Pharmacological Insights and Technological Innovations in Curcuma longa L. and Echinacea purpurea (L.) Moench as Plant-Derived Immunomodulators
Abstract
1. Introduction
2. Materials and Methods
3. Immunomodulation as a Therapeutic Strategy
Immunomodulation of C. longa and E. purpurea
| Phytochemicals Class | Main Metabolites/Chemical Structure | Immunomodulatory Mechanism | Plant Species | References |
|---|---|---|---|---|
| Polysaccharide | These are complex and diverse molecules, not uniform, with different types of sugars and degrees of branching. PS I(an arabino-xylan) and PS II (containing rhamno-arabino-galactan) | They activate phagocytosis, improve leukocyte motility, and stimulate cytokine production, thus strengthening innate and adaptive immunity. | E. purpurea | [26,27] |
| Phenylpropanoid | Echinacoside | Stimulation of phagocytic activity and cytokine production (ILs, IFNs); enhancement of antioxidant response. | E. purpurea | [26,27] |
![]() | ||||
| Phenylpropanoid | Chicoric acid | Stimulation of phagocytic activity and cytokine production | E. purpurea | [26,27] |
![]() | ||||
| Triterpenic saponins | Sugar attached to triterpene or steroid aglycone. Ej: Oleanane-type saponins | Enhancement of macrophage and NK cell activity; promotion of adaptive immune responses. | E. purpurea | [26,27] |
![]() | ||||
| Lipophilic amides | Alkylamides | Interaction with cannabinoid receptors (CB2); regulation of cytokine synthesis; modulation of innate immune response. | E. purpurea | [22,27] |
![]() | ||||
| Polyphenols | Aromatic aliphatic ring containing hydroxyl groups Ej: curcumin | Inhibition of NF-κB and pro-inflammatory mediators; activation of antioxidant defenses via Nrf2; regulation of macrophage and dendritic cell activity. | C. longa | [22,23] |
![]() | ||||
| Terpenes (volatile oils) | Turmerones (α-, β-, ar-, Ej: ar-turmerone) | Modulation of immune cell signaling and cytokine release; suppression of inflammatory responses. | C. longa | [22,28] |
![]() |
4. Curcuma longa L.
4.1. Ethnopharmacological Insights
4.2. Pharmacological and Immunomodulatory Profile
5. Echinacea purpurea (L.) Moench
5.1. Ethnopharmacological Insights
5.2. Pharmacological and Immunomodulatory Profile
6. Technological Innovations Enhancing Bioactivity and Bioavailability
6.1. Advanced Nanodelivery Systems in C. longa
6.2. Pharmaceutical and Nanotechnological Innovations in E. purpurea
7. Comparative Analysis Between Curcuma longa L. and Echinacea purpurea (L.) Moench
8. Future Perspectives and Translational Potential
- (1)
- AI-driven optimization of botanical formulations.
- (2)
- Multi-omics approaches to define response phenotypes.
- (3)
- Regulatory frameworks for botanical nanoformulations.
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uddin, N.; Acter, T.; Rashid, H.; Chowdhury, A.I.; Jahan, E.A. Coping with the COVID-19 Pandemic by Strengthening Immunity as a Nonpharmaceutical Intervention: A Major Public Health Challenge. Health Sci. Rep. 2023, 6, e1562. [Google Scholar] [CrossRef]
- Zebeaman, M.; Tadesse, M.G.; Bachheti, R.K.; Bachheti, A.; Gebeyhu, R.; Chaubey, K.K. Plants and Plant-Derived Molecules as Natural Immunomodulators. Biomed. Res. Int. 2023, 2023, 7711297. [Google Scholar] [CrossRef] [PubMed]
- Catanzaro, M.; Corsini, E.; Rosini, M.; Racchi, M.; Lanni, C. Immunomodulators Inspired by Nature: A Review on Curcumin and Echinacea. Molecules 2018, 23, 2778. [Google Scholar] [CrossRef]
- Kadiyska, T.; Tourtourikov, I.; Dabchev, K.; Zlatarova, A.; Stoynev, N.; Hadjiolova, R.; Spandidos, D.A.; Adamaki, M.; Zoumpourlis, V. Herbs and Plants in Immunomodulation (Review). Int. J. Funct. Nutr. 2023, 1. [Google Scholar] [CrossRef]
- Strzelec, M.; Detka, J.; Mieszczak, P.; Sobocińska, M.K.; Majka, M. Immunomodulation—A General Review of the Current State-of-the-Art and New Therapeutic Strategies for Targeting the Immune System. Front. Immunol. 2023, 14, 1127704. [Google Scholar] [CrossRef]
- Gong, H.; Tan, X.; Hou, J.; Gong, Z.; Qin, X.; Nie, J.; Zhu, H.; Zhong, S. Separation, Purification, Structure Characterization, and Immune Activity of a Polysaccharide from Alocasia Cucullata Obtained by Freeze-Thaw Treatment. Int. J. Biol. Macromol. 2024, 282, 137232. [Google Scholar] [CrossRef]
- Tuyaerts, S.; Rombauts, K.; Everaert, T.; Van Nuffel, A.M.T.; Amant, F. A Phase 2 Study to Assess the Immunomodulatory Capacity of a Lecithin-Based Delivery System of Curcumin in Endometrial Cancer. Front. Nutr. 2019, 5, 138. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, X.; Pang, X.; Ma, K.; Li, L.; Song, Y.; Hou, D.; Wang, X. Pharmacological Effects, Molecular Mechanisms and Strategies to Improve Bioavailability of Curcumin in the Treatment of Neurodegenerative Diseases. Front. Pharmacol. 2025, 16, 1625821. [Google Scholar] [CrossRef]
- Moreno, M.; Guerrero, S.; Solar, P.; Klagges, C.; Devis, S.; Otero, C.; Sanchez-Ruderisch, H.; Velásquez, L. Application of Nanomedicine for Efficient Delivery of Herbal Bioactives. In Phytopharmaceuticals and Herbal Drugs; Elsevier: Amsterdam, The Netherlands, 2023; pp. 159–195. [Google Scholar]
- Han, H.S.; Koo, S.Y.; Choi, K.Y. Emerging Nanoformulation Strategies for Phytocompounds and Applications from Drug Delivery to Phototherapy to Imaging. Bioact. Mater. 2022, 14, 182–205. [Google Scholar] [CrossRef] [PubMed]
- Koo, N.; Kambhampati, H.; Herman, M. Drug-Induced Liver Injury Secondary to Turmeric Supplement Containing Piperine: A Case Report. Cureus 2025, 17, e95076. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Ashafaq, M.; Alshahrani, S.; Bokar, I.A.M.; Siddiqui, R.; Alam, M.I.; Taha, M.M.E.; Almoshari, Y.; Alqahtani, S.S.; Ahmed, R.A.; et al. Hepatoprotective Effect of Curcumin Nano-Lipid Carrier against Cypermethrin Toxicity by Countering the Oxidative, Inflammatory, and Apoptotic Changes in Wistar Rats. Molecules 2023, 28, 881. [Google Scholar] [CrossRef]
- Wu, Y.; Zeng, M.; Jiao, X.; Ma, X.; Wang, H.; Chen, Y.; Zheng, X.; Feng, W. Protective Effects of Pollenin B in Asthma: PPAR-γ-Mediated Regulation of Inflammatory Pathways and Arachidonic Acid Metabolism. Phytomedicine 2025, 145, 156975. [Google Scholar] [CrossRef]
- Chao, Z.; Mei, Q.; Yang, C.; Luo, J.; Liu, P.; Peng, H.; Guo, X.; Yin, Z.; Li, L.; Wang, Z. Immunological Synapse: Structures, Molecular Mechanisms and Therapeutic Implications in Disease. Signal Transduct. Target. Ther. 2025, 10, 254. [Google Scholar] [CrossRef] [PubMed]
- Yatoo, M.I.; Hamid, Z.; Rather, I.; Nazir, Q.U.A.; Bhat, R.A.; Ul Haq, A.; Magray, S.N.; Haq, Z.; Sah, R.; Tiwari, R.; et al. Immunotherapies and Immunomodulatory Approaches in Clinical Trials—A Mini Review. Hum. Vaccin. Immunother. 2021, 17, 1897–1909. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.L.; Nath, S.; Markova, A. Safety of Immunomodulatory Systemic Therapies Used in the Management of Immune-Related Cutaneous Adverse Events. Pharmaceuticals 2023, 16, 1610. [Google Scholar] [CrossRef]
- Khan, S.; Huda, B.; Bhurka, F.; Patnaik, R.; Banerjee, Y. Molecular and Immunomodulatory Mechanisms of Statins in Inflammation and Cancer Therapeutics with Emphasis on the NF-ΚB, NLRP3 Inflammasome, and Cytokine Regulatory Axes. Int. J. Mol. Sci. 2025, 26, 8429. [Google Scholar] [CrossRef]
- Yuandani; Jantan, I.; Rohani, A.S.; Sumantri, I.B. Immunomodulatory Effects and Mechanisms of Curcuma Species and Their Bioactive Compounds: A Review. Front. Pharmacol. 2021, 12, 643119. [Google Scholar] [CrossRef] [PubMed]
- Balčiūnaitė-Murzienė, G.; Miknienė, Z.; Ragažinskienė, O.; Juodžiukynienė, N.; Savickas, A.; Savickienė, N.; Pangonytė, D. Echinacea purpurea L. (Moench) Hemagglutinin Effect on Immune Response In Vivo. Plants 2021, 10, 936. [Google Scholar] [CrossRef]
- Gomez-Cadena, A.; Barreto, A.; Fioretino, S.; Jandus, C. Immune System Activation by Natural Products and Complex Fractions: A Network Pharmacology Approach in Cancer Treatment. Cell Stress 2020, 4, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Memarzia, A.; Khazdair, M.R.; Behrouz, S.; Gholamnezhad, Z.; Jafarnezhad, M.; Saadat, S.; Boskabady, M.H. Experimental and Clinical Reports on Anti-inflammatory, Antioxidant, and Immunomodulatory Effects of Curcuma longa and Curcumin, an Updated and Comprehensive Review. BioFactors 2021, 47, 311–350. [Google Scholar] [CrossRef]
- Ahmadi, F. Phytochemistry, Mechanisms, and Preclinical Studies of Echinacea Extracts in Modulating Immune Responses to Bacterial and Viral Infections: A Comprehensive Review. Antibiotics 2024, 13, 947. [Google Scholar] [CrossRef] [PubMed]
- Balasubramaniam, M.; Sapuan, S.; Hashim, I.F.; Ismail, N.I.; Yaakop, A.S.; Kamaruzaman, N.A.; Ahmad Mokhtar, A.M. The Properties and Mechanism of Action of Plant Immunomodulators in Regulation of Immune Response—A Narrative Review Focusing on Curcuma longa L., Panax ginseng C. A. Meyer and Moringa Oleifera Lam. Heliyon 2024, 10, e28261. [Google Scholar] [CrossRef]
- Mohajeri, M.; Momenai, R.; Karami-Mohajeri, S.; Ohadi, M.; Raeisi Estabragh, M.A. Curcumin as a Natural Therapeutic Agent: A Rapid Review of Potential Clinical Uses and Mechanisms of Action. Iran. J. Pharm. Res. 2025, 24, e156983. [Google Scholar] [CrossRef]
- Bučević Popović, V.; Karahmet Farhat, E.; Banjari, I.; Jeličić Kadić, A.; Puljak, L. Bioavailability of Oral Curcumin in Systematic Reviews: A Methodological Study. Pharmaceuticals 2024, 17, 164. [Google Scholar] [CrossRef] [PubMed]
- Sudeep, H.V.; Gouthamchandra, K.; Ramanaiah, I.; Raj, A.; Naveen, P.; Shyamprasad, K. A Standardized Extract of Echinacea purpurea Containing Higher Chicoric Acid Content Enhances Immune Function in Murine Macrophages and Cyclophosphamide-Induced Immunosuppression Mice. Pharm. Biol. 2023, 61, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Vieira, S.F.; Gonçalves, S.M.; Gonçalves, V.M.F.; Llaguno, C.P.; Macías, F.; Tiritan, M.E.; Cunha, C.; Carvalho, A.; Reis, R.L.; Ferreira, H.; et al. Echinacea purpurea Fractions Represent Promising Plant-Based Anti-Inflammatory Formulations. Antioxidants 2023, 12, 425. [Google Scholar] [CrossRef]
- Wang, C.; Gong, X.; Bo, A.; Zhang, L.; Zhang, M.; Zang, E.; Zhang, C.; Li, M. Iridoids: Research Advances in Their Phytochemistry, Biological Activities, and Pharmacokinetics. Molecules 2020, 25, 287. [Google Scholar] [CrossRef]
- Tian, W.-W.; Liu, L.; Chen, P.; Yu, D.-M.; Li, Q.-M.; Hua, H.; Zhao, J.-N. Curcuma longa (Turmeric): From Traditional Applications to Modern Plant Medicine Research Hotspots. Chin. Med. 2025, 20, 76. [Google Scholar] [CrossRef]
- Jain, D.; Singh, K.; Gupta, P.; Gupta, J.K.; Sahu, P.K.; Dwivedi, S.; Sharma, M.C.; Kumar, S. Exploring Synergistic Benefits and Clinical Efficacy of Turmeric in Management of Inflammatory and Chronic Diseases: A Traditional Chinese Medicine Based Review. Pharmacol. Res.-Mod. Chin. Med. 2025, 14, 100572. [Google Scholar] [CrossRef]
- Fuloria, S.; Mehta, J.; Chandel, A.; Sekar, M.; Rani, N.N.I.M.; Begum, M.Y.; Subramaniyan, V.; Chidambaram, K.; Thangavelu, L.; Nordin, R.; et al. A Comprehensive Review on the Therapeutic Potential of Curcuma longa Linn. in Relation to Its Major Active Constituent Curcumin. Front. Pharmacol. 2022, 13, 820806. [Google Scholar] [CrossRef]
- Kaur, A. Historical Background of Usage of Turmeric: A Review. J. Pharmacogn. Phytochem. 2019, 8, 2769–2771. [Google Scholar]
- El-Saadony, M.T.; Yang, T.; Korma, S.A.; Sitohy, M.; Abd El-Mageed, T.A.; Selim, S.; Al Jaouni, S.K.; Salem, H.M.; Mahmmod, Y.; Soliman, S.M.; et al. Impacts of Turmeric and Its Principal Bioactive Curcumin on Human Health: Pharmaceutical, Medicinal, and Food Applications: A Comprehensive Review. Front. Nutr. 2023, 9, 1040259. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.; Mishra, S.; Chaturvedi, R.; Pandey, A. Therapeutic Potential of Curcumin in Cardiovascular Disease: Targeting Atherosclerosis Pathophysiology. Biomed. Pharmacother. 2025, 190, 118412. [Google Scholar] [CrossRef]
- Serra López-Matencio, J.M.; Morell Baladrón, A.; Castañeda, S. Inhibidores de La Vía de Señalización JAK-STAT En El Tratamiento de Las Enfermedades Inmunomediadas. Med. Clin. 2019, 152, 353–360. [Google Scholar] [CrossRef]
- Awasthi, N.; Liongue, C.; Ward, A.C. STAT Proteins: A Kaleidoscope of Canonical and Non-Canonical Functions in Immunity and Cancer. J. Hematol. Oncol. 2021, 14, 198. [Google Scholar] [CrossRef]
- Rezaee, R.; Momtazi, A.A.; Monemi, A.; Sahebkar, A. Curcumin: A Potentially Powerful Tool to Reverse Cisplatin-Induced Toxicity. Pharmacol. Res. 2017, 117, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Kotha, R.R.; Luthria, D.L. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules 2019, 24, 2930. [Google Scholar] [CrossRef]
- Khamar, F.; Atabaki, M.; Samadi, M.; Reisi, M.; Sandoughi, M. Immunomodulatory Effects of Novel Nano Micelle Based Curcumin in Rheumatoid Arthritis Patients: A Double Blind Randomized Clinical Trial. Rheumatol. Immunol. Res. 2025, 5, 227–234. [Google Scholar] [CrossRef]
- Yazdani, Y.; Zamani, A.R.N.; Majidi, Z.; Sharafkandi, N.; Alizadeh, S.; Mofrad, A.M.E.; Valizadeh, A.; Idari, G.; Radvar, A.D.; Safaie, N.; et al. Curcumin and Targeting of Molecular and Metabolic Pathways in Multiple Sclerosis. Cell Biochem. Funct. 2023, 41, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Papież, M.A. Curcumin Exerts Protective Effects on the Thyroid Gland in Propylthiouracil-Treated Rats. Folia Histochem. Cytobiol. 2023, 61, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Pia, A. Management of Chronic Anterior Uveitis Relapses: Efficacy of Oral Phospholipidic Curcumin Treatment. Long-Term Follow-Up. Clin. Ophthalmol. 2010, 4, 1201. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.Gov. Home. Available online: https://clinicaltrials.gov/ (accessed on 13 December 2025).
- Chainani-Wu, N.; Silverman, S.; Reingold, A.; Bostrom, A.; Mc Culloch, C.; Lozada-Nur, F.; Weintraub, J. A Randomized, Placebo-Controlled, Double-Blind Clinical Trial of Curcuminoids in Oral Lichen Planus. Phytomedicine 2007, 14, 437–446. [Google Scholar] [CrossRef]
- Chainani-Wu, N.; Madden, E.; Lozada-Nur, F.; Silverman, S. High-Dose Curcuminoids Are Efficacious in the Reduction in Symptoms and Signs of Oral Lichen Planus. J. Am. Acad. Dermatol. 2012, 66, 752–760. [Google Scholar] [CrossRef]
- Karimi, A.; Pourreza, S.; Vajdi, M.; Mahmoodpoor, A.; Sanaie, S.; Karimi, M.; Tarighat-Esfanjani, A. Evaluating the Effects of Curcumin Nanomicelles on Clinical Outcome and Cellular Immune Responses in Critically Ill Sepsis Patients: A Randomized, Double-Blind, and Placebo-Controlled Trial. Front. Nutr. 2022, 9, 1037861. [Google Scholar] [CrossRef]
- Gunther, J.R.; Chadha, A.S.; Guha, S.; Raju, G.S.; Maru, D.M.; Munsell, M.F.; Jiang, Y.; Yang, P.; Felix, E.; Clemons, M.; et al. A Phase II Randomized Double Blinded Trial Evaluating the Efficacy of Curcumin with Pre-Operative Chemoradiation for Rectal Cancer. J. Gastrointest. Oncol. 2022, 13, 2938–2950. [Google Scholar] [CrossRef]
- Cruz-Correa, M.; Hylind, L.M.; Marrero, J.H.; Zahurak, M.L.; Murray-Stewart, T.; Casero, R.A.; Montgomery, E.A.; Iacobuzio-Donahue, C.; Brosens, L.A.; Offerhaus, G.J.; et al. Efficacy and Safety of Curcumin in Treatment of Intestinal Adenomas in Patients with Familial Adenomatous Polyposis. Gastroenterology 2018, 155, 668–673. [Google Scholar] [CrossRef]
- Edelman, A.; Boniface, E.; Schrote, K.; Messerle-Forbes, M.; O’Donnell, A.; Jensen, J.T.; Han, L. Treatment of Unfavorable Bleeding Patterns in Contraceptive Implant Users: A Randomized Clinical Trial of Curcumin. Am. J. Obs. Gynecol. 2023, 229, 145.e1–145.e9. [Google Scholar] [CrossRef]
- Jäger, R.; Lowery, R.P.; Calvanese, A.V.; Joy, J.M.; Purpura, M.; Wilson, J.M. Comparative Absorption of Curcumin Formulations. Nutr. J. 2014, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yang, S.; Chen, F.; Cheng, K.-W. Polysaccharide-Zein Composite Nanoparticles for Enhancing Cellular Uptake and Oral Bioavailability of Curcumin: Characterization, Anti-Colorectal Cancer Effect, and Pharmacokinetics. Front. Nutr. 2022, 9, 846282. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Liu, C.-C.; An, C.-Y.; Ji, H.-F. How Does Curcumin Work with Poor Bioavailability? Clues from Experimental and Theoretical Studies. Sci. Rep. 2016, 6, 20872. [Google Scholar] [CrossRef]
- Kindscher, K. Ethnobotany of Purple Coneflower (Echinacea angustifolia, Asteraceae) and OtherEchinacea Species. Econ. Bot. 1989, 43, 498–507. [Google Scholar] [CrossRef]
- Gancitano, G.; Mucci, N.; Stange, R.; Ogal, M.; Vimalanathan, S.; Sreya, M.; Booker, A.; Hadj-Cherif, B.; Albrich, W.C.; Woelkart-Ardjomand, K.; et al. Echinacea Reduces Antibiotics by Preventing Respiratory Infections: A Meta-Analysis (ERA-PRIMA). Antibiotics 2024, 13, 364. [Google Scholar] [CrossRef]
- Vieira, S.F.; Gonçalves, S.M.; Gonçalves, V.M.F.; Tiritan, M.E.; Cunha, C.; Carvalho, A.; Reis, R.L.; Ferreira, H.; Neves, N.M. Evaluation of Echinacea purpurea Extracts as Immunostimulants: Impact on Macrophage Activation. Planta Med. 2024, 90, 1143–1155. [Google Scholar] [CrossRef]
- Saeidnia, S.; Manayi, A.; Vazirian, M. Echinacea purpurea: Pharmacology, Phytochemistry and Analysis Methods. Pharmacogn. Rev. 2015, 9, 63. [Google Scholar] [CrossRef]
- Dobrange, E.; Peshev, D.; Loedolff, B.; Van den Ende, W. Fructans as Immunomodulatory and Antiviral Agents: The Case of Echinacea. Biomolecules 2019, 9, 615. [Google Scholar] [CrossRef]
- LaLone, C.A.; Huang, N.; Rizshsky, L.; Yum, M.-Y.; Singh, N.; Hauck, C.; Nikolau, B.J.; Wurtele, E.S.; Kohut, M.L.; Murphy, P.A.; et al. Enrichment of Echinacea angustifolia with Bauer Alkylamide 11 and Bauer Ketone 23 Increased Anti-Inflammatory Potential through Interference with COX-2 Enzyme Activity. J. Agric. Food Chem. 2010, 58, 8573–8584. [Google Scholar] [CrossRef] [PubMed]
- Chicca, A.; Raduner, S.; Pellati, F.; Strompen, T.; Altmann, K.-H.; Schoop, R.; Gertsch, J. Synergistic Immunomopharmacological Effects of N-Alkylamides in Echinacea purpurea Herbal Extracts. Int. Immunopharmacol. 2009, 9, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Z.; Liu, Y.; Wu, L.; Senchina, D.S.; Wurtele, E.S.; Murphy, P.A.; Kohut, M.L.; Cunnick, J.E. Enhancement of Innate and Adaptive Immune Functions by Multiple Echinacea Species. J. Med. Food 2007, 10, 423–434. [Google Scholar] [CrossRef]
- Fu, A.; Wang, Y.; Wu, Y.; Chen, H.; Zheng, S.; Li, Y.; Xu, X.; Li, W. Echinacea purpurea Extract Polarizes M1 Macrophages in Murine Bone Marrow-Derived Macrophages Through the Activation of JNK. J. Cell Biochem. 2017, 118, 2664–2671. [Google Scholar] [CrossRef]
- Tafazoli, A. Echinacea for Cancer Patients: To Give or Not to Give. Complement. Med. Res. 2020, 27, 112–116. [Google Scholar] [CrossRef]
- Zou, Z.; Dong, L.; Wang, H.; Niu, J.; Zou, M.; Wu, N.; Yu, D.; Wang, Y. Echinacoside Induces Apoptotic Cancer Cell Death by Inhibiting the Nucleotide Pool Sanitizing Enzyme MTH1. OncoTargets Ther. 2015, 8, 3649. [Google Scholar] [CrossRef]
- Dong, L.; Yu, D.; Wu, N.; Wang, H.; Niu, J.; Wang, Y.; Zou, Z. Echinacoside Induces Apoptosis in Human SW480 Colorectal Cancer Cells by Induction of Oxidative DNA Damages. Int. J. Mol. Sci. 2015, 16, 14655–14668. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Hui, Z.; Cong, C.; Yu, L.; Zhao, W. Echinacoside Retards Cellular Senescence of Human Fibroblastic Cells MRC-5. Pharmazie 2009, 64, 11. [Google Scholar] [CrossRef]
- Aarland, R.C.; Bañuelos-Hernández, A.E.; Fragoso-Serrano, M.; Sierra-Palacios, E.d.C.; Díaz de León-Sánchez, F.; Pérez-Flores, L.J.; Rivera-Cabrera, F.; Mendoza-Espinoza, J.A. Studies on Phytochemical, Antioxidant, Anti-Inflammatory, Hypoglycaemic and Antiproliferative Activities of Echinacea purpurea and Echinacea angustifolia Extracts. Pharm. Biol. 2017, 55, 649–656. [Google Scholar] [CrossRef]
- Lee, S.; Lee, D.; Kim, H.; Choi, B.; Kwon, K. A Randomized, Double-blind, Placebo-controlled Study on Immune Improvement Effects of Ethanolic Extract of Echinacea purpurea (L.) Moench in Korean Adults. Phytother. Res. 2024, 38, 3645–3659. [Google Scholar] [CrossRef]
- Taylor, J.A.; Weber, W.; Standish, L.; Quinn, H.; Goesling, J.; McGann, M.; Calabrese, C. Efficacy and Safety of Echinacea in Treating Upper Respiratory Tract Infections in Children. JAMA 2003, 290, 2824. [Google Scholar] [CrossRef]
- University of Washington. ClinicalTrials.Gov ID NCT00860795. 2025. Available online: https://clinicaltrials.gov/study/NCT00860795#study-overview (accessed on 7 November 2025).
- Wang, M.; Wang, J.; Chen, J.; Deng, C.; Dong, Y.; Yang, X.; Wang, N.; Li, X.; Liu, W.; Lu, B.; et al. A Multicenter, Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Phase III Clinical Trial to Assess the Efficacy and Safety of Yuping Tongqiao Tablets in the Treatment of Persistent Allergic Rhinitis. J. Ethnopharmacol. 2025, 351, 120091. [Google Scholar] [CrossRef]
- Diener, H.-C. Aggressive Antidiabetische Therapie Bei Typ-2-Diabetes Rettet Hirnvolumen. MMW Fortschr. Med. 2012, 154, 48. [Google Scholar] [CrossRef]
- Deccy, S.; Bartkowiak, C.; Rodricks, N.; Paultre, K. Echinacea Supplementation Does Not Impact Aerobic Capacity and Erythropoiesis in Athletes: A Meta-Analysis. Nutrients 2024, 16, 1991. [Google Scholar] [CrossRef]
- Penzak, S.R.; Robertson, S.M.; Hunt, J.D.; Chairez, C.; Malati, C.Y.; Alfaro, R.M.; Stevenson, J.M.; Kovacs, J.A. Echinacea purpurea Significantly Induces Cytochrome P450 3A Activity but Does Not Alter Lopinavir-Ritonavir Exposure in Healthy Subjects. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2010, 30, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Ardjomand-Woelkart, K.; Bauer, R. Review and Assessment of Medicinal Safety Data of Orally Used Echinacea Preparations. Planta Med. 2015, 82, 17–31. [Google Scholar] [CrossRef]
- Jeschke, E.; Ostermann, T.; Lüke, C.; Tabali, M.; Kröz, M.; Bockelbrink, A.; Witt, C.M.; Willich, S.N.; Matthes, H. Remedies containing Asteraceae extracts: A prospective observational study of prescribing patterns and adverse drug reactions in German primary care. Drug Saf. 2009, 32, 691–706. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, J.; Rédei, D.; Forgo, P.; Szabó, P.; Freund, T.F.; Haller, J.; Bojnik, E.; Benyhe, S. Alkamides and a Neolignan from Echinacea purpurea Roots and the Interaction of Alkamides with G-Protein-Coupled Cannabinoid Receptors. Phytochemistry 2011, 72, 1848–1853. [Google Scholar] [CrossRef]
- Bulboacă, A.E.; Boarescu, P.M.; Bolboacă, S.D.; Blidaru, M.; Feștilă, D.; Dogaru, G.; Nicula, C.A. Comparative Effect Of Curcumin Versus Liposomal Curcumin On Systemic Pro-Inflammatory Cytokines Profile, MCP-1 And RANTES In Experimental Diabetes Mellitus. Int. J. Nanomed. 2019, 14, 8961–8972. [Google Scholar] [CrossRef]
- Cardoso, R.V.; Pereira, P.R.; Freitas, C.S.; Paschoalin, V.M.F. Trends in Drug Delivery Systems for Natural Bioactive Molecules to Treat Health Disorders: The Importance of Nano-Liposomes. Pharmaceutics 2022, 14, 2808. [Google Scholar] [CrossRef]
- Siviero, A.; Gallo, E.; Maggini, V.; Gori, L.; Mugelli, A.; Firenzuoli, F.; Vannacci, A. Curcumin, a Golden Spice with a Low Bioavailability. J. Herb. Med. 2015, 5, 57–70. [Google Scholar] [CrossRef]
- Yakubu, J.; Pandey, A.V. Innovative Delivery Systems for Curcumin: Exploring Nanosized and Conventional Formulations. Pharmaceutics 2024, 16, 637. [Google Scholar] [CrossRef]
- Sunagawa, Y.; Miyazaki, Y.; Funamoto, M.; Shimizu, K.; Shimizu, S.; Nurmila, S.; Katanasaka, Y.; Ito, M.; Ogawa, T.; Ozawa-Umeta, H.; et al. A Novel Amorphous Preparation Improved Curcumin Bioavailability in Healthy Volunteers: A Single-Dose, Double-Blind, Two-Way Crossover Study. J. Funct. Foods 2021, 81, 104443. [Google Scholar] [CrossRef]
- Hegde, M.; Girisa, S.; BharathwajChetty, B.; Vishwa, R.; Kunnumakkara, A.B. Curcumin Formulations for Better Bioavailability: What We Learned from Clinical Trials Thus Far? ACS Omega 2023, 8, 10713–10746. [Google Scholar] [CrossRef]
- Baell, J.; Walters, M.A. Chemistry: Chemical Con Artists Foil Drug Discovery. Nature 2014, 513, 481–483. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The Essential Medicinal Chemistry of Curcumin. J. Med. Chem. 2017, 60, 1620–1637. [Google Scholar] [CrossRef]
- Appendino, G.; Allegrini, P.; de Combarieu, E.; Novicelli, F.; Ramaschi, G.; Sardone, N. Shedding Light on Curcumin Stability. Fitoterapia 2022, 156, 105084. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-Q.; Zhu, X.-R.; Qin, B.-C.; Chen, M.-B. Curcumin in Colorectal Cancer: Mechanistic Insights, Pharmacological Limitations, and Translational Perspectives. Front. Pharmacol. 2025, 16, 1667731. [Google Scholar] [CrossRef]
- Bolger, G.T.; Pucaj, K.; Minta, Y.O.; Sordillo, P. Relationship between the in Vitro Efficacy, Pharmacokinetics and in Vivo Efficacy of Curcumin. Biochem. Pharmacol. 2022, 205, 115251. [Google Scholar] [CrossRef]
- Panknin, T.M.; Howe, C.L.; Hauer, M.; Bucchireddigari, B.; Rossi, A.M.; Funk, J.L. Curcumin Supplementation and Human Disease: A Scoping Review of Clinical Trials. Int. J. Mol. Sci. 2023, 24, 4476. [Google Scholar] [CrossRef]
- Farghadani, R.; Naidu, R. Curcumin: Modulator of Key Molecular Signaling Pathways in Hormone-Independent Breast Cancer. Cancers 2021, 13, 3427. [Google Scholar] [CrossRef] [PubMed]
- Hahn, Y.-I.; Kim, S.-J.; Choi, B.-Y.; Cho, K.-C.; Bandu, R.; Kim, K.P.; Kim, D.-H.; Kim, W.; Park, J.S.; Han, B.W.; et al. Curcumin Interacts Directly with the Cysteine 259 Residue of STAT3 and Induces Apoptosis in H-Ras Transformed Human Mammary Epithelial Cells. Sci. Rep. 2018, 8, 6409. [Google Scholar] [CrossRef] [PubMed]
- Moldoveanu, C.-A.; Tomoaia-Cotisel, M.; Sevastre-Berghian, A.; Tomoaia, G.; Mocanu, A.; Pal-Racz, C.; Toma, V.-A.; Roman, I.; Ujica, M.-A.; Pop, L.-C. A Review on Current Aspects of Curcumin-Based Effects in Relation to Neurodegenerative, Neuroinflammatory and Cerebrovascular Diseases. Molecules 2024, 30, 43. [Google Scholar] [CrossRef] [PubMed]
- Mashaqbeh, H.; Obaidat, R.; Al-Shar’i, N. Evaluation and Characterization of Curcumin-β-Cyclodextrin and Cyclodextrin-Based Nanosponge Inclusion Complexation. Polymers 2021, 13, 4073. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, H.; Sunagawa, Y.; Takahashi, K.; Imaizumi, A.; Fukuda, H.; Hashimoto, T.; Wada, H.; Katanasaka, Y.; Kakeya, H.; Fujita, M.; et al. Innovative Preparation of Curcumin for Improved Oral Bioavailability. Biol. Pharm. Bull. 2011, 34, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, Y.; Mukai, S.; Yamada, S.; Matsuoka, M.; Tarumi, E.; Hashimoto, T.; Tamura, C.; Imaizumi, A.; Nishihira, J.; Nakamura, T. Short-Term Effects of Highly-Bioavailable Curcumin for Treating Knee Osteoarthritis: A Randomized, Double-Blind, Placebo-Controlled Prospective Study. J. Orthop. Sci. 2014, 19, 933–939. [Google Scholar] [CrossRef]
- Komiyama, M.; Ozaki, Y.; Wada, H.; Yamakage, H.; Satoh-Asahara, N.; Kishimoto, A.; Katsuura, Y.; Imaizumi, A.; Hashimoto, T.; Sunagawa, Y.; et al. Study Protocol to Determine the Effects of Highly Absorbable Oral Curcumin on the Indicators of Cognitive Functioning: A Double-Blind Randomised Controlled Trial. BMJ Open 2022, 12, e057936. [Google Scholar] [CrossRef]
- Deng, T.; Xu, J.; Wang, Q.; Wang, X.; Jiao, Y.; Cao, X.; Geng, Q.; Zhang, M.; Zhao, L.; Xiao, C. Immunomodulatory Effects of Curcumin on Macrophage Polarization in Rheumatoid Arthritis. Front. Pharmacol. 2024, 15, 1369337. [Google Scholar] [CrossRef]
- Atabaki, M.; Shariati-Sarabi, Z.; Tavakkol-Afshari, J.; Mohammadi, M. Significant Immunomodulatory Properties of Curcumin in Patients with Osteoarthritis; a Successful Clinical Trial in Iran. Int. Immunopharmacol. 2020, 85, 106607. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, V.; Ghadirian, S.; Shabani, M.; Boroumand, M.A.; Daneshvar, R.; Saghafi, F. Efficacy of Curcumin for Amelioration of Radiotherapy-Induced Oral Mucositis: A Preliminary Randomized Controlled Clinical Trial. BMC Cancer 2023, 23, 354. [Google Scholar] [CrossRef]
- Ebrahimi Daryani, N.; Alebouyeh, M.; Tajeddin, E.; Nazarbeigi, S.; Jaafari, M.R.; Elyasi, S.; Karbasforooshan, H.; Akhondzadeh Basti, S.; Abdollahi, A.; Aletaha, N.; et al. Evaluation of Oral Nano-Curcumin Formulation Effectiveness in Patients with Mild to Moderate Ulcerative Colitis: A Randomized, Placebo-Controlled, Double-Blind Clinical Trial. Naunyn Schmiedebergs Arch. Pharmacol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Saber-Moghaddam, N.; Salari, S.; Hejazi, S.; Amini, M.; Taherzadeh, Z.; Eslami, S.; Rezayat, S.M.; Jaafari, M.R.; Elyasi, S. Oral Nano-curcumin Formulation Efficacy in Management of Mild to Moderate Hospitalized coronavirus Disease-19 Patients: An Open Label Nonrandomized Clinical Trial. Phytother. Res. 2021, 35, 2616–2623. [Google Scholar] [CrossRef]
- Ahmadi, R.; Salari, S.; Sharifi, M.D.; Reihani, H.; Rostamiani, M.B.; Behmadi, M.; Taherzadeh, Z.; Eslami, S.; Rezayat, S.M.; Jaafari, M.R.; et al. Oral Nano-curcumin Formulation Efficacy in the Management of Mild to Moderate Outpatient COVID-19: A Randomized Triple-blind Placebo-controlled Clinical Trial. Food Sci. Nutr. 2021, 9, 4068–4075. [Google Scholar] [CrossRef]
- Tahmasebi, S.; Saeed, B.Q.; Temirgalieva, E.; Yumashev, A.V.; El-Esawi, M.A.; Navashenaq, J.G.; Valizadeh, H.; Sadeghi, A.; Aslani, S.; Yousefi, M.; et al. Nanocurcumin Improves Treg Cell Responses in Patients with Mild and Severe SARS-CoV2. Life Sci. 2021, 276, 119437. [Google Scholar] [CrossRef]
- Hassaniazad, M.; Inchehsablagh, B.R.; Kamali, H.; Tousi, A.; Eftekhar, E.; Jaafari, M.R.; Fathalipour, M.; Nikoofal-Sahlabadi, S.; Gouklani, H.; Alizade, H.; et al. The Clinical Effect of Nano Micelles Containing Curcumin as a Therapeutic Supplement in Patients with COVID-19 and the Immune Responses Balance Changes Following Treatment: A Structured Summary of a Study Protocol for a Randomised Controlled Trial. Trials 2020, 21, 876. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.S.; Terpstra, K.; Woodbury-Farina, M.; Badmaev, V.; Varghese, J.; Raheb, H.; Lui, E.; Cernovsky, Z.; Bureau, Y.; Husni, M.; et al. Transforming Curry Extract-Spice to Liposome-Based Curcumin. In Nutraceuticals in Brain Health and Beyond; Elsevier: Amsterdam, The Netherlands, 2021; pp. 271–279. [Google Scholar]
- Greil, R.; Greil-Ressler, S.; Weiss, L.; Schönlieb, C.; Magnes, T.; Radl, B.; Bolger, G.T.; Vcelar, B.; Sordillo, P.P. A Phase 1 Dose-Escalation Study on the Safety, Tolerability and Activity of Liposomal Curcumin (LipocurcTM) in Patients with Locally Advanced or Metastatic Cancer. Cancer Chemother. Pharmacol. 2018, 82, 695–706. [Google Scholar] [CrossRef] [PubMed]
- Cuomo, J.; Appendino, G.; Dern, A.S.; Schneider, E.; McKinnon, T.P.; Brown, M.J.; Togni, S.; Dixon, B.M. Comparative Absorption of a Standardized Curcuminoid Mixture and Its Lecithin Formulation. J. Nat. Prod. 2011, 74, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Belcaro, G.; Cesarone, M.R.; Dugall, M.; Pellegrini, L.; Ledda, A.; Grossi, M.G.; Togni, S.; Appendino, G. Efficacy and Safety of Meriva®, a Curcumin-Phosphatidylcholine Complex, during Extended Administration in Osteoarthritis Patients. Altern. Med. Rev. 2010, 15, 337–344. [Google Scholar]
- Belcaro, G.; Cesarone, M.R.; Dugall, M.; Pellegrini, L.; Ledda, A.; Grossi, M.G.; Togni, S.; Appendino, G. Product-Evaluation Registry of Meriva®, a Curcumin-Phosphatidylcholine Complex, for the Complementary Management of Osteoarthritis. Panminerva Med. 2010, 52, 55–62. [Google Scholar]
- Steigerwalt, R.; Nebbioso, M.; Appendino, G.; Belcaro, G.; Ciammaichella, G.; Cornelli, U.; Luzzi, R.; Togni, S.; Dugall, M.; Cesarone, M.; et al. Meriva®, a Lecithinized Curcumin Delivery System, in Diabetic Microangiopathy and Retinopathy. Panminerva Med. 2012, 54, 11–16. [Google Scholar] [PubMed]
- Antiga, E.; Bonciolini, V.; Volpi, W.; Del Bianco, E.; Caproni, M. Oral Curcumin (Meriva) Is Effective as an Adjuvant Treatment and Is Able to Reduce IL-22 Serum Levels in Patients with Psoriasis Vulgaris. Biomed. Res. Int. 2015, 2015, 283634. [Google Scholar] [CrossRef]
- Pastorelli, D.; Fabricio, A.S.C.; Giovanis, P.; D’Ippolito, S.; Fiduccia, P.; Soldà, C.; Buda, A.; Sperti, C.; Bardini, R.; Da Dalt, G.; et al. Phytosome Complex of Curcumin as Complementary Therapy of Advanced Pancreatic Cancer Improves Safety and Efficacy of Gemcitabine: Results of a Prospective Phase II Trial. Pharmacol. Res. 2018, 132, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Appelboom, T.; Maes, N.; Albert, A. A New Curcuma Extract (Flexofytol®) in Osteoarthritis: Results from a Belgian Real-Life Experience. Open Rheumatol. J. 2014, 8, 77–81. [Google Scholar] [CrossRef]
- Henrotin, Y.; Gharbi, M.; Dierckxsens, Y.; Priem, F.; Marty, M.; Seidel, L.; Albert, A.; Heuse, E.; Bonnet, V.; Castermans, C. Decrease of a Specific Biomarker of Collagen Degradation in Osteoarthritis, Coll2-1, by Treatment with Highly Bioavailable Curcumin during an Exploratory Clinical Trial. BMC Complement. Altern. Med. 2014, 14, 159. [Google Scholar] [CrossRef]
- Henrotin, Y.; Malaise, M.; Wittoek, R.; de Vlam, K.; Brasseur, J.-P.; Luyten, F.P.; Jiangang, Q.; Van den Berghe, M.; Uhoda, R.; Bentin, J.; et al. Bio-Optimized Curcuma longa Extract Is Efficient on Knee Osteoarthritis Pain: A Double-Blind Multicenter Randomized Placebo Controlled Three-Arm Study. Arthritis Res. Ther. 2019, 21, 179. [Google Scholar] [CrossRef]
- Gupte, P.A.; Giramkar, S.A.; Harke, S.M.; Kulkarni, S.K.; Deshmukh, A.P.; Hingorani, L.L.; Mahajan, M.P.; Bhalerao, S.S. Evaluation of the Efficacy and Safety of Capsule Longvida® Optimized Curcumin (Solid Lipid Curcumin Particles) in Knee Osteoarthritis: A Pilot Clinical Study. J. Inflamm. Res. 2019, 12, 145–152. [Google Scholar] [CrossRef]
- Schiborr, C.; Kocher, A.; Behnam, D.; Jandasek, J.; Toelstede, S.; Frank, J. The Oral Bioavailability of Curcumin from Micronized Powder and Liquid Micelles Is Significantly Increased in Healthy Humans and Differs between Sexes. Mol. Nutr. Food Res. 2014, 58, 516–527. [Google Scholar] [CrossRef]
- Kocher, A.; Bohnert, L.; Schiborr, C.; Frank, J. Highly Bioavailable Micellar Curcuminoids Accumulate in Blood, Are Safe and Do Not Reduce Blood Lipids and Inflammation Markers in Moderately Hyperlipidemic Individuals. Mol. Nutr. Food Res. 2016, 60, 1555–1563. [Google Scholar] [CrossRef] [PubMed]
- Grafeneder, J.; Derhaschnig, U.; Eskandary, F.; Buchtele, N.; Sus, N.; Frank, J.; Jilma, B.; Schoergenhofer, C. Micellar Curcumin: Pharmacokinetics and Effects on Inflammation Markers and PCSK-9 Concentrations in Healthy Subjects in a Double-Blind, Randomized, Active-Controlled, Crossover Trial. Mol. Nutr. Food Res. 2022, 66, e2200139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Guo, W.; Chen, Z.; Chen, Y.; Zhang, R.; Liu, M.; Yang, J.; Zhang, J. Physicochemical Characterization and Oral Bioavailability of Curcumin–Phospholipid Complex Nanosuspensions Prepared Based on Microfluidic System. Pharmaceutics 2025, 17, 395. [Google Scholar] [CrossRef] [PubMed]
- Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P. Influence of Piperine on the Pharmacokinetics of Curcumin in Animals and Human Volunteers. Planta Med. 1998, 64, 353–356. [Google Scholar] [CrossRef]
- Miranda-Castro, S.; Aidar, F.J.; de Moura, S.S.; Marcucci-Barbosa, L.; Lobo, L.F.; de Assis Dias Martins-Júnior, F.; da Silva Filha, R.; Vaz de Castro, P.A.S.; Simões e Silva, A.C.; da Glória de Souza, D.; et al. The Curcumin Supplementation with Piperine Can Influence the Acute Elevation of Exercise-Induced Cytokines: Double-Blind Crossover Study. Biology 2022, 11, 573. [Google Scholar] [CrossRef]
- Tabanelli, R.; Brogi, S.; Calderone, V. Improving Curcumin Bioavailability: Current Strategies and Future Perspectives. Pharmaceutics 2021, 13, 1715. [Google Scholar] [CrossRef]
- Moballegh Nasery, M.; Abadi, B.; Poormoghadam, D.; Zarrabi, A.; Keyhanvar, P.; Khanbabaei, H.; Ashrafizadeh, M.; Mohammadinejad, R.; Tavakol, S.; Sethi, G. Curcumin Delivery Mediated by Bio-Based Nanoparticles: A Review. Molecules 2020, 25, 689. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, S.; Tang, Y.; Guan, X.; Wang, Y.; Li, Q.; Fu, S. Curcumin-Loaded Hydrogels Promote Skin Wound Healing. Soft Matter 2025, 21, 7184–7203. [Google Scholar] [CrossRef]
- Kanai, M.; Imaizumi, A.; Otsuka, Y.; Sasaki, H.; Hashiguchi, M.; Tsujiko, K.; Matsumoto, S.; Ishiguro, H.; Chiba, T. Dose-Escalation and Pharmacokinetic Study of Nanoparticle Curcumin, a Potential Anticancer Agent with Improved Bioavailability, in Healthy Human Volunteers. Cancer Chemother. Pharmacol. 2012, 69, 65–70. [Google Scholar] [CrossRef]
- Kanai, M.; Otsuka, Y.; Otsuka, K.; Sato, M.; Nishimura, T.; Mori, Y.; Kawaguchi, M.; Hatano, E.; Kodama, Y.; Matsumoto, S.; et al. A Phase I Study Investigating the Safety and Pharmacokinetics of Highly Bioavailable Curcumin (Theracurmin®) in Cancer Patients. Cancer Chemother. Pharmacol. 2013, 71, 1521–1530. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Mukai, S.; Yamada, S.; Murata, S.; Yabumoto, H.; Maeda, T.; Akamatsu, S. The Efficacy and Safety of Highly-Bioavailable Curcumin for Treating Knee Osteoarthritis: A 6-Month Open-Labeled Prospective Study. Clin. Med. Insights Arthritis Musculoskelet. Disord. 2020, 13, 117954412094847. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, A.; Imaizumi, A.; Wada, H.; Yamakage, H.; Satoh-Asahara, N.; Hashimoto, T.; Hasegawa, K. Newly Developed Highly Bioavailable Curcumin Formulation, curcuRougeTM, Reduces Neutrophil/Lymphocyte Ratio in the Elderly: A Double-Blind, Placebo-Controlled Clinical Trial. J. Nutr. Sci. Vitaminol. 2021, 67, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, A.; Komiyama, M.; Wada, H.; Satoh-Asahara, N.; Yamakage, H.; Ajiro, Y.; Aoyama, H.; Katsuura, Y.; Imaizumi, A.; Hashimoto, T.; et al. Efficacy of Highly Bioavailable Oral Curcumin in Asymptomatic or Mild COVID-19 Patients: A Double-Blind, Randomized, Placebo-Controlled Trial. J. Health Popul. Nutr. 2024, 43, 93. [Google Scholar] [CrossRef]
- Hocking, A.J.; Farrall, A.L.; Newhouse, S.; Sordillo, P.; Greco, K.; Karapetis, C.S.; Dougherty, B.; Klebe, S. Study Protocol of a Phase 1 Clinical Trial Establishing the Safety of Intrapleural Administration of Liposomal Curcumin: Curcumin as a Palliative Treatment for Malignant Pleural Effusion (IPAL-MPE). BMJ Open 2021, 11, e047075. [Google Scholar] [CrossRef] [PubMed]
- Schapowal, A.; Klein, P.; Johnston, S.L. Echinacea Reduces the Risk of Recurrent Respiratory Tract Infections and Complications: A Meta-Analysis of Randomized Controlled Trials. Adv. Ther. 2015, 32, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Karsch-Völk, M.; Barrett, B.; Kiefer, D.; Bauer, R.; Ardjomand-Woelkart, K.; Linde, K. Echinacea for Preventing and Treating the Common Cold. Cochrane Database Syst. Rev. 2014, 2014, CD000530. [Google Scholar] [CrossRef]
- Shah, S.A.; Sander, S.; White, C.M.; Rinaldi, M.; Coleman, C.I. Evaluation of Echinacea for the Prevention and Treatment of the Common Cold: A Meta-Analysis. Lancet Infect. Dis. 2007, 7, 473–480. [Google Scholar] [CrossRef]
- Turner, R.B.; Bauer, R.; Woelkart, K.; Hulsey, T.C.; Gangemi, J.D. An Evaluation of Echinacea angustifolia in Experimental Rhinovirus Infections. N. Engl. J. Med. 2005, 353, 341–348. [Google Scholar] [CrossRef]
- Barrett, B.; Brown, R.; Rakel, D.; Mundt, M.; Bone, K.; Barlow, S.; Ewers, T. Echinacea for Treating the Common Cold. Ann. Intern. Med. 2010, 153, 769–777. [Google Scholar] [CrossRef]
- Groß, C.; Seifert, R. Critical Analysis of Echinacea Preparations Marketed in Germany. Naunyn Schmiedebergs Arch. Pharmacol. 2025, 398, 5743–5756. [Google Scholar] [CrossRef]
- Matthias, A.; Addison, R.S.; Penman, K.G.; Dickinson, R.G.; Bone, K.M.; Lehmann, R.P. Echinacea Alkamide Disposition and Pharmacokinetics in Humans after Tablet Ingestion. Life Sci. 2005, 77, 2018–2029. [Google Scholar] [CrossRef]
- Gertsch, J.; Schoop, R.; Kuenzle, U.; Suter, A. Echinacea Alkylamides Modulate TNF-α Gene Expression via Cannabinoid Receptor CB2 and Multiple Signal Transduction Pathways. FEBS Lett. 2004, 577, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Ogal, M.; Johnston, S.L.; Klein, P.; Schoop, R. Echinacea Reduces Antibiotic Usage in Children through Respiratory Tract Infection Prevention: A Randomized, Blinded, Controlled Clinical Trial. Eur. J. Med. Res. 2021, 26, 33. [Google Scholar] [CrossRef]
- Cheng, Z.-Y.; Sun, X.; Liu, P.; Lin, B.; Li, L.-Z.; Yao, G.-D.; Huang, X.-X.; Song, S.-J. Sesquiterpenes from Echinacea purpurea and Their Anti-Inflammatory Activities. Phytochemistry 2020, 179, 112503. [Google Scholar] [CrossRef]
- Hall, H.; Fahlman, M.; Engels, H. Echinacea purpurea and Mucosal Immunity. Int. J. Sports Med. 2007, 28, 792–797. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.-Y.; Sudirman, S.; Tsai, P.-X.; Mao, C.-F.; Johnson, A.; Chen, T.-Y.; Hwang, D.-F.; Kong, Z.-L. Therapeutic Benefits of Nano-Echinacea Extract on Reproductive Injury Induced by Polystyrene Plastic Materials in Rat Model via Regulating Gut–Brain Axis. Int. J. Mol. Sci. 2025, 26, 6097. [Google Scholar] [CrossRef]
- Gecer, E.N.; Erenler, R.; Temiz, C.; Genc, N.; Yildiz, I. Green Synthesis of Silver Nanoparticles from Echinacea purpurea (L.) Moench with Antioxidant Profile. Part. Sci. Technol. 2022, 40, 50–57. [Google Scholar] [CrossRef]
- Fierascu, I.C.; Fierascu, I.; Baroi, A.M.; Ungureanu, C.; Ortan, A.; Avramescu, S.M.; Somoghi, R.; Fierascu, R.C.; Dinu-Parvu, C.E. Phytosynthesis of Biological Active Silver Nanoparticles Using Echinacea purpurea L. Extracts. Materials 2022, 15, 7327. [Google Scholar] [CrossRef]
- Al-Hakkani, M.F.; Gouda, G.A.; Hassan, S.H.A.; Nagiub, A.M. Echinacea purpurea Mediated Hematite Nanoparticles (α-HNPs) Biofabrication, Characterization, Physicochemical Properties, and Its In-Vitro Biocompatibility Evaluation. Surf. Interfaces 2021, 24, 101113. [Google Scholar] [CrossRef]
- Mehdizadeh, F.; Mohammadzadeh, R.; Nazemiyeh, H.; Mesgari-Abbasi, M.; Barzegar-Jalali, M.; Eskandani, M.; Adibkia, K. Electrosprayed Nanoparticles Containing Hydroalcoholic Extract of Echinacea purpurea (L.) Moench Stimulates Immune System by Increasing Inflammatory Factors in Male Wistar Rats. Adv. Pharm. Bull. 2023, 13, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Andziukevičiūtė-Jankūnienė, A.; Adomavičiūtė, E.; Gaidau, C.; Valeika, V.; Balčiūnaitienė, A.; Viškelis, J.; Rapa, M.; Jankauskaitė, V. Fabrication and Characterization of Electrospun Keratin Mats with Echinacea purpurea L. and Biosynthesized Silver Nanoparticles. Int. J. Mol. Sci. 2025, 26, 9919. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Murphy, P.A. Alkamide Stability in Echinacea purpurea Extracts with and without Phenolic Acids in Dry Films and in Solution. J. Agric. Food Chem. 2007, 55, 120–126. [Google Scholar] [CrossRef]
- Pavaloiu, R.-D.; Neagu, G.; Albulescu, A.; Deaconu, M.; Petrica, A.-L.; Bubueanu, C.; Sha’at, F. Development and Characterization of Topical Gels Containing Lipid Nanosystems Loaded with Echinacea purpurea. Gels 2025, 11, 801. [Google Scholar] [CrossRef]
- Johnson, A.; Huang, Y.-C.; Mao, C.-F.; Chen, C.-K.; Thomas, S.; Kuo, H.-P.; Miao, S.; Kong, Z.-L. Protective Effect of Ethanolic Extract of Echinacea purpurea Contained Nanoparticles on Meniscal/Ligamentous Injury Induced Osteoarthritis in Obese Male Rats. Sci. Rep. 2022, 12, 5354. [Google Scholar] [CrossRef]


| Formulation Type | Study Design | Population/Condition | Sample Size/Dose | Endpoint Focus | Key Findings | Ref. |
|---|---|---|---|---|---|---|
| Submicron colloidal curcumin (Theracurmin-type) | RCT, open-label PK + exploratory efficacy | Healthy volunteers; osteoarthritis | n = 50 (OA) (PK)/30–210 mg/day oral | PK + pain scores | 25–30× higher bioavailability; improved knee pain/function; only mild gastrointestinal or skin adverse effects reported. | [93,125,126,127] |
| Polymer-stabilized/Amorphous solid dispersion (CurcuRouge-type) | Randomized, double-blind | Elderly volunteers; mild COVID-19 | n = 39 (elderly), n = 145 (COVID)/90–720 mg/day oral | Immunological endpoints (NLR, cytokines) | Reduced neutrophil-to-lymphocyte ratio; fewer COVID-19 progression events; safe. CurcuRouge™ showed higher bioavailability and faster absorption than Theracurmin®, with no safety concerns. | [81,128,129] |
| Phosphatidylcholine phytosome (Meriva-type) | Randomized, double-blind; open-label controlled | Osteoarthritis, psoriasis, diabetes microangiopathy, pancreatic cancer | n = 63 (psoriasis), n = 77 (diabetes), n = 100 (OA), n = 44 (cancer)/2000–500 mg/day | Inflammatory markers (IL-1β, IL-6, IL-22, CRP) | Significant reduction in pain and improved physical function (WOMAC, VAS); decreased IL-1β, IL-6, IL-22, CRP, sCD40L, ESR; improved microcirculation and edema in diabetes; in pancreatic cancer, 61.4% disease control rate and 10.2-month overall survival; quality of life maintained; no serious adverse events | [106,108,109,110,111] |
| Micellar curcumin (NovaSol-type) | Randomized, crossover PK + efficacy | Healthy adults; hyperlipidemia | n = 42 (lipid trial), n = 15 (immune endpoints)/129–500 mg/day | PK + exploratory immune markers | Up to 453× higher Cmax and 185× higher AUC vs. native curcumin; faster absorption (Tmax ≈ 1.1 h); sex differences favoring women; no significant changes in IL-6, TNF-α, CRP, or lipid profile; plasma PCSK9 reduced ~10%; well tolerated with mild GI symptoms | [116,117,118] |
| Micellar microemulsion curcumin (Flexofytol-type) | Observational; open-label; RCT | Osteoarthritis (various joints; knee KL II–III) | n = 820 (real-life), n = 22 (exploratory), n = 150 (RCT)/168–252 mg/day oral (4–6 caps/day) | Pain, function, biomarkers (Coll2-1, CRP) | Significant pain reduction and improved joint function; decreased Coll2-1 and CRP; reduced NSAID/paracetamol use; quality-of-life gains; well tolerated with mild GI events; real-life benefit confirmed in RCT | [112,113,114] |
| Nano-micellar curcumin (SinaCurcumin-type) | Randomized, double-blind | COVID-19, rheumatoid arthritis, ulcerative colitis, osteoarthritis | n = 30–40 per trial/40–160 mg/day oral | Cytokines (IL-17, IL-4, CRP, ESR, miRNA) | Improved CRP/ESR; cytokine modulation; clinical benefit in UC and RA | [39,97,99,100,103] |
| Liposomal intravenous curcumin (Lipocurc-type) | Phase I, open-label | Advanced solid tumors | n = 32/100–300 mg/m2 IV | PK + safety | Steady plasma levels during infusion; safe up to 300 mg/m2. Tumor marker changes; transient PSA/CEA/CA19-9 reductions; no RECIST response; intrapleural protocol under evaluation | [105,130] |
| Formulation/Technology | Type of System | Experimental Model/Application | Main Outcomes (Summary) | Key Reference |
|---|---|---|---|---|
| Echinacea extract–chitosan–silica nanoparticles | Polymer–inorganic hybrid nanoparticles (~100–200 nm) | In vitro characterization; simulated GI release; protective effect models | Improved stability of phenolics; sustained release; favorable particle size and zeta potential | [150] |
| Chitosan–silica E. purpurea nanoparticles (CSE) | Polymer–inorganic hybrid nanoparticles (~100–150 nm) | In vivo (male rats exposed to phthalates; reproductive/oxidative stress model) | Restored antioxidant enzyme levels (SOD, CAT, GPx); reduced lipid peroxidation and testicular injury; improved sperm parameters and histology; no observed toxicity | [142] |
| Liposomes loaded with E. purpurea extract | Phosphatidylcholine liposomes (~180 nm) | In vitro antioxidant and release studies | High encapsulation efficiency (~78%); controlled release of phenolics (24 h); improved antioxidant stability; potential topical/immunoprotective application | [132] |
| Phytosynthesized silver nanoparticles using E. purpurea extracts | Green-synthesized metallic nanoparticles (AgNPs, 15–30 nm) | In vitro antimicrobial and antioxidant assays | Spherical AgNPs stabilized by plant metabolites; strong antibacterial activity (S. aureus, E. coli); high antioxidant capacity (DPPH, ABTS); non-toxic to normal cells | [150] |
| Green-synthesized silver nanoparticles from E. purpurea | Biogenic metallic nanoparticles (AgNPs, ~20–40 nm) | In vitro antioxidant and characterization study | Spherical AgNPs confirmed by UV–Vis, FTIR, SEM and XRD; strong DPPH radical scavenging and reducing power; green synthesis using ethanolic E. purpurea extract; stable dispersion and low cytotoxicity potential | [143] |
| E. purpurea-mediated hematite nanoparticles (α-HNPs) | Green-synthesized iron oxide nanoparticles (Fe2O3, ~25–35 nm) | In vitro physicochemical and biocompatibility assays | Successful bio-reduction and stabilization of Fe3+ to α-Fe2O3 using E. purpurea extract; crystalline spherical particles confirmed by XRD, TEM, FTIR; high antioxidant and catalytic activities; excellent hemocompatibility and cytocompatibility in fibroblast cultures | [145] |
| Electrosprayed nanoparticles containing E. purpurea hydroalcoholic extract | Polymeric nanoparticles prepared by electrospraying (~100–200 nm) | In vivo study in male Wistar rats (immune stimulation model) | Increased levels of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) and immunoglobulins (IgG, IgM); mild splenic hyperplasia indicating immune activation; safe dose range without organ toxicity | [146] |
| Electrospun keratin mats with E. purpurea extract and biosynthesized silver nanoparticles | Keratin-based polymeric nanofibers (electrospun, ~200–400 nm) incorporating Echinacea extract and AgNPs | In vitro physicochemical, antimicrobial, and cytocompatibility assays | Successfully fabricated uniform keratin nanofibers embedding E. purpurea extract and AgNPs; confirmed stability (SEM, FTIR, XRD); strong antibacterial activity against S. aureus and E. coli; maintained fibroblast viability (> 90%); potential for wound-healing and dermal delivery applications | [147] |
| Aspect | C. longa | E. purpurea | References |
|---|---|---|---|
| Main bioactives | Curcuminoids (curcumin, demethoxycurcumin, bisdemethoxycurcumin) | Alkylamides, caffeic acid derivatives, polysaccharides | [3,18] |
| Immune targets | NF-κB, MAPK, JAK/STAT, Nrf2, COX-2 | TLR2/4, CB2, COX/LOX, cytokine modulation | [5,10,19] |
| Regulation of COX/LOX enzymes | Inhibits COX-2 expression and iNOS; reduces prostaglandin synthesis | Partial inhibition of COX and LOX; decreases prostaglandins and leukotrienes | [3,18,46] |
| Predominant effects | ↓ IL-6, ↓ TNF-α, ↑ Treg, M1→M2 macrophage polarization | ↑ NK activity, enhanced innate immunity, antiviral response | [18,19] |
| Clinical focus | Chronic inflammation, metabolic and degenerative disorders | Acute respiratory tract infections, immune support | [5,46] |
| Limitations | Poor solubility, low bioavailability | Variability in extract composition | [3,10] |
| Technological advances | Phytosomes, nanoemulsions, piperine co-formulation | Nanoencapsulation, polymeric matrices, green extraction | [5,10] |
| Safety | Excellent; minor gastrointestinal discomfort | Excellent; rare allergic reactions | [3] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Espinoza, J.P.; Guajardo, V.; Rodríguez-Díaz, M.; Moreno, M.; Klagges, C.; Castillo-Ruiz, M.; Otero, M.C. Pharmacological Insights and Technological Innovations in Curcuma longa L. and Echinacea purpurea (L.) Moench as Plant-Derived Immunomodulators. Pharmaceuticals 2026, 19, 93. https://doi.org/10.3390/ph19010093
Espinoza JP, Guajardo V, Rodríguez-Díaz M, Moreno M, Klagges C, Castillo-Ruiz M, Otero MC. Pharmacological Insights and Technological Innovations in Curcuma longa L. and Echinacea purpurea (L.) Moench as Plant-Derived Immunomodulators. Pharmaceuticals. 2026; 19(1):93. https://doi.org/10.3390/ph19010093
Chicago/Turabian StyleEspinoza, Juan Pablo, Valentina Guajardo, Maité Rodríguez-Díaz, Mabel Moreno, Carolina Klagges, Mario Castillo-Ruiz, and María Carolina Otero. 2026. "Pharmacological Insights and Technological Innovations in Curcuma longa L. and Echinacea purpurea (L.) Moench as Plant-Derived Immunomodulators" Pharmaceuticals 19, no. 1: 93. https://doi.org/10.3390/ph19010093
APA StyleEspinoza, J. P., Guajardo, V., Rodríguez-Díaz, M., Moreno, M., Klagges, C., Castillo-Ruiz, M., & Otero, M. C. (2026). Pharmacological Insights and Technological Innovations in Curcuma longa L. and Echinacea purpurea (L.) Moench as Plant-Derived Immunomodulators. Pharmaceuticals, 19(1), 93. https://doi.org/10.3390/ph19010093







