–239. [Google Scholar]
- Ahn, E.K.; Jeon, H.J.; Lim, E.J.; Jung, H.J.; Park, E.H. Anti-inflammatory and anti-angiogenic activities of Gastrodia elata Blume. J. Ethnopharmacol. 2007, 110, 476–482. [Google Scholar]
- Koo, H.J.; Song, Y.S.; Kim, H.J.; Lee, Y.H.; Hong, S.M.; Kim, S.J.; Kim, B.C.; Jin, C.; Lim, C.J.; Park, E.H. Antiinflammatory effects of genipin, an active principle of gardenia. Eur. J. Pharmacol. 2004, 495, 201–208. [Google Scholar]
- Conconi, M.T.; Nico, B.; Guidolin, D.; Baiguera, S.; Spinazzi, R.; Rebuffat, P.; Malendowicz, L.K.; Vacca, A.; Carraro, G.; Parnigotto, P.P.; Nussdorfer, G.G.; Ribatti, D. Ghrelin inhibits FGF-2-mediated angiogenesis in vitro and in vivo. Peptides 2004, 25, 2179–2185. [Google Scholar] [CrossRef] [PubMed]
- Chow, L.M.; Chui, C.H.; Tang, J.C.; Lau, F.Y.; Yau, M.Y.; Cheng, G.Y.; Wong, R.S.; Lai, P.B.; Leung, T.W.; Teo, I.T.; Cheung, F.; Guo, D.; Chan, A.S. Anti-angiogenic potential of Gleditsia sinensis fruit extract. Int. J. Mol. Med. 2003, 12, 269–273. [Google Scholar]
- Amin, K.; Li, J.; Chao, W.R.; Dewhirst, M.W.; Haroon, Z.A. Dietary glycine inhibits angiogenesis during wound healing and tumor growth. Cancer Biol. Ther. 2003, 2, 173–178. [Google Scholar]
- Abe, M.; Jnoue, D.; Matsunaga, K.; Ohizumi, Y.; Ueda, H.; Asano, T.; Murakami, M.; Sato, Y. Goniodomin A, an antifungal polyether macrolide, exhibits antiangiogenic activities via inhibition of actin reorganization in endothelial cells. J. Cell Physiol. 2002, 190, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yang, F.; Zhang, X.W.; Wang, S.C.; Li, M.H.; Lin, L.P.; Ding, J. Grateloupia longifolia polysaccharide inhibits angiogenesis by downregulating tissue factor expression in HMEC-1 endothelial cells. Br. J. Pharmacol. 2006, 148, 741–751. [Google Scholar]
- Oak, M.H.; El Bedoui, J.; Schini-Kerth, V.B. Antiangiogenic properties of natural polyphenols from red wine and green tea. J. Nutr. Biochem. 2005, 16, 1–8. [Google Scholar]
- Lee, J.S.; Park, B.C.; Ko, Y.J.; Choi, M.K.; Choi, H.G.; Yong, C.S.; Lee, J.S.; Kim, J.A. Grifola frondosa (maitake mushroom) water extract inhibits vascular endothelial growth factor-induced angiogenesis through inhibition of reactive oxygen species and extracellular signal-regulated kinase phosphorylation. J. Med. Food 2008, 11, 643–651. [Google Scholar]
- Cao, Y.; Chen, C.; Weatherbee, J.A.; Tsang, M.; Folkman, J. GRO-beta, a -C-X-C- chemokine, is an angiogenesis inhibitor that suppresses the growth of Lewis lung carcinoma in mice. J. Exp. Med. 1995, 182, 2069–2077. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.I.; Calvo, A.; Stafford, J.; Cheung, M.; Kumar, R.; Philp, D.; Kleinman, H.K.; Green, J.E. Inhibition of VEGF receptors significantly impairs mammary cancer growth in C3(1)/Tag transgenic mice through antiangiogenic and non-antiangiogenic mechanisms. Oncogene 2005, 24, 790–800. [Google Scholar] [CrossRef] [PubMed]
- Benelli, U.; Bocci, G.; Danesi, R.; Lepri, A.; Bernardini, N.; Bianchi, F.; Lupetti, M.; Dolfi, A.; Campagni, A.; Agen, C.; Nardi, M.; Del Tacca, M. The heparan sulfate suleparoide inhibits rat corneal angiogenesis and in vitro neovascularization. Exp. Eye. Res. 1998, 67, 133–142. [Google Scholar]
- Sasisekharon, R.; Moses, M.A.; Nugent, M.A.; Cooney, C.L.; Langer, R. Heparinase inhibits neovascularization. Proc. Natl. Acad. Sci. USA 1994, 91, 1524–1528. [Google Scholar]
- Folkman, J.; Langer, R.; Linhrdt, RC.; Haudenschild, C.; Taylor, S. Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone. Science 1983, 221, 719–725. [Google Scholar] [PubMed]
- Crum, R.; Szabo, S.; Folkman, J. A new class of steroid inhibit angiogenesis in the presence of heparin or a heparin fragment. Science 1985, 230, 1375–1378. [Google Scholar]
- Casu, B.; Guerrini, M.; Guglieri, S.; Naggi, A.; Perez, M.; Torri, G.; Cassinelli, G.; Ribatti, D.; Carminati, P.; Giannini, G.; Penco, S.; Pisano, C.; Belleri, M.; Rusnati, M.; Presta, M. Undersulfated and glycol-split heparins endowed with antiangiogenic activity. J. Med. Chem. 2004, 47, 838–848. [Google Scholar]
- Fazekas, K.; Janovics, A.; Döme, B.; Koska, P.; Albini, A.; Tímár, J. Effect of HGF-like basic hexapeptides on angiogenesis. Microvasc. Res. 2001, 62, 440–444. [Google Scholar]
- Oikawa, T.; Hirotani, K.; Shimamura, M.; Ashino-Fuse, H.; Iwaguchi, T. Powerful antiangiogenic activity of herbamycin (named angiostatic antibiotic). J. Antibiot. 1989, 42, 1202–1204. [Google Scholar]
- Juarez, J.C.; Guan, X.; Shipulina, N.V.; Plunkett, M.L.; Parry, G.C.; Shaw, D.E.; Zhang, J.C.; Rabbani, S.A.; McCrae, K.R.; Mazar, A.P.; Morgan, W.T.; Doñate, F. Histidine-proline-rich glycoprotein has potent antiangiogenic activity mediated through the histidine-proline-rich domain. Cancer Res. 2002, 62, 5344–5350. [Google Scholar]
- Sgadari, C.; Barillari, G.; Toschi, E.; Carlei, D.; Bacigalupo, I.; Baccarini, S.; Palladino, C.; Leone, P.; Bugarini, R.; Malavasi, L.; Cafaro, A.; Falchi, M.; Valdembri, D.; Rezza, G.; Bussolino, F.; Monini, P.; Ensoli, B. HIV protease inhibitors are potent anti-angiogenic molecole and promote regression of Kaposi sarcoma. Nat. Med. 2002, 8, 225–232. [Google Scholar]
- Myers, C.; Charboneau, A.; Cheung, I.; Hanks, D.; Boudreau, N. Sustained expression of homeobox D10 inhibits angiogenesis. Am. J. Pathol. 2002, 161, 2099–2109. [Google Scholar] [CrossRef] [PubMed]
- Nagai, Y.; Tasaki, H.; Takatsu, H.; Nihei, S.; Yamashita, K.; Toyokawa, T.; Nakashima, Y. Homocystein inhibits angiogenesis in vitro and in vivo. Biochem. Biophys. Res. Commun. 2001, 281, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Ishimaru, K.; Sakamoto, H.; Yokota, J.; Hirohashi, S.; Igarashi, K.; Sudo, K.; Terada, M. Angiogenic activity of the recombinant hst-1 protein. Cancer Lett. 1994, 83, 261–268. [Google Scholar]
- Ueda, E.; Ozerdem, U.; Chen, Y.H.; Yao, M.; Huang, K.T.; Sun, H.; Martins-Green, M.; Bartolini, P.; Walker, AM. A molecular mimic demonstrates that phosphorylated human prolactin is a potent anti-angiogenic hormone. Endocr. Relat. Cancer 2006, 13, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Chavakis, T.; Cines, D.B.; Rhee, J.S.; Liang, O.D.; Schubert, U.; Hammes, H.P.; Higazi, A.A.; Nawroth, P.P.; Preissner, K.T.; Bdeir, K. Regulation of neovascularization by human neutrophil peptides (alpha-defensins): A link between inflammation and angiogenesis. FASEB J. 2004, 18, 1306–1308. [Google Scholar]
- Xiao, D.; Tan, W.; Li, M.; Ding, J. Antiangiogenic potential of 10-hydroxycamptothecin. Life Sci. 2001, 69, 1619–1628. [Google Scholar]
- Marks, M.G.; Shi, J.; Fry, M.O.; Xiao, Z.; Trzyna, M.; Pokala, V.; Ihnat, M.A.; Li, P.K. Effects of putative hydroxylated thalidomide metabolites on blood vessel density in the chorioallantoic membrane (CAM) assay and on tumor and endothelial cell proliferation. Bio. Pharm. Bull. 2002, 25, 597–604. [Google Scholar]
- Martínez-Poveda, B.; Queseda, A.R.; Medina, M.A. Hyperforin, a bio-active compound of St. John's Wort, is a new inhibitor of angiogenesis targeting several key steps of the process. Int. J. Cancer 2005, 117, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Roca, C.; Primo, L.; Valdembri, D.; Cividalli, A.; Declerck, P.; Carmeliet, P.; Gabriele, P.; Bussolino, F. Hyperthermia inhibits angiogenesis by a plasminogen activator inhibitor 1-dependent mechanism. Cancer Res. 2003, 63, 1500–1507. [Google Scholar]
- Ojo-Amaize, E.A.; Nchekwube, E.J.; Cottam, H.B.; Bai, R.; Verdier-Pinard, P.; Kakkanaiah, V.N.; Varner, J.A.; Leoni, L.; Okogun, J.I.; Adesomoju, A.A.; Oyemade, O.A.; Hamel, E. Hypoestoxide, a natural nonmutagenic diterpenoid with antiangiogenic and antitumor activity: Possible mechanisms of action. Cancer Res. 2002, 62, 4007–4014. [Google Scholar]
- Nagasawa, H.; Mikamo, N.; Nakajima, Y.; Matsumoto, H.; Uto, Y.; Hori, H. Antiangiogenic hypoxic cytotoxin TX-402 inhibits hypoxia-inducible factor 1 signaling pathway. Anticancer Res. 2003, 23, 4427–4434. [Google Scholar]
- Nagasawa, H.; Yamashita, S.; Mikamo, N.; Shimamura, M.; Oka, S.; Uto, Y.; Hori, H. Design, synthesis and biological activities of antiangiogenic hypoxic cytotoxin, triazine-N-oxide derivatives. Comp. Biochem. Physiol. A. Mol.Integr. Physiol. 2002, 132, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.L.; Li, J.J.; Zheng, Z.B.; Liu, H.Y.; Du, G.J.; Li, S. Antitumor activities of a novel indolin-2-ketone compound, Z24: More potent inhibition on bFGF-induced angiogenesis and bcl-2 over-expressing cancer cells. Eur. J. Pharmacol. 2004, 502, 1–10. [Google Scholar]
- Maragoudakis, M.E.; Sarmonika, M.; Panoutscacopoulou, M. Inhibition of basement membrane biosynthesis prevents angiogenesis. J. Pharmacol. Exp. Ther. 1988, 244, 729–733. [Google Scholar]
- Maragoudakis, M.E.; Sarmonika, M.; Panoutscacopoulou, M. Antiangiogenic action of heparin plus cortisone is associated with decreased collagenous protein synthesis in the CAM system. Pharmacol. Exp. Ther. 1989, 251, 679–682. [Google Scholar]
- Maragoudakis, M.E.; Missirlis, E.; Sarmonika, M.; Panoutsacopoulou, M.; Karakiulakis, G. Basement membrane biosynthesis as a target tot umor therapy. J. Pharmacol. Exp. Ther. 1990, 252, 753–757. [Google Scholar]
- Hellebrekers, D.M.; Jair, K.W.; Viré, E.; Eguchi, S.; Hoebers, N.T.; Fraga, M.F.; Esteller, M.; Fuks, F.; Baylin, S.B.; van Engeland, M.; Griffioen, A.W. Angiostatic activity of DNA methyltransferase inhibitors. Mol. Cancer Ther. 2006, 5, 467–475. [Google Scholar]
- Oh, S.H.; Kim, W.Y.; Kim, J.H.; Younes, M.N.; El-Naggar, A.K.; Myers, J.N.; Kies, M.; Cohen, P.; Khuri, F.; Hong, W.K.; Lee, H.Y. Identification of insulin-like growth factor binding protein-3 as a farnesyl transferase inhibitor SCH66336-induced negative regulator of angiogenesis in head and neck squamous cell carcinoma. Clin. Cancer Res. 2006, 12, 653–661. [Google Scholar]
- Kumar, C.C.; Malkowski, M.; Yin, Z.; Tanghetti, E.; Yaremko, B.; Nechuta, T.; Varner, J.; Liu, M.; Smith, E.M.; Neustadt, B.; Presta, M.; Armstrong, L. Inhibition of angiogenesis and tumor growth by SCH221153, a dual alpha(v)beta3 and alpha(v)beta5 integrin receptor antagonist. Cancer Res. 2001, 61, 2232–2238. [Google Scholar]
- Airoldi, I.; Di Carlo, E.; Cocco, C.; Taverniti, G.; D'Antuono, T.; Ognio, E.; Watanabe, M.; Ribatti, D.; Pistoia, V. Endogenous IL-12 triggers an antiangiogenic program in melanoma cells. Proc. Natl. Acad. Sci. USA 2007, 104, 3996–4001. [Google Scholar]
- Cao, R.; Farnebo, J.; Kurimoto, M.; Cao, Y. Interleukin-18 acts as an angiogenesis and tumor suppressor. FASEB J. 1999, 13, 2195–2202. [Google Scholar]
- Castermans, K.; Tabruyn, S.P.; Zeng, R.; van Beijnum, J.R.; Eppolito, C.; Leonard, W.J.; Shrikant, P.A.; Griffioen, A.W. Angiostatic activity of the antitumor cytokine interleukin 21. Blood 2008, 112, 4940–4947. [Google Scholar]
- Shimizu, M.; Shimamura, M.; Owaki, T.; Asakawa, M.; Fujita, K.; Kudo, M.; Iwakura, Y.; Takeda, Y.; Luster, A.D.; Mizuguchi, J.; Yoshimoto, T. Antiangiogenic and antitumor activity of IL-27. J. Immunol. 2006, 176, 7317–7324. [Google Scholar]
- Karnabatidis, D.; Dimopoulos, J.; Siabilis, D.; Papazafiropoulos, D.; Kalogeropoulou, C.P.; Nikiforidis, G. Quantification of the ionising radiation effect over angiogenesis in the chick embryo chorionallantoic membrane by computerised analysis of angiographic images. Acta Radiologica 2001, 42, 333–338. [Google Scholar]
- Kiriakidis, S.; Högemeir, O.; Starcke, S.; Dombrowski, F.; Hahne, J.C.; Pepper, M.; Jha, H.C.; Wernert, N. Novel tempeh (fermented soyabean) isoflavones inhibit in vivo angiogenesis in the chicken chorioallantoic membrane assay. Br. J. Nutr. 2005, 93, 317–323. [Google Scholar]
- Benndorf, R.A.; Schwedhelm, E.; Gnann, A.; Taheri, R.; Kom, G.; Didié, M.; Steenpass, A.; Ergün, S.; Böger, R.H. Isoprostanes inhibit vascular endothelial growth factor-induced endothelial cell migration, tube formation, and cardiac vessel sprouting in vitro, as well as, angiogenesis in vivo via activation of the thromboxane A(2) receptor: A potential link between oxidative stress and impaired angogenesis. Circ. Res. 2008, 103, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Pipìli-Synetos, E.; Sakkoula, E.; Haralabopoulos, G.; Andriopoulou, P.; Peristeris, P.; Maragoudakis, M.E. Evidence that nitric oxide is an endogenous antiangiogenic mediator. R. J. Pharmacol. 1995, 111, 894–902. [Google Scholar]
- Emanuel, S.; Gruninger, R.H.; Fuenters-Pesquera, A.; Connolly, P.J.; Seamon, J.A.; Hazel, S.; Tominovich, R.; Hollister, B.; Napier, C.; D'Andrea, M.R.; Reuman, M.; Bignan, G.; Tuman, R.; Johnson, D.; Moffatt, D.; Batchelor, M.; Foley, A.; O'Connell, J.; Allen, R.; Perry, M.; Jolliffe, L.; Middleton, S.A. A vascular endothelial growth factor receptor-2 kinase inhibitor potentiates the activity of the conventional chemotherapeutic agents paclitaxel and doxorubicin in tumor xenograft models. Mol. Pharmacol. 2004, 66, 635–647. [Google Scholar]
- Santulli, R.J.; Kinney, W.A.; Ghosh, S.; Decorte, B.L.; Liu, L.; Tuman, R.W.; Zhou, Z.; Huebert, N.; Bursell, S.E.; Clermont, A.C.; Grant, M.B.; Shaw, L.C.; Mousa, S.A.; Galemmo, R.A., Jr.; Johnson, D.L.; Maryanoff, B.E.; Damiano, B.P. Studies with an orally bioavailable alpha V integrin antagonist in animal models of ocular vasculopathy: Retinal neovascularization in mice and retinal vascular permeability in diabetic rats. J. Pharmacol. Exp. Ther. 2008, 324, 894–901. [Google Scholar]
- Shimamura, M.; Nagasawa, H.; Ashino, H.; Yamamoto, Y.; Hazato, T.; Uto, Y.; Hori, H.; Inayama, S. A novel hypoxia-dependent 2-nitroimidazole KIN-841 inhibits tumour-specific angiogenesis by blocking production of angiogenic factors. Br. J. Cancer 2003, 88, 307–313. [Google Scholar]
- Colman, R.W. Regulation of angiogenesis by the kallikrein-kinin system. Curr. Pharm. Des. 2006, 12, 2599–2607. [Google Scholar]
- Zhang, J.C.; Qi, X.; Juraz, J.; Plunkett, M.; Donaté, F.; Sakthivel, R.; Mazar, A.P.; McCrae, K.R. Inhibition of angiogenesis by two-chain high molecular weight kininogen (HKa) and kininogen-derived polyptides. Can. J. Physiol. Pharmacol. 2002, 80, 85–90. [Google Scholar]
- Colman, R.W.; Iameson, B.A.; Lin, Y.; Johnson, D.; Mousa, S.A. Domain 5 of high molecular weight kininogen (kininostatin) down-regulates endothelial cell proliferation and migration and inhibits angiogenesis. Blood 2000, 95, 543–550. [Google Scholar]
- Yi, Z.F.; Cho, S.G.; Zhao, H.; Wu, Y.Y.; Luo, J.; Li, D.; Yi, T.; Xu, X.; Wu, Z.; Liu, M. A novel peptide from human apolipoprotein(a) inhibits angiogenesis and tumor growth by targeting c-Src phosphorylation in VEGF-induced human umbilical endothelial cells. Int. J. Cancer 2009, 124, 843–852. [Google Scholar]
- Oikawa, T.; Sasaki, T.; Nakamura, M.; Shimamura, M.; Tanahashi, N.; Omura, S.; Tanaka, K. The proteasoma is involved in angiogenesis. Biochem. Biophys. Res. Commun. 1998, 246, 243–248. [Google Scholar]
- Sakamoto, N.; Iwahana, M.; Tanaka, N.G.; Osada, Y. (1991) Inhibition of angiogenesis and tumor growth by a synthetic laminin peptide, CDPGYIGSR-NH2. Cancer Res. 1991, 51, 903–906. [Google Scholar] [PubMed]
- Hoffman, R.; Paper, D.H.; Donaldson, J.; Vogl, H. Inhibition of angiogenesis and murine tumour growth by laminarin sulphate. Brit. J. Cancer 1996, 73, 1183–1186. [Google Scholar]
- Dias, P.F.; Siqueira, J.M., Jr.; Vendruscolo, L.F.; de Jesus Neiva, T.; Gagliardi, A.R.; Maraschin, M.; Ribeiro-do-Valle, R.M. Antiangiogenic and antitumoral properties of a polysaccharide isolated from the seaweed Sargassum stenophyllum. Cancer Chemother. Pharmacol. 2005, 56, 436–446. [Google Scholar]
- Pilorget, A.; Conesa, M.; Sarray, S.; Michaud-Levesque, J.; Daoud, S.; Kim, K.S.; Demeule, M.; Marvaldi, J.; El Ayeb, M.; Marrakchi, N.; Béliveau, R.; Luis, J. Lebectin, a Macrovipera lebetina venom-derived C-type lectin, inhibits angiogenesis both in vitro and in vivo. J. Cell. Physiol. 2007, 211, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Olfa, K.Z.; José, L.; Salma, D.; Amine, B.; Najet, S.A.; Nicolas, A.; Maxime, L.; Raoudha, Z.; Kamel, M.; Jacques, M.; Jean-Marc, S.; Mohamed el, A.; Naziha, M. Lebestatin, a disintegrin from Macrovipera venom, inhibits integrin-mediated cell adhesion, migration and angiogenesis. Lab. Invest. 2005, 85, 1507–1516. [Google Scholar] [PubMed]
- Niu, Y.C.; Liu, J.C.; Zhao, X.M.; Wu, X.X. A low molecular weight polysaccharide isolated from Agaricus blazei suppresses tumor growth and angiogenesis in vivo. Oncol. Rep. 2009, 21, 145–152. [Google Scholar] [PubMed]
- Yoo, H.J.; Kang, H.J.; Song, Y.S.; Park, E.H.; Lim, C.J. Anti-angiogenic, antinociceptive and anti-inflammatory activities of Lonicera japonica extract. J. Pharm. Pharmacol. 2008, 60, 779–786. [Google Scholar]
- Hahnenberger, R.; Jakobson, A.M.; Ansari, A.; Wehler, T.; Svahn, C.M.; Lindahl, U. Low-sulphated oligosaccharides derived from heparan sulphate inhibit normal angiogenesis. Glycobiology 1993, 3, 567–573. [Google Scholar]
- Ye, J.; Wang, C.; Chen, X.; Guo, S.; Sun, M. Marine lysozyme from a marine bacterium that inhibits angiogenesis and tumor growth. Appl. Microbiol. Biotechnol. 2008, 77, 1261–1267. [Google Scholar]
- Melkonian, G.; Cheung, L.; Marr, R.; Tong, C.; Talbot, P. Mainstream and sidestream cigarette smoke inhibit growth and angiogenesis in the day 5 chick chorioallantoic membrane. Toxicol. Sci. 2002, 68, 237–248. [Google Scholar]
- Ma, J.; Xin, X.; Meng, L.; Tong, L.; Lin, L.; Geng, M.; Ding, J. The marine-derived oligosaccaride sul fate (MdOS), anovel multiple tyrosine kinase inhibitor, combats tumor angiogenesis both in vitro and in vivo. PloS ONE 2008, 3, e3774. [Google Scholar] [PubMed]
- Liu, N.; Lapcevich, R.K.; Underhill, C.B.; Han, Z.; Gao, F.; Swartz, G.; Plum, S.M.; Zhang, L.; Green, S.J. Metastatin: A hyaluronan-binding complex from cartilage that inhibits tumor growth. Cancer Res. 2001, 61, 1022–1028. [Google Scholar]
- D’Amato, R.J.; Lin, C.M.; Flynn, E.; Folkman, J.; Hamel, E. 2-Methoxyestradiol, an endogenous mammalian metabolita, inhibits tubulin polymerization by interacting at the colchicine site. Proc. Natl. Acad. Sci. USA 1994, 91, 3964–3968. [Google Scholar] [CrossRef]
- Zacharakis, N.; Tone, P.; Flordellis, C.S.; Maragoudakis, M.E.; Tsopanoglou, N.E. Methylene blue inhibits angiogenesis in chick chorioallantoic membrane through a nitric oxide-independent mechanism. J. Cell. Mol. Med. 2006, 10, 493–548. [Google Scholar]
- Chui, C.H.; Gambari, R.; Lau, F.Y.; Hau, DK.; Wong, R.S.; Cheng, G.Y.; Kok, S.H.; Higa, T.; Ke, B.; Chan, A.S.; Fong, D.W.; Tang, J.C. Antiangiogenic activity of a concentrated effective microorganism fermentation extract. Int. J. Mol. Med. 2006, 18, 975–979. [Google Scholar]
- Van der Horst, E.H.; Leupold, J.H.; Schubbert, R.; Ullrich, A.; Allgayer, H. TaqMan-based quantification of invasive cells in the chick embryo metastasis assay. Biotechniques 2004, 37, 940–945. [Google Scholar]
- Iigo, M.; Shimamura, M.; Sagawa, K.; Tsuda, H. Characteristics of the inhibitory effect of mitoxantrone and pirarubicin on lung metastases of colon carcinoma 26. Jpn. J. Cancer Res. 1995, 86, 867–872. [Google Scholar]
- Roomi, M.W.; Roomi, N.; Ivanov, V.; Kalinovsky, T.; Niedzwiecki, A.; Rath, M. Inhibitory effect of a mixuture containing ascorbic acid, lysine, proline and green tea extract on critical parameters in angiogenesis. Oncol. Rep. 2005, 14, 807–815. [Google Scholar] [PubMed]
- Colman, R.W. Inhibition of angiogenesis by a monoclonal antibody to kininogen as well as by kininostatin which block proangiogenic high molecular weight kininogen. Int. Immunopharmacol. 2002, 2, 1887–1894. [Google Scholar]
- Roskelly, C.D.; Williams, D.E.; McHardy, L.M.; Leong, KG.; Troussard, A.; Karsan, A.; Andersen, R.J.; Dedhar, S.; Roberge, M. Inhibition of tumor cell invasion and angiogenesis by motuporamines. Cancer Res. 2001, 61, 6788–6794. [Google Scholar] [PubMed]
- Gangjee, A.; Namjoshi, O.A.; Yu, J.; Ihnat, M.A.; Thorpe, J.E.; Warnke, L.A. (2008) Design, synthesis and biological evaluation of substituted pyrrol[2,3-d]pyrimidines as multiple receptor tyrosine kinase inhibitors and antiangiogenic agents. Bioorg. Med. Chem. 2008, 16, 5514–5528. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; D’Souza, S.S.; Tickoo, S.; Salimath, B.P.; Singh, H.B. Antiangiogenic and proapoptotic activities of allyl isothiocyanate inhibit ascites tumor growth in vivo. Integr. Cancer Ther. 2009, 8, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Sihn, G.; Walter, T.; Klein, J.C.; Queguiner, I.; Iwao, H.; Nicolau, C.; Lehn, J.M.; Corvol, P.; Gasc, J.M. Anti-angiogenic properties of myo-inositol trispyrophosphate in ovo and growth reduction of implanted glioma. FEBS Lett. 2007, 581, 962–966. [Google Scholar]
- Hu, G.F. Neomycin inhibits angiogenin-induced angiogenesis. Proc. Natl. Acad. Sci. USA 1998, 95, 9791–9795. [Google Scholar]
- Ribatti, D.; Nico, B.; Mangieri, D.; Maruotti, N.; Longo, V.; Vacca, A.; Cantatore, F.P. Neridronate inhibits angiogenesis in vitro and in vivo. Clin. Rheumatol. 2007, 26, 1094–1098. [Google Scholar] [CrossRef] [PubMed]
- Nakano, N.; Higashiyama, S.; Ohmoto, H.; Ishiguro, H.; Taniguchi, N.; Wada, Y. The N-terminal region of NTAK/neuregulin-2 isoforms has an inhibitory activity on angiogenesis. J. Biol. Chem. 2004, 279, 11465–11470. [Google Scholar]
- Pal, S.; Wu, J.; Murray, J.K.; Gellman, S.H.; Wozniak, M.A.; Keely, P.J.; Boyer, M.E.; Gomez, T.M.; Hasso, S.M.; Fallon, J.F.; Bresnick, E.H. An antiangiogenic neurokinin-B/thromboxane A2 regulatory axis. J. Cell Biol. 2006, 174, 1047–1058. [Google Scholar]
- Pastorino, F.; Brignole, C.; Di Paolo, D.; Nico, B.; Pezzolo, A.; Marimpietri, D.; Pagnan, G.; Piccardi, F.; Cilli, M.; Longhi, R.; Ribatti, D.; Corti, A.; Allen, T.M.; Ponzoni, M. Targeting liposomal chemotherapy via both tumor cell-specific and tumor-vasculature-specific ligands potentiates therapeutic efficacy. Cancer Res. 2006, 66, 10073–10082. [Google Scholar]
- Powell, J.A.; Mohamed, S.N.; Kerr, J.S.; Mousa, S.A. Antiangiogenesis efficacy of nitric oxide donors. J. Cell. Biochem. 2000, 80, 104–114. [Google Scholar]
- Chen, N.T.; Corey, E.J.; Folkman, J. Potentation of angiostatic steroids by a synthetic inhibitor of arylsulfatase. Lab. Invest. 1988, 59, 493–499. [Google Scholar]
- Dings, R.P.; Chen, X.; Hellebrekers, D.M.; van Eijk, L.I.; Zhang, Y.; Hoye, T.R.; Griffioen, A.W.; Mayo, K.H. Design of nonpeptidic topomimetics of antiangiogenic proteins with antitumor activities. J. Natl. Cancer Inst. 2006, 98, 932–936. [Google Scholar]
- Leong, K.G.; Hu, X.; Li, L.; Noseda, M.; Larrivée, B.; Hull, C.; Hood, L.; Wong, F.; Karsan, A. Activated Notch4 inhibits angiogenesis: Role of beta 1-integrin activation. Mol. Cell. Biol. 2002, 22, 2830–2841. [Google Scholar]
- Destouches, D.; El Khoury, D.; Hamma-Kourbali, Y.; Krust, B.; Albanese, P.; Katsoris, P.; Guichard, G.; Briand, J.P.; Courty, J.; Hovanessian, A.G. Suppression of tumor growth and angiogenesis by a specific antagonist of the cell-surface expressed nucleolin. PLoS ONE 2008, 3, e2518. [Google Scholar]
- Marcinkiewicz, C.; Weinreb, P.H.; Calvete, J.J.; Kisiel, D.G.; Mousa, S.A.; Tuszynski, G.P.; Lobb, R.R. Obtustatin: A potent selective inhibitor of alpha1beta1 integrin in vitro and angiogenesis in vivo. Cancer Res. 2003, 63, 2020–2023. [Google Scholar] [PubMed]
- Thippeswamy, G.; Sheela, M.L.; Salimath, B.P. Octacosanol isolated from Tinospora cordifolia downregulates VEGF gene expression by inhibiting nuclear translocation of NF-<kappa>B and its DNA binding activity. Eur. J. Pharmacol. 2008, 588, 141–150. [Google Scholar]
- Shahan, T.; Grant, D.; Tootell, M.; Ziaie, Z.; Ohno, N.; Mousa, S.; Mohamad, S.; Delisser, H.; Kefalides, N. Oncothanin, a peptide from the alpha3 chain of type IV collagen, modifies endothelial cell function and inhibits angiogenesis. Connect. Tissue Res. 2004, 45, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Liekens, S.; Bronckaers, A.; Hernández, A.I.; Priego, E.M.; Casanova, E.; Camarasa, M.J.; Pérez-Pérez, M.J.; Balzarini, J. 5’-O-tritylated nucleoside derivatives: Inhibition of thymidine phosphorylase and angiogenesis. Mol. Pharmacol. 2006, 70, 501–509. [Google Scholar]
- Dai, X.; Cui, S.G.; Wang, T.; Liu, Q.; Song, H.J.; Wang, R. Endogenous opioid peptides, endomorphin-1 and deltorphin I, stimulate angiogenesis in the CAM assay. Eur. J. Pharmacol. 2008, 579, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Lee, E.O.; Rhee, Y.H.; Ahn, KS.; Li, G.X.; Jiang, C.; Lü, J.; Kim, S.H. An oriental herbal cocktail, ka-mi-kae-kyuk-tang, exerts anti-cancer activities by targeting angiogenesis, apoptosis and metastasis. Carcinogenesis 2006, 27, 2455–2463. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.P.; Liu, BR.; Li, M.; Hu, J.; Hu, W.J.; Zou, Z.Y.; Wang, L.F.; Yu, L.X. Inhibitory effect of oxaliplatin in combination with hyperthermia on angiogenesis. Zhonghua Zhong Liu Za Zhi 2007, 29, 826–829. [Google Scholar] [PubMed]
- Stefansson, S.; Petitclere, E.; Wong, M.K.; McMahon, G.A.; Brooks, P.C.; Lawrence, D.A. Inhibition of angiogenesis in vivo by plasminogen activator inhibitor-1. J. Biol. Chem. 2001, 276, 8135–8141. [Google Scholar] [PubMed]
- Tian, F.; Zhang, X.; Tong, Y.; Yi, Y.; Zhang, S.; Li, L.; Sun, P.; Lin, L.; Ding, J. PE, a new sulfated saponin from sea cucumber, exhibits anti-angiogenic and anti-tumor activities in vitro and in vivo. Cancer Biol. Ther. 2005, 4, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Mu, P.; Gao, X.; Jia, ZJ.; Zheng, R.L. Natural antioxidant pedicularioside G inhibits angiogenesis and tumourigenesis in vitro and in vivo. Basic. Clin. Pharmacol. Toxicol. 2008, 102, 30–34. [Google Scholar] [PubMed]
- Huh, J.E.; Lee, E.O.; Kim, M.S.; Kang, K.S.; Kim, C.H.; Cha, B.C.; Surh, Y.J.; Kim, S.H. Penta-O-galloyl-beta-D-glucose suppresses tumor growth via inhibition of angiogenesis and stimulation of apoptosis: Roles of cyclooxygenase-2 and mitogen-activated protein kinase pathways. Carcinogenesis 2005, 26, 1436–1445. [Google Scholar]
- Rusnati, M.; Urbinati, C.; Caputo, A.; Possati, L.; Lortat-Jacob, H.; Giacca, M; Ribatti, D; Presta, M. Pentosan polysulfate as an inhibitor of extracellular HIV-1 Tat. J. Biol. Chem. 2001, 276, 22420–22425. [Google Scholar] [PubMed]
- Rusnati, M.; Camozzi, M.; Moroni, E.; Bottazzi, B.; Peri, G.; Indraccolo, S.; Amadori, A.; Mantovani, A.; Presta, M. Selective recognition of fibroblast growth factor-2 by the long pentraxin PTX3 inhibits angiogenesis. Blood 2004, 104, 92–99. [Google Scholar]
- Don, A.S.; Kisker, O.; Dilda, P.; Donoghue, N.; Zhao, X.; Decollogne, S.; Creighton, B.; Flynn, E.; Folkman, J.; Hogg, P.J. A peptide trivalent arsenical inhibits tumor angiogenesis by perturbing mitochondrial function in angiogenic endothelial cells. Cancer Cell 2003, 3, 497–509. [Google Scholar]
- Loutrari, H.; Hatziapostolou, M.; Skouridou, V.; Papadimitriou, E.; Roussos, C.; Kolisis, F.N.; Papapetropoulos, A. Perillyl alcohol is an angiogenesis inhibitor. J. Pharmacol. Exp. Ther. 2004, 311, 568–575. [Google Scholar]
- Aljada, A.; O’Connor, L.; Fu, Y.Y.; Mousa, S.A. PPAR gamma ligands, rosiglitazone and pioglitazone, inhibit bFGF- and VEGF-mediated angiogenesis. Angiogenesis 2008, 11, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Brooks, P.C.; Silletti, S.; von Schalscha, T.; Friedlander, M.; Cheresh, D.A. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 1998, 92, 391–400. [Google Scholar]
- Xiao, D.; Singh, S.V. Phenethyl isothiocyanate inhibits angiogenesis in vitro and ex vivo. Cancer Res. 2007, 67, 2239–2246. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.J.; Kang, H.J.; Jung, H.J.; Park, E.H. Anti-angiogenic, anti-nociceptive activity of 4-hydroxybenzyl alcohol. J. Pharm. Pharmacol. 2007, 59, 1235–1240. [Google Scholar]
- Schumacher, J.J.; Upadhyaya, P.; Ramaktishnan, S. Inhibition of vascular endothelial cells by 1,4-phenylenebis (methylene)selenocyanate--a novel chemopreventive organoselenium compound. Anticancer Res. 2001, 21, 1945–1951. [Google Scholar]
- Tong, Y.; Zhang, X.; Tian, F.; Yi, Y.; Xu, Q.; Li, L.; Tong, L.; Lin, L.; Ding, J. Philinopside A, a novel marine-derived compound possessing dual anti-angiogenic and anti-tumor effects. Int. J. Cancer 2005, 114, 843–853. [Google Scholar]
- Tsopanoglou, N.E.; Pipili-Synetos, E.; Maragoudakis, M.E. Thrombin promotes angiogenesis by a mechanism independent of fibrin formation. Am. J. Physiol. 1993, 264, C1302–C1307. [Google Scholar]
- Gottfried, V.; Lindenboum, E.S.; Kimel, S. The chick chorionallantoic membrane (CAM) as an in vivo model for photodynamic therapy. J. Photochem. Photobiol. B. 1992, 12, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Yi, E.Y.; Jeong, E.J.; Kang, D.W.; Joo, J.H.; Kwon, H.S.; Lee, S.H.; Park, S.K.; Chung, S.G.; Cho, E.H.; Kim, Y.J. Anti-angiogenic and anti-tumor apoptotic activities of a topoisomerase II inhibiting agent SJ-8026. Int. J. Oncol. 2005, 26, 1613–1620. [Google Scholar]
- Kumar, C.S.; Chandru, H.; Sharada, A.C.; Thimmegowda, N.R.; Prasad, S.B.; Kumar, M.K.; Rangappa, K.S. Synthesis and evaluation of 1-benzhydryl-sulfonyl-piperazine derivatives as inhibitors of tumor angiogenesis of mouse ehrlich ascites tumor in vivo. Med. Chem. 2008, 4, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, R.; Vallee, B.L. Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activities of angiogenin. Proc. Natl. Acad. Sci. USA 1987, 84, 2238–2241. [Google Scholar]
- Jeon, J.W.; Song, H.S.; Moon, E.J.; Park, S.Y.; Son, M.J.; Jung, S.Y.; Kim, J.T.; Nam, D.H.; Choi-Miura, N.H.; Kim, K.W.; Kim, Y.J. Anti-angiogenic action of plasma hyaluronan binding protein in human umbilical vein endothelial cells. Int. J. Oncol. 2006, 29, 209–215. [Google Scholar]
- Li, J.; Dong, X.; Xu, Z.; Jiang, X.; Jiang, H.; Krissansen, G.W.; Sun, X. Endostatin gene therapy enhances the efficacy of paclitaxel to suppress breast cancers and metastases in mice. J. Biomed. Sci. 2008, 15, 99–109. [Google Scholar]
- Morioka, H.; Morii, T.; Vogel, T.; Hornicek, F.J.; Weissbach, L. Interaction of plasminogen-related protein B with endothelial and smooth muscle cells in vitro. Exp. Cell Res. 2003, 287, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Maione, T.E.; Gray, G.S.; Petro, J.; Hunt, A.J.; Donner, A.L.; Bauer, S.I.; Carson, H.F.; Sharpe, R.J. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 1990, 247, 77–79. [Google Scholar]
- Li, X.; Jiang, L.; Wang, Y.; Xiao, Y.; Huang, Y.; Yao, Q.; Yang, Y.; Wu, X. Inhibition of angiogenesis by a novel small peptide consisting of the active fragments of platet factor-4 and vasostatin. Cancer Lett. 2007, 256, 29–32. [Google Scholar]
- Clapp, C.; Martial, J.A.; Guzman, R.C.; Rentier-Delure, F.; Weiner, R.I. The 16-kilodaldon N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology 1993, 133, 1292–1299. [Google Scholar]
- Pyriochou, A.; Olah, G.; Deitch, E.A.; Szabó, C.; Papapetropoulos, A. Inhibition of angigenesis by the poly(ADP-ribose) polymerase inhibior PJ-34. Int. J. Mol. Med. 2008, 22, 113–118. [Google Scholar]
- Pacini, S.; Gulisano, M.; Vannucchi, S.; Ruggiero, M. Poly-L-lysine/heparin stimulates angiogenesis in chick embryo chorioallantoic membrane. Biochem. Biophys. Res. Commun. 2002, 290, 820–823. [Google Scholar]
- Toi, M.; Bando, H.; Ramaschandan, C.; Melnick, S.J.; Imai, A.; Fife, R.S.; Carr, R.E.; Oikawa, T.; Lansky, E.P. Preliminary studies on the anti-angiogenic potential of pomegranate fractions in vitro and in vivo. Angiogenesis 2003, 6, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Pepper, M.S.; Hazel, S.J.; Hümpel, M.; Schleuning, W.D. 8-prenylnaringenin, a novel phytoestrogen, inhibits angiogenesis in vitro and in vivo. J. Cell Physiol. 2004, 199, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Ingber, D.; Folkman, J. Inhibition of angiogenesis through modulation of collagen metabolism. Lab. Invest. 1988, 59, 44–51. [Google Scholar]
- Taylor, S.; Folkman, J. Protamine is an inhibitor of angiogenesis. Nature 1982, 297, 307–312. [Google Scholar]
- Zania, P.; Kritikou, S.; Flordellis, C.S.; Maragoudakis, M.E.; Tsopanoglou, N.E. Blockade of angiogenesis by small molecule antagonists to protease-activated receptor-1: Association with endothelial cell growth suppression and induction of apoptosis. J. Pharmacol. Exp. Ther. 2006, 318, 246–254. [Google Scholar]
- Rhim, T.Y.; Park, C.S.; Kim, E.; Kim, S.S. Human prothrombin fragment 1 and 2 inhibit bFGF-induced BCE cell growth. Biochem. Biophys. Res. Commun. 1998, 252, 513–516. [Google Scholar]
- Gangjee, A.; Zeng, Y.; Ihnat, M.; Warnke, LA.; Green, D.W.; Kisliuk, R.L.; Lin, F.T. Novel 5-substituted, 2,4-diaminofuro[2,3-d]pyrimidines as multireceptor tyrosinen kinase and dihydrofolate reductase inhibitors with antiangiogenic and antitumor activity. Bioorg. Med. Chem. 2005, 13, 5475–5491. [Google Scholar] [CrossRef] [PubMed]
- Presta, M.; Rusnati, M.; Belleri, M.; Morbidelli, L.; Ziche, M.; Ribatti, D. Purine analogue 6-methylmercaptopurine riboside inhibits early and late phase of the angiogenic process. Cancer Res. 1999, 59, 2417–2424. [Google Scholar]
- Liekens, S.; Hernandez, A.I.; Ribatti, D.; De Clercq, E.; Camarasa, M.J.; Pérez-Pérez, M.J.; Balzarini, J. The nucleoside derivative 5’-O-trytyl-inosine (KIN59) suppresses thymidine phosphorylase-triggered angiogenesis via a noncompetitive mechanism of action. J. Biol. Chem. 2004, 279, 29598–29605. [Google Scholar]
- Jung, M.H.; Lee, S.H.; Ahn, E.M.; Lee, Y.M. Decursin and decursinol angelate inhibit VEGF-induced angiogenesis via suppression of the VEGFR-2 signaling pathway. Carcinogenesis 2009, 30, 655–661. [Google Scholar]
- Melkonian, G.; Eckelhoefer, H.; Wu, M.; Wang, Y.; Tong, C.; Riveles, K.; Talbot, P. Growth and angiogenesis are inhibited in vivo in developing tissues by pyrazine and its derivatives. Toxicol. Sci. 2003, 75, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Turesson, I.; Book, M.; Gerwins, P.; Claesson-Welsh, L. p38 MAP kinase negatively regulates endothelial cell survival, proliferation, and differentiation in FGF-2-stimulated angiogenesis. J. Cell. Biol. 2002, 156, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.F.; Lin, L.P.; Li, Mh.; Zhang, Y.X.; Tong, Y.G.; Xiao, D.; Ding, J. Quercetin, a dietary-derived flavonoid, possesses antiangiogenic potential. Eur. J. Pharmacol. 2003, 459, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, J.T.; Pili, R.; Qian, D.Z.; Dalrymple, S.L.; Garrison, J.B.; Kyprianou, N.; Björk, A.; Olsson, A.; Leanderson, T. Identification of ABR-215050 as lead second generation quinoline-3-carboxamide anti-angiogenic agent for the treatment of prostate cancer. Prostate 2006, 66, 1768–1778. [Google Scholar]
- Oikawa, T.; Ito, H.; Ashino, H.; Toi, M.; Tominaga, T.; Morita, I.; Murota, S. Radicilor, a microbial cell differentiation modulator, inhibits in vivo angiogenesis. Eur. J. Pharmacol. 1993, 241, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Urbinati, C.; Mitola, S.; Tanghetti, E.; Kumar, C.; Waltenberger, J.; Ribatti, D.; Presta, M.; Rusnati, M. Integrin alphavbeta3 as a target for blocking HIV-1 Tat-induced cell activation in vitro and angiogenesis in vivo. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2315–2320. [Google Scholar] [CrossRef] [PubMed]
- Youn, M.R.; Park, M.H.; Choi, C.K.; Ahn, B.C.; Kim, H.Y.; Kang, S.S.; Hong, Y.K.; Joe, Y.A.; Kim, J.S.; You, W.K.; Lee, H.S.; Chung, S.I.; Chang, S.I. Direct binding of recombinant plasminogen kringle 1-3 to angiogenin inhibits angiogenin-induced angiogenesis in the chick embryo CAM. Biochem. Biophys. Res. Commun. 2006, 343, 917–923. [Google Scholar]
- Kim, T.H.; Kim, E.; Yoon, D.; Kim, J.; Rhim, T.Y.; Kim, S.S. Recombinant human prothrombin kringles have potent anti-angiogenic activities and inhibit Lewis lung carcinoma tumor growth and metastases. Angiogenesis 2002, 5, 191–201. [Google Scholar]
- Kim, H.K.; Lee, S.Y.; Oh, H.K.; Kang, B.H.; Ku, H.J.; Lee, Y.; Shin, J.Y.; Hong, Y.K.; Joe, Y.A. Inhibition of endothelial cell proliferation by the recombinant kringle domain of tissue-type plasminogen activator. Biochem. Biophys. Res. Commun. 2003, 304, 740–746. [Google Scholar]
- Kim, KS.; Hong, Y.K.; Joe, Y.A.; Lee, Y.; Shin, J.Y.; Park, H.E.; Lee, I.H.; Lee, S.Y.; Kang, D.K.; Chang, S.I.; Chung, S.I. Anti-angiogenic activity of the recombinant kringle domain of urokinase and its specific entry into endothelial cells. J. Biol. Chem. 2003, 278, 11449–11456. [Google Scholar]
- Jia, X.; Bian, L. Two-step chromatographic method for the separation and purification of recombinant angiogenesis inhibitor Kringle 5. SE. Pu. 2007, 25, 344–347. [Google Scholar]
- Oikawa, T.; Hirotani, K.; Nakamura, O.; Shudo, K.; Hiragun, A.; Iwaguchi, T. A highly potent antiangiogenic activity of retinoids. Cancer Lett. 1989, 48, 157–162. [Google Scholar]
- Yeh, C.H.; Peng, H.C.; Yang, R.S.; Huang, T.F. Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective alpha(v)beta(3) blockade of endothelial cells. Mol. Pharmacol. 2001, 59, 1333–1342. [Google Scholar]
- Michaelis, M.; Michaelis, R.; Suhan, T.; Schmidt, H.; Mohamed, A.; Doerr, H.W.; Cinatl, J., Jr. Ribavirin inhibits angiogenesis by tetrahydrobiopterin depletion. FASEB J. 2007, 21, 81–87. [Google Scholar]
- Chatterjee, J.; Maiti, T.K.; Dasgupta, S. Isolation and partial characterization of ribonuclease inhibitor from goat liver. Protein Pept. Lett. 2006, 13, 779–783. [Google Scholar]
- Panigrahy, D.; Singer, S.; Shen, L.Q.; Butterfield, C.E.; Freedman, D.A.; Chen, E.J.; Moses, M.A.; Kilroy, S.; Duensing, S.; Fletcher, C.; Fletcher, J.A.; Hlatky, L.; Hahnfeldt, P.; Folkman, J.; Kaipainen, A. PPARgamma ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J. Clin. Invest. 2002, 110, 923–932. [Google Scholar]
- Vacca, A.; Bruno, M.; Boccarelli, A.; Coluccia, M.; Ribatti, D.; Bergamo, A.; Garbisa, S.; Sartor, L.; Sava, G. Inhibition of endothelial cell functions and of angiogenesis by the metastasis inhibitor NAMI-A. Br. J. Cancer 2002, 86, 993–998. [Google Scholar]
- Zhao, J.; Miao, J.; Zhao, B.; Zhang, S.; Yin, D. Safrole oxide inhibits angiogenesis by inducing apoptosis. FEBS Lett. 2005, 43, 69–74. [Google Scholar]
- Kang, I.C.; Lee, Y.D.; Kim, D.S. A novel disintegrin salmosin inhibits tumor angiogenesis. Cancer Res. 1999, 59, 3754–3760. [Google Scholar]
- Komi, Y.; Ohno, O.; Suzuki, Y.; Shimamura, M.; Shimokado, K.; Umezawa, K.; Kojima, S. Inhibition of tumor angiogenesis by targeting endothelial surface ATP synthase with sangivamycin. Jpn. J. Clin. Oncol. 2007, 37, 867–873. [Google Scholar]
- Eun, J.P.; Koh, G.Y. Suppression of angiogenesis by the plant alkaloid, sanguinarine. Biochem. Biophys. Res. Commun. 2004, 317, 618–624. [Google Scholar]
- Yoo, H.J.; Kang, H.J.; Jung, H.J.; Kim, K.; Lim, C.J.; Park, E.H. Anti-inflammatory, anti- antinociceptive and anti-inflammatory activities of Saururus chinensis extract. J. Ethnopharmacol. 2008, 120, 282–286. [Google Scholar]
- Jung, HJ.; Kang, HJ.; Song, YS.; Park, E.H.; Kim, Y.M.; Lim, C.J. Anti-inflammatory , anti-angiogenic and anti-nociceptive activities of Sedum sarmentosum extract. J. Ethnopharmacol. 2008, 116, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Richardson, M.; Liu, L.; Dunphy, L.; Wong, D.; Sun, Y.; Viswanathan, K.; Singh, G.; Lucas, A. Viral serpin, Serp-1, inhibits endogenous angiogenesis in the chicken chorioallantoic membrane model. Cardiovasc. Pathol. 2007, 16, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Slevin, M.; Matou, S.; Ahmed, N.; Choudhary, M.I.; Ranjit, R.; West, D.; Gaffney, J. Anti-angiogenic activity of sesterterpenes; natural product inhibitors of FGF-2 induced angiogenesis. Angiogenesis 2008, 11, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Hagedorn, M.; Zilberberg, L.; Wilting, J.; Canron, X.; Carrabba, G.; Giussani, C.; Pluderi, M.; Bello, L.; Bikfalvi, A. Domain swapping in a COOH-terminal fragment of platelet factor 4 generates potent angiogenesis inhibitors. Cancer Res. 2002, 62, 6884–6890. [Google Scholar]
- Casu, B.; Guerrini, M.; Naggi, A.; Perez, M.; Torri, G.; Ribatti, D.; Carminati, P.; Giannini, G.; Penco, S.; Pisano, C.; Belleri, M.; Rusnati, M.; Presta, M. Short heparin sequences spaced by glycol-split uronate residues are antagonists of fibroblast growth factor 2 and angiogenesis inhibitors. Biochemistry 2002, 41, 10519–10528. [Google Scholar]
- Tournaire, R.; Simon, M.P.; le Noble, F.; Eichmann, A.; England, P.; Pouysségur, J. A short synthetic peptide inhibits signal transduction, migration and angiogenesis mediated by Tie2 receptor. EMBO Rep. 2004, 5, 262–267. [Google Scholar]
- Park, H.J.; Kong, D.; Iruela-Arispe, L.; Begley, U.; Tang, D.; Galper, J.B. 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors interfere with angiogenesis by inhibiting the geranylgeranylation of RhoA. Circ. Res. 2002, 91, 143–150. [Google Scholar]
- Yi, E.Y.; Jeong, E.J.; Song, H.S.; Lee, M.S.; Kang, D.W.; Joo, J.H.; Kwon, H.S.; Lee, S.H.; Park, S.K.; Chung, S.G.; Cho, E.H.; Kim, Y.J. Anti-angiogenic and anti-tumor apoptotic activities of SJ-8002, a new piperazine derivative. Int. J. Oncol. 2004, 25, 365–372. [Google Scholar]
- Jia, L.; Wu, C.C.; Guo, W.; Young, X. Antiangiogenic effects of S-nitrosocaptopril crystals as a nitric oxide donor. Eur. J. Pharmacol. 2000, 391, 137–144. [Google Scholar]
- Xu, F.; Song, D.; Zhen, Y. Inhibition of tumor metastasis by sodium caffeate and its effect on angiogenesis. Oncology 2004, 67, 88–92. [Google Scholar]
- Xu, Y.; Pan, R.L.; Chang, Q.; Qin, M.; Liu, Y.; Tang, J.T. Experimental study of Solanum nigrum on inhibiting angiogenesis in chick chorioallantoic membrane. Zhongguo Zhong Yao Za Zhi 2008, 33, 549–552. [Google Scholar]
- Woltering, E.A.; Barrie, R.; O’Dorisio, T.M.; Arce, D.; Ure, T.; Cramer, A.; Holmes, D.; Robertson, J.; Fassler, J. Somatostatin analogues inhibit angiogenesis in the chick chorioallantoic membrane. J. Surg. Res. 1991, 50, 245–251. [Google Scholar]
- Wrasidlo, W.; Mielgo, A.; Torres, V.A.; Barbero, S.; Stoletov, K.; Suyama, T.L.; Klemke, R.L.; Gerwick, W.H.; Carson, D.A.; Stupack, D.G. The marine lipopeptide somocystinamide A triggers apoptosis via caspase 8. Proc. Natl. Acad. Sci. USA 2008, 105, 2313–2318. [Google Scholar]
- Su, S.J.; Yeh, T.M.; Chuang, W.J.; Ho, C.L.; Chang, K.L.; Cheng, H.L.; Liu, H.S.; Cheng, H.L.; Hsu, P.Y.; Chow, N.H. The novel targets for anti-angiogenesis of genistein on human cancer cells. Biochem. Pharmacol. 2005, 69, 307–318. [Google Scholar]
- Jackson, J.K.; Burt, H.M.; Oktaba, A.M.; Hunter, W.; Scheid, M.P.; Mouhajir, F.; Lauener, R.W.; Shen, Y.; Salari, H.; Duronio, V. The antineoplastic ether lipid, s-phosphonate, selectively induces apoptosis in human leukemic cells and exhibits antiangiogenic and apoptotic activity on the chorioallantoic membrane of the chick embryo. Cancer Chemother. Pharmacol. 1998, 41, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Klauber, N.; Browne, F.; Anand-Apte, B.; D'Amato, R.J. New activity of spironolactone. Inhibition of angiogenesis in vitro and in vivo. Circulation 1996, 94, 2566–2571. [Google Scholar] [PubMed]
- Sills, A.K.; Williams, J.I.; Tyler, B.M.; Epstein, D.S.; Sipos, E.P.; Davis, J.D.; McLane, M.P.; Pitchford, S.; Cheshire, K.; Gannon, F.H.; Kinney, W.A.; Chao, T.L.; Donowitz, M.; Laterra, J.; Zasloff, M.; Brem, H. Squalamine inhibits angiogenesis and solid tumor growth in vivo and perturbs embryonic vasculature. Cancer Res. 1998, 58, 2784–2792. [Google Scholar]
- Oikawa, T.; Shimamura, M.; Ashino, H. Inhibition of angiogenesis by staurosporine, a potent protein kinase inhibitor. J. Antibiot. 1992, 45, 1155–1160. [Google Scholar]
- Leali, D.; Belleri, M.; Urbinati, C.; Coltrini, D.; Oreste, P.; Zoppetti, G.; Ribatti, D.; Rusnati, M.; Presta, M. Fibroblast growth factor-2 antagonist activity and angiostatic capacity of solfate Escherìchia coli K5 polysaccharide derivatives. J. Biol. Chem. 2001, 176, 37900–37908. [Google Scholar]
- Jakobson, A.M.; Hahnenberger, R.; Magnusson, A. Antiangiogenic effect of heparin and other sulphated glycosamynoglicans in the chick embryo chorioallantoic membrane. Pharmac. Toxic. 1991, 69, 122–126. [Google Scholar]
- Tanaka, N.G.; Sakampto, N.; Inoue, K.; Korenaga, H.; Kadoya, S.; Ogawa, H.; Osada, Y. Antitumor effects of an antiangiogenic polysaccharide from an Arthrobacter species with or without a steroid. Cancer Res. 1989, 49, 6727–6730. [Google Scholar]
- Inoue, K.; Korenaga, H.; Tanaka, N.G. The sulfated polysaccharide peptidoglycan complex potently inhibits embryonic angiogenesis and tumor growth in the presence of cortisone acetate. Carboydr Res. 1988, 181, 135–142. [Google Scholar]
- Sola, F.; Farao, M.; Pesenti, E.; Marsiglio, A.; Mongelli, N.; Grandi, M. Antitumor activity of FCE 26644 a new growth-factor complexing molecule. Cancer Chemother. Pharmacol. 1995, 36, 217–222. [Google Scholar]
- Ciomei, M.; Pastori, W.; Mariani, M.; Sola, F.; Grandi, M.; Mongelli, N. New sulfonated distamycin A derivatives with bFGF complexing activity. Biochem. Pharmacol. 1994, 47, 295–302. [Google Scholar] [PubMed]
- Liekens, S.; Neyts, J.; Degrève, B.; De Clercq, E. The sulfonic acid polymers PAMPS [poly(2-acrylamido-2-methyl-1-propanesulfonic acid)] and related analogues are highly potent inhibitors of angiogenesis. Oncol. Res. 1997, 9, 173–181. [Google Scholar] [PubMed]
- Morimoto-Tomita, M.; Uchimura, K.; Bistrup, A.; Lum, D.H.; Egeblad, M.; Boudreau, N.; Werb, Z.; Rosen, S.D. Sulf-2, a proangiogenic separa sulfate endosulfatase, is upregulated in breast cancer. Neoplasia 2005, 7, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- Pyriochou, A.; Tsigkos, S.; Vassilakopoulos, S.; Cottin, T.; Zhou, Z.; Gourzoulidou, E.; Roussos, C.; Waldmann, H.; Giannis, A.; Papapetropoulos, A. Anti-angiogenic properties of a sulindac analogue. Br. J. Pharmacol. 2007, 152, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Elwich-Fils, S.; Soltysiak-Pawluczuk, D.; Splawiński, J. Anti-angiogenic and apoptotic effects of metabolites of sulindac on chick embryo chorioallantoic membrane. Hybrid Hybridomics 2003, 22, 55–60. [Google Scholar]
- Danesi, R.; Del Bianchi, S.; Soldani, P.; Campagni, A.; La Rocca, R.V.; Myers, C.E.; Paparelli, A.; Del Tacca, M. Suramin inhibits bFGF-induced endothelial cell proliferation and angiogenesis in the chick chorioallantoic membrane. Br. J. Cancer 1993, 68, 932–938. [Google Scholar]
- Gagliardi, A.R.; Kassack, M.; Kreimeyer, A.; Muller, G.; Nickel, P.; Collins, D.C. Antiangiogenic and antiproliferative activity of suramin analogues. Cancer Chemother. Pharmacol. 1998, 41, 117–124. [Google Scholar]
- Wilks, J.W.; Scott, P.A.; Vrba, LK.; Cocuzza, J.M. Inhibition of angiogenesis with combination treatments of angiostatic steroids and suramin. Int. J. Radiol. 1991, 60, 73–77. [Google Scholar] [CrossRef]
- Soriano, J.V.; Liu, N.; Gao, Y.; Yao, Z.J.; Ishibashi, T.; Underhill, C.; Burke, T.R.; Bottaro, D.P. Inhibition of angiogenesis by growth factor receptor bound protein 2-Src homology 2 domain bound antagonists. Mol. Cancer Ther. 2004, 3, 1289–1299. [Google Scholar]
- Mousa, SA.; Mohamed, S.; Wexler, E.J.; Kerr, J.S. Antiangiogenesis and anticancer efficacy of TA138, a novel alphavbeta3 antagonist. Anticancer Res. 2005, 25, 197–206. [Google Scholar] [PubMed]
- Jeon, H.J.; Kang, H.J.; Jung, H.J.; Kang, Y.S.; Lim, C.J.; Kim, Y.M.; Park, E.H. Anti-inflammatory activity of Taraxacum officinale. J. Ethnopharmacol. 2008, 115, 82–88. [Google Scholar]
- Zhang, Y.; He, L.; Meng, L.; Luo, W.; Xu, X. Suppression of tumor-induced angiogenesis by taspine isolated from Radix et Rhizoma Leonticis and its mechanism of action in vitro. Cancer Lett. 2008, 262, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Nozaki, Y.; Hida, T.; Iinuma, S.; Ishii, T.; Sudo, K.; Muroi, M.; Kanamaru, T. Tau-1120, a new anthracycline with potent angiostatic activity. J. Antibiot. 1993, 46, 569–579. [Google Scholar]
- Dordunoo, S.K.; Jackson, J.K.; Arsenault, L.A.; Oktaba, A.M.; Hunter, W.L.; Burt, H.M. Taxol encapsulation in poly(epsilon-caprolactone) microspheres. Cancer Chemother. Pharmacol. 1995, 36, 279–282. [Google Scholar]
- Kurzen, H.; Schmitt, S.; Näher, H.; Möhler, T. Inhibition of angiogenesis by non-toxic doses of temozolomide. Anticancer Drugs 2003, 14, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Shiota, Y.; Nishisaka, M.; Owaki, T.; Shimamura, M.; Fukai, F. Inhibition of angiogenesis by a tenascin-c peptide which is capable of activating beta1-integrins. Biol. Pharm. Bull. 2008, 31, 1003–1007. [Google Scholar]
- Ho, P.Y.; Liang, Y.C.; Ho, Y.S.; Chen, C.T.; Lee, W.S. Inhibition of human vascular endothelial cells proliferation by terbinafine. Int. J. Cancer 2004, 111, 51–59. [Google Scholar]
- Liu, M.Z.; Tang, J.Z.; Zhang, J.S.; Chou, Q.; Huang, Y.Y. Angiogenesis inhibition in vascular endothelial cells by terpenoid compounds from Bletilla striata is via apoptosis pathway. Fen Zi Xi Bao Sheng Wu Xue Bao 2008, 41, 383–392. [Google Scholar]
- Mousa, S.A.; Bergh, J.J.; Dier, E.; Rebbaa, A.; O'Connor, L.J.; Yalcin, M.; Aljada, A.; Dyskin, E.; Davis, F.B.; Lin, H.Y.; Davis, P.J. Tetraiodothyroacetic acid, a small molecule integrin ligand, blocks angiogenesis induced by vascular endothelial growth factor and basic fibroblast growth factor. Angiogenesis 2008, 11, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Ponticelli, S.; Marasco, D.; Tarallo, V.; Albuquerque, R.J.; Mitola, S.; Takeda, A.; Stassen, J.M.; Presta, M.; Ambati, J.; Ruvo, M.; De Falco, S. Modulation of angiogenesis by a tetrameric tripeptide that antagonizes vascular endothelial growth factor receptor 1. J. Biol. Chem. 2008, 283, 34250–34259. [Google Scholar]
- Parson-Wingerter, P.; Elliott, K.E.; Farr, A.G.; Radhakrishnan, K.; Clark, J.I.; Sage, E.H. Generational analysis reveals that TGF-beta 1 inhibits the rate of angiogenesis in vivo by selective decrease in the number of new vessels. Microvasc. Res. 2000, 59, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Presta, M.; Belleri, M.; Vacca, A.; Ribatti, D. Anti-angiogenic activity of the purine analog 6-thioguanine. Leukemia 2002, 16, 1490–1499. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, L.; He, C.Z.; Al-Barazi, H.; Krutzsch, H.C.; Iruela-Arispe, M.L.; Roberts, D.D. Cell contact-dependent activation of alpha3beta1 integrin modulates endothelial cell responses to thrombospondin-1. Mol. Biol. Cell. 2000, 11, 2885–2900. [Google Scholar]
- Margosio, B.; Rusnati, M.; Bonezzi, K.; Cordes, BL.; Annis, D.S.; Urbinati, C.; Giavazzi, R.; Presta, M.; Ribatti, D.; Mosher, D.F.; Taraboletti, G. Fibroblast growth factor-2 binding to the thrombospondin-1 type lll repeats, a novel antiangiogenic domain. Int. J. Biochem. Cell Biol. 2008, 40, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Koutrafouri, V.; Leondiadis, L.; Avgoustakis, K.; Livaniou, E.; Czarnecki, J.; Ithakissios, D.S.; Evangelatos, G.P. Effect of thymosin peptides on the chick chorioallantoic membrane angiogenesis model. Biochim. Biophys. Acta 2001, 1568, 60–66. [Google Scholar] [PubMed]
- Mousa, S.A.; Mohamed, S. Anti-angiogenic mechanisms and efficacy of the low molecular weight heparin, tinzaparin: Anti-cancer efficacy. Oncol. Rep. 2004, 12, 683–688. [Google Scholar]
- Anand-Apte, B.; Pepper, M.S.; Yost, E.; Montesano, R.; Olsen, B.; Murphy, G.; Apte, S.S.; Zetter, B. Inhibition of angiogenesis by tissue inhibitor of metalloproteinase-3. Invest. Ophthalmol. Vis. Sci. 1997, 38, 817–823. [Google Scholar]
- Hembrough, T.A.; Ruiz, J.F.; Swerdlow, B.M.; Swartz, G.M.; Hammers, H.J.; Zhang, L.; Plum, S.M.; Williams, M.S.; Strickland, D.K.; Pribluda, V.S. Identification and characterization of a very low density lipoprotein receptor-binding peptide from tissue factor pathway inhibitor that has antitumor and antiangiogenic activity. Blood 2004, 103, 3374–3380. [Google Scholar]
- Bastaki, M.; Missirlis, E.; Klouras, N.; Karakiulakis, G.; Maragoudakis, M.E. Suppression of angiogenesis by the antitumor agent titanocene dichloride. Eur. J. Pharmacol. 1994, 251, 263–269. [Google Scholar]
- Minischetti, M.; Vacca, A.; Ribatti, D.; Iurlaro, M.; Ria, R.; Pellegrino, A.; Gasparini, G.; Dammacco, A.F. TNP-470 and recombinant human interferon-α2a inhibit angiogenesis synergistically. Br. J. Haematol. 2000, 109, 829–837. [Google Scholar]
- Nakagawa, K.; Shibata, A.; Yamashita, S.; Tsuzuki, T.; Kariya, J.; Oikawa, S.; Miyazawa, T. In vivo angiogenesis is suppressed by unsaturated vitamin E, tocotrienol. J. Nutr. 2007, 137, 1938–1943. [Google Scholar] [PubMed]
- Miyazawa, T.; Tsuzuki, T.; Nakagawa, K.; Igarashi, M. Antiangiogenic potency of vitamin E. Ann. N.Y. Acad. Sci. 2004, 1031, 401–404. [Google Scholar]
- Jackson, J.K.; Higo, T.; Hunter, W.L.; Burt, H.M. Topoisomerase inhibitors as anti-arthritic agents. Inflamm. Res. 2008, 57, 126–134. [Google Scholar]
- Yang, X.; Luo, P.; Yang, B.; He, Q. Antiangiogenesis response of endothelial cells to the antitumor drug 10-methoxy-9-nitrocamptothecin. Pharmacol. Res. 2006, 54, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Puppo, M.; Battaglia, F.; Ottaviano, C.; Delfino, S.; Ribatti, D.; Varesio, L.; Bosco, M.C. Topotecan inhibits vascular endothelial growth factor production and angigenic activity induced by hypoxia in human neuroblastoma by targeting hypoxia-inducible factor-1alpha and -2alpha. Mol. Cancer Ther. 2008, 7, 1974–1984. [Google Scholar]
- Kim, M.S.; Lee, Y.M.; Moon, E.J.; Kim, S.E.; Lee, J.J.; Kim, K.W. Anti-angiogenic activity of torilin, a sesquiterpene compound isolated from Torilis japonica. Int. J. Cancer 2000, 87, 269–275. [Google Scholar]
- Benelli, U.; Lepri, A.; Nardi, M.; Danesi, R.; Del Tacca, M. Trapidil inhibits endothelial cell proliferation and angiogenesis in the chick chorioallantoic membrane and in the rat cornea. J. Ocul. Pharmacol. Ther. 1995, 11, 157–166. [Google Scholar]
- McKay, T.L.; Gedeon, D.J.; Vickerman, M.B.; Hylton, A.G.; Ribita, D.; Olar, H.H.; Kaiser, P.K.; Parsons-Wingerter, P. Selective inhibition of angiogenesis in small blood vessels and decrease in vessel diameter throughout the vascular tree by triamcinolone acetonide. Invest. Ophthalmol. Vis. Sci. 2008, 49, 1184–1190. [Google Scholar]
- Zhu, G.F.; Zhang, H.Q.; Hou, A.J.; Yang, Y.L.; Li, Q.S.; Zhang, C.C. Effects of three compounds extracted from Tripterygium wilfordii Hook on angiogenesis in chick chorioallantoic membrane. Zhong Xi Yi Jie Xue Bao 2007, 5, 517–520. [Google Scholar]
- Ding, Y.; Zhang, J.; Hou, L.; Zhang, J.; Wang, Q.; Wang, S. Effects of triptolide on anti-angiogenesis by reducing expression of urokinase plasminogen activator. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2005, 22, 778–781. [Google Scholar]
- Sohn, K.H.; Lee, H.Y.; Chung, H.Y.; Young, H.S.; Yi, S.Y.; Kim, K.W. Anti-angiogenic activity of triterpene acids. Cancer Lett. 1995, 94, 213–218. [Google Scholar]
- Molina, M.C.; Ferreira, V.; Valck, C.; Aguilar, L.; Orellana, J.; Rojas, A.; Ramirez, G.; Billetta, R.; Schwaeble, W.; Lemus, D.; Ferreira, A. An in vivo role for Trypanosoma cruzi calreticulin in antiangiogenesis. Mol. Biochem. Parasitol. 2005, 140, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Mannell, H.; Hellwig, N.; Gloe, T.; Plank, C.; Sohn, H.Y.; Groesser, L.; Walzog, B.; Pohl, U.; Krotz, F. Inhibition of the tyrosine phosphatase SHP-2 suppresses angiogenesis in vitro and in vivo. J. Vasc. Res. 2008, 45, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, J.; Endo, Y.; Shimada, N.; Natsume, T.; Sasaki, T.; Kobayashi, M. Antiangiogenic activity of TZT-1027 (soblidotin) on chick chorioallantoic membrane and human umbilical vein endothelial cells. In Vivo 2007, 21, 297–304. [Google Scholar]
- Jung, H.J.; Leon, H.J.; Lim, E.J.; Ahn, E.K.; Song, Y.S.; Lee, S.; Shin, K.H.; Lim, C.J.; Park, E.H. Anti-angiogenic activity of the methanol extract and its fractions of Ulmus davidiana var. japonica. J. Ethnopharmacol. 2007, 112, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Pisano, C.; Aulicino, C.; Vesci, L.; Casu, B.; Naggi, A.; Torri, G.; Ribatti, D.; Belleri, M.; Rusnati, M.; Presta, M. Undersulfated, low-molecular-weight glycol-split heparin as an antiangiogenic VEGF antagonist. Glycobiology 2005, 15, 1–6. [Google Scholar]
- Suh, H.; Jung, E.J.; Kim, T.H.; Lee, H.Y.; Park, Y.H.; Kim, K.W. Anti-angiogenic activity of ursodeoxycholic acid and its derivatives. Cancer Lett. 1997, 113, 117–122. [Google Scholar]
- Michaelis, M.; Michaelis, U.R.; Fleming, I.; Suhan, T.; Cinatl, J.; Blaheta, R.A.; Hoffmann, K.; Kotchetkov, R.; Busse, R.; Nau, H.; Cinatl, J., Jr. Valproic acid inhibits angiogenesis in vitro and in vivo. Mol. Pharmacol. 2004, 65, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.J.; Song, Y.S.; Lim, C.J.; Park, E.H. Anti-angiogenic, anti-inflammatory and anti-nociceptive activities of vanillyl alcohol. Arch. Pharm. Res. 2008, 31, 1275–1279. [Google Scholar]
- Zhai, Y.; Yu, J.; Irucla-Arispe, M.L.; Huang, W.Q.; Wang, Z.; Hayes, A.J.; Lu, J.; Jiang, G.; Rajas, L.; Lippman, M.E.; Ni, J.; Yu, G.L.; Li, LY. Inhibition of angiogenesis and breast cancer xenograft tumor graft growth by VEGI, a novel cytokine of the TNF superfamily. Int. J. Cancer 1999, 82, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Kern, J.; Bauer, M.; Rychli, K.; Wojta, J.; Ritsch, A.; Gastl, G.; Gunsilius, E.; Untergasser, G. Alternative splicing of vasohibin-1 generates an inhibitor of endothelial cell proliferation, migration, and capillary tube formation. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Luo, L.; Qiao, H.; Dong, X.; Pan, S.; Jiang, H.; Krissansen, G.W.; Sun, X. Complete eradication of hepatocellular carcinomas by combined vasostatin gene therapy and B7H3-mediated immunotherapy. J. Hepatol. 2007, 46, 98–106. [Google Scholar]
- Ramakrishnan, S.; Olson, T.A.; Bautch, V.L.; Mohanraj, D. Vascular endothelial growth factor-toxin conjugate specifically inhibits KDR/FLK-1-positive endothelial cell proliferation in vitro and angiogenesis in vivo. Cancer Res. 1996, 56, 1324–1330. [Google Scholar] [PubMed]
- Vacca, A.; Iurlaro, M.; Ribatti, D.; Minischetti, M.; Nico, B.; Ria, R.; Pellegrino, A.; Dammacco, F. Antiangiogenesis is produced by nontoxic doses of vinblastine. Blood 1999, 94, 4143–4155. [Google Scholar]
- Marimpietri, D.; Nico, B.; Vacca, A.; Mangieri, D.; Catarsi, P.; Ponzoni, M.; Ribatti, D. Synergistic inhibition of human neuroblastoma-related angiogenesis by vinblastine and rapamycin. Oncogene 2005, 24, 6785–6795. [Google Scholar]
- Kisker, O.; Onizuka, S.; Becker, C.M.; Fannon, M.; Flynn, E.; D'Amato, R.; Zetter, B.; Folkman, J.; Ray, R.; Swamy, N.; Pirie-Shepherd, S. Vitamin D binding protein-macrophage activating factor (DBP-maf) inhibits angiogenesis and tumor growth in mice. Neoplasia 2003, 5, 32–40. [Google Scholar]
- Oikawa, T.; Hirotani, K.; Ogasawara, H.; Katayama, T.; Nakamura, O.; Iwaguchi, T.; Hiragun, A. Inhibition of angiogenesis by vitamin D3 analogues. Eur. J. Pharmacol. 1990, 178, 247–250. [Google Scholar]
- Lutty, G.A.; Thompson, D.C.; Gallup, J.Y.; Mello, R.J.; Patz, A.; Fenselau, A. Vitreous: An inhibitor of retinal extract-induced neovascularization. Invest. Ophthalmol. Vis. Sci. 1983, 24, 52–56. [Google Scholar]
- Bae, M.K.; Jeong, J.W.; Kim, S.H.; Kim, S.Y.; Kang, H.J.; Kim, D.M.; Bae, S.K.; Yun, I.; Trentin, G.A.; Rozakis-Adcock, M.; Kim, K.W. Tid-1 interacts with the von Hippel-Lindau protein and modulates angiogenesis by destabilization of HIF-1alpha. Cancer Res. 2005, 65, 2520–2525. [Google Scholar]
- Lin, C.M.; Chang, H.; Chen, Y.H.; Wu, I.H.; Chiu, J.H. Wogonin inhibits IL-6-induced angiogenesis via down-regulation of VEGF and VEGFR-1, not VEGFR-2. Planta MED. 2006, 72, 1305–1310. [Google Scholar]
- Scavelli, C.; Di Pietro, G.; Cirulli, T.; Coluccia, M.; Boccarelli, A.; Giannini, T.; Mangialardi, G.; Bertieri, R.; Coluccia, A.M.; Ribatti, D.; Dammacco, F.; Vacca, A. Zoledronic acid affects over-angiogenesis phenotype of endothelial cells in patients with multiple myeloma. Mol. Cancer Ther. 2007, 6, 3256–3262. [Google Scholar] [CrossRef] [PubMed]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ribatti, D. The Chick Embryo Chorioallantoic Membrane as an In Vivo Assay to Study Antiangiogenesis. Pharmaceuticals 2010, 3, 482-513. https://doi.org/10.3390/ph3030482
Ribatti D. The Chick Embryo Chorioallantoic Membrane as an In Vivo Assay to Study Antiangiogenesis. Pharmaceuticals. 2010; 3(3):482-513. https://doi.org/10.3390/ph3030482
Chicago/Turabian StyleRibatti, Domenico. 2010. "The Chick Embryo Chorioallantoic Membrane as an In Vivo Assay to Study Antiangiogenesis" Pharmaceuticals 3, no. 3: 482-513. https://doi.org/10.3390/ph3030482
APA StyleRibatti, D. (2010). The Chick Embryo Chorioallantoic Membrane as an In Vivo Assay to Study Antiangiogenesis. Pharmaceuticals, 3(3), 482-513. https://doi.org/10.3390/ph3030482