Golexanolone Attenuates Neuroinflammation, Fatigue, and Cognitive and Motor Impairment in Diverse Neuroinflammatory Disorders
Abstract
1. Introduction
Golexanolone Selectively Reduces GABAergic Neurotransmission
2. Golexanolone Reduces Peripheral Inflammation, Neuroinflammation, and Cognitive and Motor Impairment in Hyperammonemia and Minimal Hepatic Encephalopathy (MHE)
3. Golexanolone Clinical Studies in Allopregnanolone Challenge and in Hepatic Encephalopathy
4. Golexanolone Reduces Fatigue, Motor Incoordination, and Gait and Improves Cognitive Function in Rats with Bile-Duct Ligation—A Model of Primary Biliary Cholangitis (PBC)
5. Golexanolone Reduces Glial Activation and Improves Motor Incoordination, Some Gait Alterations, Fatigue, Anxiety, Depression, and Short-Term Memory in a Rat Model of Parkinson’s Disease (PD)
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CNS | Central nervous system; |
| NAMs | Negative allosteric modulators; |
| PAMs | Positive allosteric modulators; |
| GAMSAs | GABAA-Receptor-Modulating Steroid Antagonists; |
| THDOC | Tetrahydrodeoxicorticosterone; |
| DHEAS | Dehydroepiandrosterone sulphate; |
| PD | Parkinson’s disease; |
| HE | Hepatic encephalopathy; |
| MHE | Minimal hepatic encephalopathy; |
| PBC | Primary biliary cholangitis; |
| MoCA | Montreal Cognitive Assessment; |
| PHES | Psychometric Hepatic Encephalopathy Score; |
| EEG | Electroencephalogram; |
| UDCA | Ursodeoxycholic acid; |
| BDL | Bile duct ligation; |
| FDA | Food and Drug Administration; |
| ODD | Orphan drug designation; |
| TH | Tyrosine hydroxylase; |
| 6-OHDA | 6-Hydroxydopamine. |
References
- Lambert, J.J.; Belelli, D.; Hill-Venning, C.; Peters, J.A. Neurosteroids and GABA-A receptor function. Trends Pharmacol. Sci. 1995, 16, 295–303. [Google Scholar] [CrossRef]
- Belelli, D.; Lambert, J.J. Neurosteroids: Endogenous regulators of the GABA-A receptor. Nat. Rev. Neurosci. 2005, 6, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.; Birzniece, V.; Bäckström, T. GABA-A receptor-modulating steroid antagonists (GAMSAs). J. Steroid Biochem. Mol. Biol. 2016, 162, 126–135. [Google Scholar]
- Mortensen, M.; Bright, D.P.; Fagotti, J.; Dorovykh, V.; Cerna, B.; Smart, T.G. Forty Years Searching for Neurosteroid Binding Sites on GABAA Receptors. Neuroscience 2025, 578, 6–24. [Google Scholar] [CrossRef]
- Stell, B.M.; Brickley, S.G.; Tang, C.Y.; Farrant, M.; Mody, I. Neuroactive steroids reduce neuronal excitability by enhancing tonic inhibition. Proc. Natl. Acad. Sci. USA 2003, 100, 14439–14444. [Google Scholar] [CrossRef]
- Bäckström, T.; Das, R.; Bixo, M. Positive GABAA receptor modulating steroids and their antagonists: Implications for clinical treatments. J. Neuroendocrinol. 2022, 34, e13013. [Google Scholar] [CrossRef]
- Puia, G.; Santi, M.R.; Vicini, S.; Pritchett, D.B.; Purdy, R.H.; Paul, S.M.; Seeburg, P.H.; Costa, E. Neurosteroids act on recombinant human GABAA receptors. Neuron 1990, 4, 759–765. [Google Scholar] [CrossRef]
- Hosie, A.M.; Wilkins, M.E.; da Silva, H.M.A.; Smart, T.G. Endogenous neurosteroids regulate GABA-A receptors through two discrete transmembrane sites. Nature 2006, 444, 486–489. [Google Scholar] [CrossRef]
- Hosie, A.M.; Wilkins, M.E.; Smart, T.G. Neurosteroid binding sites on GABA-A receptors. J. Physiol. 2007, 584, 701–708. [Google Scholar]
- Chen, Z.W.; Bracamontes, J.R.; Budelier, M.M.; Germann, A.L.; Shin, D.J.; Kathiresan, K.; Qian, M.X.; Manion, B.; Cheng, W.W.L.; Reichert, D.E.; et al. Multiple functional neurosteroid binding sites on GABA-A receptors. PLoS Biol. 2019, 17, e3000157. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.D. Neurosteroids and GABA-A receptor function. Front. Endocrinol. Neuroendocr. Sci. 2011, 2, 44. [Google Scholar] [CrossRef]
- Laverty, D.; Desai, R.; Uchański, T.; Masiulis, S.; Stec, W.J.; Malinauskas, T.; Zivanov, J.; Pardon, E.; Steyaert, J.; Miller, K.W.; et al. Cryo-EM structure of a human synaptic GABA-A receptor in a lipid bilayer. Nature 2019, 565, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zhu, H.; Clark, S.; Gouaux, E. Cryo-EM structures reveal native GABA-A receptor assemblies with allopregnanolone bound. Nature 2023, 620, 112–120. [Google Scholar]
- Legesse, D.H.; Fan, C.; Teng, J.; Zhuang, Y.; Howard, R.J.; Noviello, C.M.; Lindahl, E.; Hibbs, R.E. Structural insights into opposing actions of neurosteroids at synaptic GABA-A receptors. Nat. Commun. 2023, 14, 5089. [Google Scholar] [CrossRef]
- Wang, M.; He, Y.; Eisenman, L.N.; Fields, C.; Zeng, C.M.; Mathews, J.; Benz, A.; Fu, T.; Zorumski, E.; Steinbach, J.H.; et al. 3beta -hydroxypregnane steroids are pregnenolone sulfate-like GABA(A) receptor antagonists. J. Neurosci. 2002, 22, 3366–3375. [Google Scholar] [CrossRef]
- Lundgren, P.; Strömberg, J.; Bäckström, T.; Wang, M.D. Allopregnanolone-stimulated GABA-mediated chloride ion flux is inhibited by 3β-hydroxy-5α-pregnan-20-one (isoallopregnanolone). Brain Res. 2003, 982, 45–53. [Google Scholar] [CrossRef]
- Bäckström, T.; Wahlström, G.; Wahlström, K.; Zhu, D.; Wang, M.D. Isoallopregnanolone, an antagonist to the anaesthetic effect of allopregnanolone in male rats. Eur. J. Pharmacol. 2005, 512, 15–21. [Google Scholar] [CrossRef]
- Sugasawa, Y.; Cheng, W.W.; Bracamontes, J.R.; Chen, Z.W.; Wang, L.; Germann, A.L.; Pierce, S.R.; Senneff, T.C.; Krishnan, K.; Reichert, D.E.; et al. Site-specific effects of neurosteroids on GABAA receptor activation and desensitization. eLife 2020, 9, e55331. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.J.; Cooper, M.A.; Simmons, R.D.; Weir, C.J.; Belelli, D. Neurosteroids: Endogenous allosteric modulators of GABA(A) receptors. Psychoneuroendocrinology 2009, 34 (Suppl. 1), S48–S58. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Lindblad, C.; Johansson, I.M.; Bäckström, T.; Wang, M.D. Neurosteroid modulation of recombinant rat a5b2g2L and a1b2g2L GABAA receptors in Xenopus oocyte. Eur. J. Pharmacol. 2006, 547, 37–44. [Google Scholar] [CrossRef]
- Eisenman, L.N.; He, Y.; Fields, C.; Zorumski, C.F. Activation-dependent properties of pregnenolone sulfate inhibition. J. Physiol. 2003, 550, 731–746. [Google Scholar] [CrossRef]
- Akk, G.; Shu, H.-J.; Wang, C.; Steinbach, J.H.; Covey, D.F. Mechanisms of neurosteroid interactions with GABA-A receptors. J. Neurosci. 2007, 27, 2153–2162. [Google Scholar]
- Seljeset, S.; Bright, D.P.; Thomas, P.; Smart, T.G. Probing GABA-A receptors with inhibitory neurosteroids. Front. Mol. Neurosci. 2018, 11, 155. [Google Scholar]
- Möhler, H.; Rudolph, U. Disinhibition, an emerging pharmacology of learning and memory. F1000Research 2017, 6, 101. [Google Scholar] [CrossRef]
- Kelley, S.P.; Alan, J.K.; O’Buckley, T.K.; Mennerick, S.; Krishnan, K.; Covey, D.F.; Leslie Morrow, A. Antagonism of neurosteroid modulation of native gamma-aminobutyric acid receptors by (3alpha,5alpha)-17-phenylandrost-16-en-3-ol. Eur. J. Pharmacol. 2007, 572, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Bäckström, T.; Doverskog, M.; Blackburn, T.P.; Scharschmidt, B.F.; Felipo, V. Allopregnanolone and its antagonist modulate neuroinflammation and neurological impairment. Neurosci. Biobehav. Rev. 2024, 161, 105668. [Google Scholar] [CrossRef]
- Wang, M.D.; Bäckström, T.; Landgren, S. The inhibitory effects of allopregnanolone and pregnanolone on the population spike, evoked in the rat hippocampal CA1 stratum pyramidale in vitro, can be blocked selectively by epiallopregnanolone. Acta Physiol. Scand. 2000, 169, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Mennerick, S.; He, Y.; Jiang, X.; Manion, B.D.; Wang, M.; Shute, A.; Benz, A.; Evers, A.S.; Covey, D.F.; Zorumski, C.F. Selective antagonism of 5alpha-reduced neurosteroid effects at GABA(A) receptors. Mol. Pharmacol. 2004, 65, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Montagnese, S.; Lauridsen, M.; Vilstrup, H.; Zarantonello, L.; Lakner, G.; Fitilev, S.; Zupanets, I.; Kozlova, I.; Bunkova, E.; Tomasiewicz, K.; et al. A pilot study of golexanolone, a new GABA-A receptor-modulating steroid antagonist, in patients with covert hepatic encephalopathy. J. Hepatol. 2021, 75, 98–107. [Google Scholar] [CrossRef]
- Izquierdo-Altarejos, P.; Arenas, Y.M.; Martínez-García, M.; Vázquez, L.; Mincheva, G.; Doverskog, M.; Blackburn, T.P.; Bohnen, N.I.; Llansola, M.; Felipo, V. Golexanolone reduces glial activation in the striatum and improves non-motor and some motor alterations in a rat model of Parkinson’s disease. Front. Aging Neurosci. 2024, 16, 1417938. [Google Scholar] [CrossRef]
- Arenas, Y.M.; Izquierdo-Altarejos, P.; Martinez-García, M.; Giménez-Garzó, C.; Mincheva, G.; Doverskog, M.; Jones, D.E.J.; Balzano, T.; Llansola, M.; Felipo, V. Golexanolone improves fatigue, motor incoordination and gait and memory in rats with bile duct ligation. Liver Int. 2024, 44, 433–445. [Google Scholar] [CrossRef]
- Johansson, M.; Malmström, T.; Bäckström, T. A novel steroid antagonist reverses allopregnanolone-induced anaesthesia and sedation in vivo. J. Steroid Biochem. Mol. Biol. 2015, 145, 87–94. [Google Scholar]
- Bengtsson, S.K.S.; Sjöstedt, J.; Malinina, E.; Das, R.; Doverskog, M.; Johansson, M.; Haage, D.; Bäckström, T. Extra-Synaptic GABAA Receptor Potentiation and Neurosteroid-Induced Learning Deficits Are Inhibited by GR3027, a GABAA Modulating Steroid Antagonist. Biomolecules 2023, 13, 1496. [Google Scholar] [CrossRef]
- Ahboucha, S.; Pomier-Layrargues, G.; Mamer, O.; Butterworth, R.F. Increased levels of pregnenolone and its neuroactive metabolite allopregnanolone in autopsied brain tissue from cirrhotic patients who died in hepatic coma. Neurochem. Int. 2006, 49, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Ahboucha, S.; Butterworth, R.F. The neurosteroid system: Implication in the pathophysiology of hepatic encephalopathy. Neurochem. Int. 2008, 52, 575–587. [Google Scholar] [CrossRef]
- Luchetti, S.; Liere, P.; Pianos, A.; Verwer, R.W.H.; Sluiter, A.; Huitinga, I.; Schumacher, M.; Swaab, D.F.; Mason, M.R.J. Disease stage-dependent changes in brain levels and neuroprotective effects of neuroactive steroids in Parkinson’s disease. Neurobiol. Dis. 2023, 183, 106169. [Google Scholar] [CrossRef] [PubMed]
- Cavallieri, F.; Lucchi, C.; Grisanti, S.; Monfrini, E.; Fioravanti, V.; Toschi, G.; Di Rauso, G.; Rossi, J.; Di Fonzo, A.; Biagini, G.; et al. Neurosteroid Levels in GBA Mutated and Non-Mutated Parkinson’s Disease: A Possible Factor Influencing Clinical Phenotype? Biomolecules 2024, 14, 1022. [Google Scholar] [CrossRef] [PubMed]
- Weill-Engerer, S.; David, J.P.; Sazdovitch, V.; Liere, P.; Eychenne, B.; Pianos, A.; Schumacher, M.; Delacourte, A.; Baulieu, E.E.; Akwa, Y. Neurosteroid quantification in human brain regions: Comparison between Alzheimer’s and nondemented patients. J. Clin. Endocrinol. Metab. 2002, 87, 5138–5143. [Google Scholar] [CrossRef]
- Ritsner, M.S. Pregnenolone, dehydroepiandrosterone, and schizophrenia: Alterations and clinical trials. CNS Neurosci. Ther. 2010, 16, 32–44. [Google Scholar] [CrossRef]
- Luchetti, S.; Bossers, K.; Frajese, G.V.; Swaab, D.F. Neurosteroid biosynthetic pathway changes in substantia nigra and caudate nucleus in Parkinson’s disease. Brain Pathol. 2010, 20, 945–951. [Google Scholar] [CrossRef]
- Uh, D.; Jeong, H.G.; Choi, K.Y.; Oh, S.Y.; Lee, S.; Kim, S.H.; Joe, S.H. Dehydroepiandrosterone Sulfate Level Varies Nonlinearly with Symptom Severity in Major Depressive Disorder. Clin. Psychopharmacol. Neurosci. 2017, 15, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Ahboucha, S.; Talani, G.; Fanutza, T.; Sanna, E.; Biggio, G.; Gamrani, H.; Butterworth, R.F. Reduced brain levels of DHEAS in hepatic coma patients: Significance for increased GABAergic tone in hepatic encephalopathy. Neurochem. Int. 2012, 61, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, R.F.; Lalonde, R.; Power, C.; Baker, G.B.; Gamrani, H.; Ahboucha, S. Dehydroepiandrosterone sulphate improves cholestasis-associated fatigue in bile duct ligated rats. Neurogastroenterol. Motil. 2009, 21, 1319–1325. [Google Scholar] [CrossRef]
- Barrot, M.; Vallée, M.; Gingras, M.A.; Le Moal, M.; Mayo, W.; Piazza, P.V. The neurosteroid pregnenolone sulphate increases dopamine release and the dopaminergic response to morphine in the rat nucleus accumbens. Eur. J. Neurosci. 1999, 11, 3757–3760. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, S.; Mao, Z.; Shang, Y.; Brinton, R.D. Allopregnanolone pleiotropic action in neurons and astrocytes: Calcium signaling as a unifying mechanism. Front. Endocrinol. 2023, 14, 1286931. [Google Scholar] [CrossRef]
- Yilmaz, C.; Karali, K.; Fodelianaki, G.; Gravanis, A.; Chavakis, T.; Charalampopoulos, I.; Alexaki, V.I. Neurosteroids as regulators of neuroinflammation. Front. Neuroendocrinol. 2019, 55, 100788. [Google Scholar] [CrossRef]
- Johansson, M.; Agusti, A.; Llansola, M.; Montoliu, C.; Strömberg, J.; Malinina, E.; Ragagnin, G.; Doverskog, M.; Bäckström, T.; Felipo, V. GR3027 antagonizes GABAA receptor-potentiating neurosteroids and restores spatial learning and motor coordination in rats with chronic hyperammonemia and hepatic encephalopathy. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 309, G400–G409. [Google Scholar] [CrossRef]
- Weissenborn, K.; Heidenreich, S.; Ennen, J.; Rückert, N.; Hecker, H. Attention deficits in minimal hepatic encephalopathy. Metab. Brain Dis. 2001, 16, 13–19. [Google Scholar] [CrossRef]
- Weissenborn, K.; Giewekemeyer, K.; Heidenreich, S.; Bokemeyer, M.; Berding, G.; Ahl, B. Attention, memory, and cognitive function in hepatic encephalopathy. Metab. Brain Dis. 2005, 20, 359–367. [Google Scholar] [CrossRef]
- Agrawal, S.; Umapathy, S.; Dhiman, R.K. Minimal hepatic encephalopathy impairs quality of life. J. Clin. Exp. Hepatol. 2015, 5 (Suppl. 1), S42–S48. [Google Scholar] [CrossRef]
- Poordad, F.F. Review article: The burden of hepatic encephalopathy. Aliment. Pharmacol. Ther. 2007, 25 (Suppl. 1), 3–9. [Google Scholar] [CrossRef] [PubMed]
- Leevy, C.B.; Phillips, J.A. Hospitalizations during the use of rifaximin versus lactulose for the treatment of hepatic encephalopathy. Dig. Dis. Sci. 2007, 52, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Román, E.; Córdoba, J.; Torrens, M.; Torras, X.; Villanueva, C.; Vargas, V.; Guarner, C.; Soriano, G. Minimal hepatic encephalopathy is associated with falls. Am. J. Gastroenterol. 2011, 106, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.; Bajaj, J.S. Covert Hepatic Encephalopathy: Can My Patient Drive? J. Clin. Gastroenterol. 2017, 51, 118–126. [Google Scholar] [CrossRef]
- Häussinger, D.; Dhiman, R.K.; Felipo, V.; Görg, B.; Jalan, R.; Kircheis, G.; Merli, M.; Montagnese, S.; Romero-Gomez, M.; Schnitzler, A.; et al. Hepatic encephalopathy. Nat. Rev. Dis. Primers 2022, 8, 43. [Google Scholar] [CrossRef]
- Felipo, V. Hepatic encephalopathy: Effects of liver failure on brain function. Nat. Rev. Neurosci. 2013, 14, 851–858. [Google Scholar] [CrossRef]
- Faccioli, J.; Nardelli, S.; Gioia, S.; Riggio, O.; Ridola, L. Minimal Hepatic Encephalopathy Affects Daily Life of Cirrhotic Patients: A Viewpoint on Clinical Consequences and Therapeutic Opportunities. J. Clin. Med. 2022, 11, 7246. [Google Scholar] [CrossRef]
- Landis, C.S.; Ghabril, M.; Rustgi, V.; Di Bisceglie, A.M.; Maliakkal, B.; Rockey, D.C.; Vierling, J.; Rowell, R.; Santoro, M.; Enriquez, A.; et al. Prospective Multicenter Observational Study of Overt Hepatic Encephalopathy: Nomenclature and Disease Burden. Dig. Dis. Sci. 2016, 61, 1728–1734. [Google Scholar] [CrossRef]
- Mangas-Losada, A.; García-García, R.; Leone, P.; Ballester, M.P.; Cabrera-Pastor, A.; Urios, A.; Gallego, J.J.; Martínez-Pretel, J.J.; Giménez-Garzó, C.; Revert, F.; et al. Selective improvement by rifaximin of changes in the immunophenotype in patients who improve minimal hepatic encephalopathy. J. Transl. Med. 2019, 17, 293. [Google Scholar] [CrossRef]
- Rockey, D.C.; Vierling, J.M.; Mantry, P.; Ghabril, M.; Brown Jr, R.S.; Alexeeva, O.; Zupanets, I.; Grinevich, V.; Baranovsky, A.; Dudar, L.; et al. Randomized, controlled, double blind study of glycerol phenylbutyrate in patients with cirrhosis and episodic hepatic encephalopathy. Hepatology 2014, 59, 1073–1083. [Google Scholar] [CrossRef]
- Balzano, T.; Llansola, M.; Arenas, Y.M.; Izquierdo-Altarejos, P.; Felipo, V. Hepatic encephalopathy: Investigational drugs in preclinical and early phase development. Expert Opin. Investig. Drugs 2023, 32, 1055–1069. [Google Scholar] [CrossRef] [PubMed]
- Cauli, O.; Rodrigo, R.; Piedrafita, B.; Llansola, M.; Mansouri, M.T.; Felipo, V. Neuroinflammation contributes to hypokinesia in rats with hepatic encephalopathy: Ibuprofen restores its motor activity. J. Neurosci. Res. 2009, 87, 1369–1374. [Google Scholar] [CrossRef]
- Agusti, A.; Cauli, O.; Rodrigo, R.; Llansola, M.; Hernández-Rabaza, V.; Felipo, V. p38 MAP kinase is a therapeutic target for hepatic encephalopathy in rats with portacaval shunts. Gut 2011, 11, 1572–1579. [Google Scholar] [CrossRef]
- Cabrera-Pastor, A.; Llansola, M.; Montoliu, C.; Malaguarnera, M.; Balzano, T.; Taoro-Gonzalez, L.; García-García, R.; Mangas-Losada, A.; Izquierdo-Altarejos, P.; Arenas, Y.M.; et al. Peripheral inflammation induces neuroinflammation that alters neurotransmission and cognitive and motor function in hepatic encephalopathy: Underlying mechanisms and therapeutic implications. Acta Physiol. 2019, 226, e13270. [Google Scholar] [CrossRef] [PubMed]
- Llansola, M.; Izquierdo-Altarejos, P.; Montoliu, C.; Mincheva, G.; Palomares-Rodriguez, A.; Pedrosa, M.A.; Arenas, Y.M.; Felipo, V. Role of peripheral inflammation in minimal hepatic encephalopathy. Metab. Brain Dis. 2024, 39, 1667–1677. [Google Scholar] [CrossRef]
- Llansola, M.; Arenas, Y.M.; Sancho-Alonso, M.; Mincheva, G.; Palomares-Rodriguez, A.; Doverskog, M.; Izquierdo-Altarejos, P.; Felipo, V. Neuroinflammation alters GABAergic neurotransmission in hyperammonemia and hepatic encephalopathy, leading to motor incoordination. Mechanisms and therapeutic implications. Front. Pharmacol. 2024, 15, 1358323. [Google Scholar] [CrossRef]
- Johansson, M.; Månsson, M.; Lins, L.E.; Scharschmidt, B.; Doverskog, M.; Bäckström, T. GR3027 reversal of neurosteroid-induced, GABA-A receptor-mediated inhibition of human brain function: An allopregnanolone challenge study. Psychopharmacology 2018, 235, 1533–1543. [Google Scholar] [CrossRef]
- Arenas, Y.M.; Balzano, T.; Ivaylova, G.; Llansola, M.; Felipo, V. The S1PR2-CCL2-BDNF-TrkB pathway mediates neuroinflammation and motor incoordination in hyperammonaemia. Neuropathol. Appl. Neurobiol. 2022, 48, e12799. [Google Scholar] [CrossRef]
- Arenas, Y.M.; Martínez-García, M.; Llansola, M.; Felipo, V. Enhanced BDNF and TrkB Activation Enhance GABA Neurotransmission in Cerebellum in Hyperammonemia. Int. J. Mol. Sci. 2022, 23, 11770. [Google Scholar] [CrossRef]
- Magnaghi, V. GABA and neuroactive steroid interactions in glia: New roles for old players? Curr. Neuropharmacol. 2007, 5, 47–64. [Google Scholar] [CrossRef] [PubMed]
- Germelli, L.; Angeloni, E.; Da Pozzo, E.; Tremolanti, C.; De Felice, M.; Giacomelli, C.; Marchetti, L.; Muscatello, B.; Barresi, E.; Taliani, S.; et al. 18 kDa TSPO targeting drives polarized human microglia towards a protective and restorative neurosteroidome profile. Cell. Mol. Life Sci. 2025, 82, 34. [Google Scholar] [CrossRef]
- Cauli, O.; Mansouri, M.T.; Agusti, A.; Felipo, V. Hyperammonemia increases GABAergic tone in the cerebellum but decreases it in the rat cortex. Gastroenterology 2009, 136, 1359–1367.e2. [Google Scholar] [CrossRef]
- Ahboucha, S.; Butterworth, R.F. The neurosteroid system: An emerging therapeutic target for hepatic encephalopathy. Metab. Brain Dis. 2007, 22, 291–308. [Google Scholar] [CrossRef]
- Cabrera-Pastor, A.; Balzano, T.; Hernández-Rabaza, V.; Malaguarnera, M.; Llansola, M.; Felipo, V. Increasing extracellular cGMP in cerebellum in vivo reduces neuroinflammation, GABAergic tone and motor in-coordination in hyperammonemic rats. Brain Behav. Immun. 2018, 69, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Héja, L.; Barabás, P.; Nyitrai, G.; Kékesi, K.A.; Lasztóczi, B.; Toke, O.; Tárkányi, G.; Madsen, K.; Schousboe, A.; Dobolyi, A.; et al. Glutamate uptake triggers transporter-mediated GABA release from astrocytes. PLoS ONE 2009, 4, e7153. [Google Scholar] [CrossRef]
- Hassan, S.S.; Baumgarten, T.J.; Ali, A.M.; Füllenbach, N.D.; Jördens, M.S.; Häussinger, D.; Butz, M.; Schnitzler, A.; Groiss, S.J. Cerebellar inhibition in hepatic encephalopathy. Clin. Neurophysiol. 2019, 130, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Sancho-Alonso, M.; Garcia-Garcia, R.; Teruel-Martí, V.; Llansola, M.; Felipo, V. Hyperammonemia Enhances GABAergic Neurotransmission in Hippocampus: Underlying Mechanisms and Modulation by Extracellular cGMP. Mol. Neurobiol. 2022, 59, 3431–3448. [Google Scholar] [CrossRef]
- Malaguarnera, M.; Llansola, M.; Balzano, T.; Gómez-Giménez, B.; Antúnez-Muñoz, C.; Martínez-Alarcón, N.; Mahdinia, R.; Felipo, V. Bicuculline Reduces Neuroinflammation in Hippocampus and Improves Spatial Learning and Anxiety in Hyperammonemic Rats. Role of Glutamate Receptors. Front. Pharmacol. 2019, 10, 132. [Google Scholar] [CrossRef]
- Malaguarnera, M.; Balzano, T.; Castro, M.C.; Llansola, M.; Felipo, V. The Dual Role of the GABAA Receptor in Peripheral Inflammation and Neuroinflammation: A Study in Hyperammonemic Rats. Int. J. Mol. Sci. 2021, 22, 6772. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Usano, A.; Cauli, O.; Agusti, A.; Felipo, V. Pregnenolone sulfate restores the glutamate-nitric-oxide-cGMP pathway and extracellular GABA in cerebellum and learning and motor coordination in hyperammonemic rats. ACS Chem. Neurosci. 2014, 5, 100–105. [Google Scholar] [CrossRef]
- Goh, E.T.; Andersen, M.L.; Morgan, M.Y.; Gluud, L.L. Flumazenil versus placebo or no intervention for people with cirrhosis and hepatic encephalopathy. Cochrane Database Syst. Rev. 2017, 8, CD002798. [Google Scholar] [CrossRef]
- Agusti, A.; Llansola, M.; Hernández-Rabaza, V.; Cabrera-Pastor, A.; Montoliu, C.; Felipo, V. Modulation of GABAA receptors by neurosteroids. A new concept to improve cognitive and motor alterations in hepatic encephalopathy. J. Steroid Biochem. Mol. Biol. 2016, 160, 88–93. [Google Scholar] [CrossRef]
- Thompson, S.M. Modulators of GABAA receptor-mediated inhibition in the treatment of neuropsychiatric disorders: Past, present, and future. Neuropsychopharmacology 2024, 49, 83–95. [Google Scholar] [CrossRef]
- Bäckström, T.; Ekberg, K.; Hirschberg, A.L.; Bixo, M.; Epperson, C.N.; Briggs, P.; Panay, N.; O’Brien, S. A randomized, double-blind study on efficacy and safety of sepranolone in premenstrual dysphoric disorder. Psychoneuroendocrinology 2021, 133, 105426. [Google Scholar] [CrossRef] [PubMed]
- Mincheva, G.; Gimenez-Garzo, C.; Izquierdo-Altarejos, P.; Martinez-Garcia, M.; Doverskog, M.; Blackburn, T.P.; Hällgren, A.; Bäckström, T.; Llansola, M.; Felipo, V. Golexanolone, a GABAA receptor modulating steroid antagonist, restores motor coordination and cognitive function in hyperammonemic rats by dual effects on peripheral inflammation and neuroinflammation. CNS Neurosci. Ther. 2022, 28, 1861–1874. [Google Scholar] [CrossRef] [PubMed]
- Montagnese, S.; De Pittà, C.; De Rui, M.; Corrias, M.; Turco, M.; Merkel, C.; Amodio, P.; Costa, R.; Skene, D.J.; Gatta, A. Sleep-wake abnormalities in patients with cirrhosis. Hepatology 2014, 59, 705–712. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, J.; Yang, X.; Lv, J.; Shi, Y.; Zeng, X. Changes in sleep architecture and quality in minimal hepatic encephalopathy patients and relationship to psychological dysfunction. Int. J. Clin. Exp. Med. 2015, 8, 21541–21548. [Google Scholar]
- Labenz, C.; Baron, J.S.; Toenges, G.; Schattenberg, J.M.; Nagel, M.; Sprinzl, M.F.; Nguyen-Tat, M.; Zimmermann, T.; Huber, Y.; Marquardt, J.U.; et al. Prospective evaluation of the impact of covert hepatic encephalopathy on quality of life and sleep in cirrhotic patients. Aliment. Pharmacol. Ther. 2018, 48, 313–321. [Google Scholar] [CrossRef]
- Tanaka, A.; Ma, X.; Takahashi, A.; Vierling, J.M. Primary biliary cholangitis. Lancet 2024, 404, 1053–1066. [Google Scholar] [CrossRef] [PubMed]
- Sierra, L.; Ferrigno, B.; Marenco-Flores, A.; Alsaqa, M.; Rojas, N.; Barba, R.; Goyes, D.; Medina-Morales, E.; Saberi, B.; Patwardhan, V.; et al. Primary biliary cholangitis has the worst quality of life indicators among the autoimmune liver diseases: A United States cohort. Ann. Hepatol. 2025, 30, 101945. [Google Scholar] [CrossRef]
- Blackburn, P.; Freeston, M.; Baker, C.R.; Jones, D.E.; Newton, J.L. The role of psychological factors in the fatigue of primary biliary cirrhosis. Liver Int. 2007, 27, 654–661. [Google Scholar] [CrossRef]
- Jopson, L.; Jones, D.E. Fatigue in Primary Biliary Cirrhosis: Prevalence, Pathogenesis and Management. Dig. Dis. 2015, 33 (Suppl. 2), 109–114. [Google Scholar] [CrossRef] [PubMed]
- Rice, S.; Albani, V.; Minos, D.; Fattakhova, G.; Mells, G.F.; Carbone, M.; Flack, S.; Varvaropoulou, N.; Badrock, J.; Spicer, A.; et al. Effects of Primary Biliary Cholangitis on Quality of Life and Health Care Costs in the United Kingdom. Clin. Gastroenterol. Hepatol. 2021, 19, 768–776.e10. [Google Scholar] [CrossRef] [PubMed]
- Lynch, E.N.; Campani, C.; Innocenti, T.; Dragoni, G.; Biagini, M.R.; Forte, P.; Galli, A. Understanding fatigue in primary biliary cholangitis: From pathophysiology to treatment perspectives. World J. Hepatol. 2022, 14, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.E.; Bhala, N.; Burt, J.; Goldblatt, J.; Prince, M.; Newton, J.L. Four year follow up of fatigue in a geographically defined primary biliary cirrhosis patient cohort. Gut 2006, 55, 536–541. [Google Scholar] [CrossRef]
- Björnsson, E.; Kalaitzakis, E.; Neuhauser, M.; Enders, F.; Maetzel, H.; Chapman, R.W.; Talwalkar, J.; Lindor, K.; Jorgensen, R. Fatigue measurements in patients with primary biliary cirrhosis and the risk of mortality during follow-up. Liver Int. 2010, 30, 251–258. [Google Scholar] [CrossRef]
- Phaw, N.A.; Leighton, J.; Dyson, J.K.; Jones, D.E. Managing cognitive symptoms and fatigue in cholestatic liver disease. Expert. Rev. Gastroenterol. Hepatol. 2021, 15, 235–241. [Google Scholar] [CrossRef]
- Newton, J.L.; Hollingsworth, K.G.; Taylor, R.; El-Sharkawy, A.M.; Khan, Z.U.; Pearce, R.; Sutcliffe, K.; Okonkwo, O.; Davidson, A.; Burt, J.; et al. Cognitive impairment in primary biliary cirrhosis: Symptom impact and potential etiology. Hepatology 2008, 48, 541–549. [Google Scholar] [CrossRef]
- McDonald, C.; Newton, J.; Lai, H.M.; Baker, S.N.; Jones, D.E. Central nervous system dysfunction in primary biliary cirrhosis and its relationship to symptoms. J. Hepatol. 2010, 53, 1095–1100. [Google Scholar] [CrossRef]
- Mosher, V.A.L.; Swain, M.G.; Pang, J.X.Q.; Kaplan, G.G.; Sharkey, K.A.; MacQueen, G.M.; Goodyear, B.G. Primary Biliary Cholangitis Alters Functional Connections of the Brain’s Deep Gray Matter. Clin. Transl. Gastroenterol. 2018, 8, e107. [Google Scholar] [CrossRef]
- Lacourt, T.E.; Vichaya, E.G.; Chiu, G.S.; Dantzer, R.; Heijnen, C.J. The High Costs of Low-Grade Inflammation: Persistent Fatigue as a Consequence of Reduced Cellular-Energy Availability and Non-adaptive Energy Expenditure. Front. Behav. Neurosci. 2018, 12, 78. [Google Scholar] [CrossRef]
- Herlofson, K.; Heijnen, C.J.; Lange, J.; Alves, G.; Tysnes, O.B.; Friedman, J.H.; Fagundes, C.P. Inflammation and fatigue in early, untreated Parkinson’s Disease. Acta Neurol. Scand. 2018, 138, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Omdal, R. The biological basis of chronic fatigue: Neuroinflammation and innate immunity. Curr. Opin. Neurol. 2020, 33, 391–396. [Google Scholar] [CrossRef]
- D’Mello, C.; Swain, M.G. Liver-brain interactions in inflammatory liver diseases: Implications for fatigue and mood disorders. Brain Behav. Immun. 2014, 35, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.; Berk, M.; Galecki, P.; Walder, K.; Maes, M. The Neuro-Immune Pathophysiology of Central and Peripheral Fatigue in Systemic Immune-Inflammatory and Neuro-Immune Diseases. Mol. Neurobiol. 2016, 53, 1195–1219. [Google Scholar] [CrossRef]
- Grover, V.P.; Southern, L.; Dyson, J.K.; Kim, J.U.; Crossey, M.M.; Wylezinska-Arridge, M.; Patel, N.; Fitzpatrick, J.A.; Bak-Bol, A.; Waldman, A.D.; et al. Early primary biliary cholangitis is characterised by brain abnormalities on cerebral magnetic resonance imaging. Aliment. Pharmacol. Ther. 2016, 44, 936–945. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.E.; Abbott, F.V.; Allison, C.M.; Watts, C.; Ghadirian, A.M. Elevated levels of some neuroactive progesterone metabolites, particularly isopregnanolone, in women with chronic fatigue syndrome. Psychoneuroendocrinology 2004, 29, 245–268. [Google Scholar] [CrossRef]
- Wetten, A.; Ogle, L.; Mells, G.; Hegade, V.S.; Jopson, L.; Corrigan, M.; Palmer, J.; Johansson, M.; Bäckström, T.; Doverskog, M.; et al. Neurosteroid Activation of GABA-A Receptors: A Potential Treatment Target for Symptoms in Primary Biliary Cholangitis? Can. J. Gastroenterol. Hepatol. 2022, 2022, 3618090. [Google Scholar] [CrossRef]
- Cabrera-Rubio, R.; Patterson, A.M.; Cotter, P.D.; Beraza, N. Cholestasis induced by bile duct ligation promotes changes in the intestinal microbiome in mice. Sci. Rep. 2019, 9, 12324. [Google Scholar] [CrossRef]
- Gee, L.M.V.; Barron-Millar, B.; Leslie, J.; Richardson, C.; Zaki, M.Y.; Luli, S.; Burgoyne, R.A.; Cameron, R.I.; Smith, G.R.; Brain, J.G.; et al. Anti-Cholestatic Therapy with Obeticholic Acid Improves Short-Term Memory in Bile Duct-Ligated Mice. Am. J. Pathol. 2023, 193, 11–26. [Google Scholar] [CrossRef]
- Hosseini, N.; Alaei, H.; Zarrindast, M.R.; Nasehi, M.; Radahmadi, M. Cholestasis progression effects on long-term memory in bile duct ligation rats. Adv. Biomed. Res. 2014, 3, 215. [Google Scholar] [CrossRef]
- Ho, Y.H.; Lin, Y.T.; Wu, C.W.; Chao, Y.M.; Chang, A.Y.; Chan, J.Y. Peripheral inflammation increases seizure susceptibility via the induction of neuroinflammation and oxidative stress in the hippocampus. J. Biomed. Sci. 2015, 22, 46. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Rodriguez, A.B.; Hennessy, E.; Murray, C.L.; Nazmi, A.; Delaney, H.J.; Healy, D.; Fagan, S.G.; Rooney, M.; Stewart, E.; Lewis, A.; et al. Acute systemic inflammation exacerbates neuroinflammation in Alzheimer’s disease: IL-1β drives amplified responses in primed astrocytes and neuronal network dysfunction. Alzheimers Dement. 2021, 17, 1735–1755. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Koyama, Y.; Shimada, S. Inflammation From Peripheral Organs to the Brain: How Does Systemic Inflammation Cause Neuroinflammation? Front. Aging Neurosci. 2022, 14, 903455. [Google Scholar] [CrossRef]
- Jia, S.; Yang, H.; Huang, F.; Fan, W. Systemic inflammation, neuroinflammation and perioperative neurocognitive disorders. Inflamm. Res. 2023, 72, 1895–1907. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Sang, Z.; Liu, H.; Yang, J.; Wang, K.; Qu, Y.; Deng, H. From nonalcoholic fatty liver disease to neuroinflammation: The role of chronic systemic inflammation. Metab. Brain Dis. 2025, 40, 240. [Google Scholar] [CrossRef]
- Zielinski, M.R.; Systrom, D.M.; Rose, N.R. Fatigue, Sleep, and Autoimmune and Related Disorders. Front. Immunol. 2019, 10, 1827. [Google Scholar] [CrossRef]
- Rizek, P.; Kumar, N.; Jog, M.S. An update on the diagnosis and treatment of Parkinson disease. Can. Med. Assoc. J. 2016, 188, 1157–1165. [Google Scholar] [CrossRef]
- Grotewold, N.; Albin, R.L. Update: Descriptive epidemiology of Parkinson disease. Park. Relat. Disord. 2024, 120, 106000. [Google Scholar] [CrossRef]
- Dorsey, E.R.; Sherer, T.; Okun, M.S.; Bloem, B.R. The Emerging Evidence of the Parkinson Pandemic. J. Park. Dis. 2018, 8, S3–S8. [Google Scholar] [CrossRef]
- Yang, W.; Hamilton, J.L.; Kopil, C.; Beck, J.C.; Tanner, C.M.; Albin, R.L.; Ray Dorsey, E.; Dahodwala, N.; Cintina, I.; Hogan, P.; et al. Current and projected future economic burden of Parkinson’s disease in the U.S. NPJ Park. Dis. 2020, 6, 15. [Google Scholar] [CrossRef]
- Lindgren, H.S.; Dunnett, S.B. Cognitive dysfunction and depression in Parkinson’s disease: What can be learned from rodent models? Eur. J. Neurosci. 2020, 35, 1894–1907. [Google Scholar] [CrossRef] [PubMed]
- Kostić, V.S.; Tomić, A.; Ječmenica-Lukić, M. The Pathophysiology of Fatigue in Parkinson’s Disease and its Pragmatic Management. Mov. Disord. Clin. Pract. 2016, 3, 323–330. [Google Scholar] [CrossRef]
- Isaacson, S.H. Effective Treatment Strategies for Motor and Nonmotor Symptoms of Parkinson Disease. J. Clin. Psychiatry 2020, 81, MS18003BR2C. [Google Scholar] [CrossRef] [PubMed]
- Leão, A.H.F.F.; Meurer, Y.S.R.; Freitas, T.A.; Medeiros, A.M.; Abílio, V.C.; Izídio, G.S.; Conceição, I.M.; Ribeiro, A.M.; Silva, R.H. Changes in the mesocorticolimbic pathway after low dose reserpine-treatment in Wistar and Spontaneously Hypertensive Rats (SHR): Implications for cognitive deficits in a progressive animal model for Parkinson’s disease. Behav. Brain Res. 2021, 410, 113349. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.S.; Marshall, C.A.; Keibel, L.; Snyder, N.W.; Hill, M.P.; Brotchie, J.M.; Johnston, T.H.; Waterhouse, B.D.; Kortagere, S. A novel dopamine D3R agonist SK609 with norepinephrine transporter inhibition promotes improvement in cognitive task performance in rodent and non-human primate models of Parkinson’s disease. Exp. Neurol. 2021, 335, 113514. [Google Scholar] [CrossRef]
- Tian, Q.; Tang, H.L.; Tang, Y.Y.; Zhang, P.; Kang, X.; Zou, W.; Tang, X.Q. Hydrogen Sulfide Attenuates the Cognitive Dysfunction in Parkinson’s Disease Rats via Promoting Hippocampal Microglia M2 Polarization by Enhancement of Hippocampal Warburg Effect. Oxidative Med. Cell. Longev. 2022, 2022, 2792348. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, R.; Pan, J.; Huang, S. Parkinson’s Disease Related Depression and Anxiety: A 22-Year Bibliometric Analysis (2000–2022). Neuropsychiatr. Dis. Treat. 2023, 19, 1477–1489. [Google Scholar] [CrossRef]
- Balestrino, R.; Schapira, A.H.V. Parkinson disease. Eur. J. Neurol. 2020, 27, 27–42. [Google Scholar] [CrossRef]
- Aldaajani, Z.; Khalil, H. Challenges in Managing Nonmotor Symptoms of Parkinson’s Disease in Low-Resourced Settings with Unavailability of Newer Drugs. Mov. Disord. Clin. Pract. 2024, 11, 123–128. [Google Scholar] [CrossRef]
- Tran, T.N.; Vo, T.N.N.; Frei, K.; Truong, D.D. Levodopa-induced dyskinesia: Clinical features, incidence, and risk factors. J. Neural Transm. 2018, 125, 1109–1117. [Google Scholar] [CrossRef]
- Bougea, A.; Degirmenci, Y. Editorial: Advances in Parkinson’s Disease Research: Exploring Biomarkers and Therapeutic Strategies for Halting Disease Progression. Front. Aging Neurosci. 2025, 17, 1640566. [Google Scholar] [CrossRef]
- Mincheva, G.; Pedrosa, M.A.; Martinez-Garcia, M.; Vazquez, L.; Blackburn, T.P.; Doverskog, M.; Llansola, M.; Felipo, V. Golexanolone affords sustained microglia and astrocytes activation improvement in a rat model of Parkinson’s disease. Front. Immunol. 2025, 16, 1654664. [Google Scholar] [CrossRef]
- Kam, T.I.; Hinkle, J.T.; Dawson, T.M.; Dawson, V.L. Microglia and astrocyte dysfunction in parkinson’s disease. Neurobiol. Dis. 2020, 144, 105028. [Google Scholar] [CrossRef]
- Stefanova, N. Microglia in Parkinson’s Disease. J. Park. Dis. 2022, 12, S105–S112. [Google Scholar] [CrossRef]
- Chen, K.; Wang, H.; Ilyas, I.; Mahmood, A.; Hou, L. Microglia and Astrocytes Dysfunction and Key Neuroinflammation-Based Biomarkers in Parkinson’s Disease. Brain Sci. 2023, 13, 634. [Google Scholar] [CrossRef]
- Gao, C.; Jiang, J.; Tan, Y.; Chen, S. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 359. [Google Scholar] [CrossRef]
- Lee, S.H.; Bae, E.J.; Park, S.J.; Lee, S.J. Microglia-driven inflammation induces progressive tauopathies and synucleinopathies. Exp. Mol. Med. 2025, 57, 1017–1031. [Google Scholar] [CrossRef]
- Nagatsu, T.; Nakashima, A.; Ichinose, H.; Kobayashi, K. Human tyrosine hydroxylase in Parkinson’s disease and in related disorders. J. Neural Transm. 2019, 126, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.D.; Saw, W.T.; Ho, P.G.H.; Zhang, Z.W.; Zeng, L.; Chang, Y.Y.; Sun, A.X.Y.; Ma, D.R.; Wang, H.Y.; Zhou, L.; et al. The role of tyrosine hydroxylase-dopamine pathway in Parkinson’s disease pathogenesis. Cell. Mol. Life Sci. 2022, 79, 599. [Google Scholar] [CrossRef]
- Yi, L.X.; Tan, E.K.; Zhou, Z.D. Tyrosine Hydroxylase Inhibitors and Dopamine Receptor Agonists Combination Therapy for Parkinson’s Disease. Int. J. Mol. Sci. 2024, 25, 4643. [Google Scholar] [CrossRef]
- Heo, J.Y.; Nam, M.H.; Yoon, H.H.; Kim, J.; Hwang, Y.J.; Won, W.; Woo, D.H.; Lee, J.A.; Park, H.J.; Jo, S.; et al. Aberrant tonic inhibition of dopaminergic neuronal activity causes motor symptoms in animal models of Parkinson’s disease. Curr. Biol. 2020, 30, 276–291.e9. [Google Scholar] [CrossRef]
- Lemos, J.C.; Friend, D.M.; Kaplan, A.R.; Shin, J.H.; Rubinstein, M.; Kravitz, A.V.; Alvarez, V.A. Enhanced GABA transmission drives bradykinesia following loss of dopamine D2 receptor signaling. Neuron 2016, 90, 824–838. [Google Scholar] [CrossRef]
- Muñoz, M.D.; de la Fuente, N.; Sánchez-Capelo, A. TGF-b/Smad3 signalling modulates GABA neurotransmission: Implications in Parkinson’s disease. Int. J. Mol. Sci. 2020, 21, 590. [Google Scholar] [CrossRef]
- Zeng, B.Y.; Dass, B.; Owen, A.; Rose, S.; Cannizzaro, C.; Tel, B.C.; Jenner, P. 6-Hydroxydopamine lesioning differentially affects alpha-synuclein mRNA expression in the nucleus accumbens, striatum and substantia nigra of adult rats. Neurosci. Lett. 2002, 322, 33–36. [Google Scholar] [CrossRef]
- Proft, J.; Faraji, J.; Robbins, J.C.; Zucchi, F.C.; Zhao, X.; Metz, G.A.; Braun, J.E. Identification of bilateral changes in TID1 expression in the 6-OHDA rat model of Parkinson’s disease. PLoS ONE 2011, 6, e26045. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Deng, M.; He, Y.; Lu, S.; Liu, S.; Fang, Y. β-asarone increases MEF2D and TH levels and reduces α-synuclein level in 6-OHDA-induced rats via regulating the HSP70/MAPK/MEF2D/Beclin-1 pathway: Chaperone-mediated autophagy activation, macroautophagy inhibition and HSP70 up-expression. Behav. Brain Res. 2016, 313, 370–379. [Google Scholar] [CrossRef]
- Jagmag, S.A.; Tripathi, N.; Shukla, S.D.; Maiti, S.; Khurana, S. Evaluation of Models of Parkinson’s Disease. Front. Neurosci. 2016, 9, 503. [Google Scholar] [CrossRef]
- Harms, A.S.; Kordower, J.H.; Sette, A.; Lindestam Arlehamn, C.S.; Sulzer, D.; Mach, R.H. Inflammation in Experimental Models of α-Synucleinopathies. Mov. Disord. 2021, 6, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Liddelow, S.A.; Barres, B.A. Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity 2017, 46, 957–967. [Google Scholar] [CrossRef]
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.Y.; Huo, J. A1/A2 astrocytes in central nervous system injuries and diseases: Angels or devils? Neurochem. Int. 2021, 148, 105080. [Google Scholar] [CrossRef]
- Paudel, Y.N.; Angelopoulou, E.; Piperi, C.; Othman, I.; Shaikh, M.F. HMGB1-Mediated Neuroinflammatory Responses in Brain Injuries: Potential Mechanisms and Therapeutic Opportunities. Int. J. Mol. Sci. 2020, 21, 4609. [Google Scholar] [CrossRef] [PubMed]
- Sathe, K.; Maetzler, W.; Lang, J.D.; Mounsey, R.B.; Fleckenstein, C.; Martin, H.L.; Schulte, C.; Mustafa, S.; Synofzik, M.; Vukovic, Z.; et al. S100B is increased in Parkinson’s disease and ablation protects against MPTP-induced toxicity through the RAGE and TNF-α pathway. Brain 2012, 135 Pt 11, 3336–3347. [Google Scholar] [CrossRef]
- Luna-Herrera, C.; Martínez-Dávila, I.A.; Soto-Rojas, L.O.; Flores-Martinez, Y.M.; Fernandez-Parrilla, M.A.; Ayala-Davila, J.; León-Chavez, B.A.; Soto-Rodriguez, G.; Blanco-Alvarez, V.M.; Lopez-Salas, F.E.; et al. Intranigral Administration of β-Sitosterol-β-D-Glucoside Elicits Neurotoxic A1 Astrocyte Reactivity and Chronic Neuroinflammation in the Rat Substantia Nigra. J. Immunol. Res. 2020, 2020, 5907591. [Google Scholar] [CrossRef] [PubMed]
- Çınar, E.; Tel, B.C.; Şahin, G. Neuroinflammation in Parkinson’s Disease and its Treatment Opportunities. Balk. Med. J. 2022, 39, 318–333. [Google Scholar] [CrossRef]
- Liu, Z.; Xiang, S.; Chen, B.; Li, J.; Zhu, D.; Xu, H.; Hu, S. Parkinson Disease -Targeted Nanocapsules for Synergistic Treatment: Combining Dopamine Replacement and Neuroinflammation Mitigation. Adv. Sci. 2024, 11, e2404717. [Google Scholar] [CrossRef]
- Zhao, Z.; Fu, Q.; Guo, X.; He, H.; Yang, G. Potential Biomarkers and Treatment of Neuroinflammation in Parkinson’s Disease. Actas Esp. Psiquiatr. 2025, 53, 181–188. [Google Scholar] [CrossRef]



. From Mincheva et al. [133].
. From Mincheva et al. [133].
| Pathological Mechanism or Neurological Outcome | Effects of Golexanolone | ||
|---|---|---|---|
| Peripheral Inflammation | Reduces TNFα and TGFβ plasmatic levels | Increases IL-10 levels in plasma | |
| Neuroinflammation | Reduces microglia and astrocyte activation in cerebellum and hippocampus | Reduces TNFα and CCL2 levels in cerebellum | Reduces TNFR1 and P2X4 membrane expression in cerebellum |
| Neurotransmission | Normalizes GAT3 and KCC2 membrane expression in cerebellum | Normalizes GAD67 content in cerebellum | Normalize GABAA-β3 content in cerebellum |
| Motor Function | Improves locomotor gait | Improves motor coordination | |
| Cognitive Function | Improves short-term spatial memory | Improves spatial learning and memory | |
| Pathological Mechanism or Neurological Outcome | Effects of Golexanolone | ||
|---|---|---|---|
| Peripheral Inflammation | Reduces TNFα, IL-6, IL-17, and IL-18 plasmatic levels | ||
| Neuroinflammation | Reduces microglia and astrocyte activation in cerebellum | Reduces TNFα, IL-1β, IL-6, and glutaminase contents in cerebellum | Increases IL-10 content in cerebellum |
| Neurotransmission | Reduces GAD67 content in cerebellum | Increases GAT-1 content in cerebellum | Decreases GABAA-β3 content in cerebellum |
| Motor Function | Improves locomotor gait | Improves motor coordination | Reduces fatigue |
| Cognitive Function | Improves short-term spatial memory | ||
| Pathological Mechanism or Neurological Outcome | Effects of Golexanolone | ||
|---|---|---|---|
| Protein Aggregation | Reduces α-synuclein content | ||
| Microglia Activation | Reduces ameboid morphology of activated microglia in substantia nigra and striatum | Reduces content of TNFα in microglia of substantia nigra and striatum | Reduces TNFα, IL-1α, and HMGB1 levels in substantia nigra and striatum |
| Astrocyte Activation | Decreases GFAP content in substantia Nigra and striatum | Reduces vimentin and S100B levels, markers of pro-inflammatory astrocytes A1 | |
| Neurotransmission | Increases TH content in striatum | ||
| Motor Function | Improves locomotor gait | Improves motor coordination | Reduces fatigue |
| Cognitive Function | Improves short-term spatial memory | Reduces anxiety and anhedonia (depression symptoms) | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llansola, M.; Mincheva, G.; Arenas, Y.M.; Izquierdo-Altarejos, P.; Pedrosa, M.A.; Blackburn, T.P.; Bäckström, T.; Scharschmidt, B.F.; Doverskog, M.; Felipo, V. Golexanolone Attenuates Neuroinflammation, Fatigue, and Cognitive and Motor Impairment in Diverse Neuroinflammatory Disorders. Pharmaceuticals 2025, 18, 1757. https://doi.org/10.3390/ph18111757
Llansola M, Mincheva G, Arenas YM, Izquierdo-Altarejos P, Pedrosa MA, Blackburn TP, Bäckström T, Scharschmidt BF, Doverskog M, Felipo V. Golexanolone Attenuates Neuroinflammation, Fatigue, and Cognitive and Motor Impairment in Diverse Neuroinflammatory Disorders. Pharmaceuticals. 2025; 18(11):1757. https://doi.org/10.3390/ph18111757
Chicago/Turabian StyleLlansola, Marta, Gergana Mincheva, Yaiza M. Arenas, Paula Izquierdo-Altarejos, Maria A. Pedrosa, Thomas P. Blackburn, Torbjörn Bäckström, Bruce F. Scharschmidt, Magnus Doverskog, and Vicente Felipo. 2025. "Golexanolone Attenuates Neuroinflammation, Fatigue, and Cognitive and Motor Impairment in Diverse Neuroinflammatory Disorders" Pharmaceuticals 18, no. 11: 1757. https://doi.org/10.3390/ph18111757
APA StyleLlansola, M., Mincheva, G., Arenas, Y. M., Izquierdo-Altarejos, P., Pedrosa, M. A., Blackburn, T. P., Bäckström, T., Scharschmidt, B. F., Doverskog, M., & Felipo, V. (2025). Golexanolone Attenuates Neuroinflammation, Fatigue, and Cognitive and Motor Impairment in Diverse Neuroinflammatory Disorders. Pharmaceuticals, 18(11), 1757. https://doi.org/10.3390/ph18111757

