Biosynthesized Silver Nanoparticles and Their Antidiabetic Potential
Abstract
1. Introduction
2. Biosynthesis of AgNPs
Biomaterial | Silver Nanoparticle Size | Reference | |
---|---|---|---|
Plants | Scientific name | ||
Leaves | Theobroma Cacao Linneu | 10.3 nm | [41] |
Fruit | Aegle marmelos | 159–181 nm | [42] |
Bark | Heritiera fomes and Sonneratia apetala | 20–30 nm | [43] |
Root | Coleus forskohlii | 5–35 nm | [44] |
Peel | Stenocereus queretaroensis | 98.9 nm | [45] |
Microorganisms | |||
Bacteria | Bacillus cereus | 5–7.06 nm | [46] |
Fungi | Aspergillus sydowii | 1–24 nm | [47] |
Algae | Asterarcys sp. microalga | 35–52 nm | [48] |
Biomolecules | |||
Enzymes | Nitrate reductase from Fusarium oxysporum | 50 nm | [49] |
Vitamins | Vitamin C | 26.5 nm | [50] |
Proteins | Bovine serum albumin, lysozyme, among others | Non determined | [51] |
Phytochemicals | Naringenin | 10–21 nm | [52] |
Animals | |||
Marine invertebrates | Marphysa moribidii | 40.19 nm average | [53] |
Insects | Mang mao wings | 40–60 nm | [37] |
3. Characterization of AgNPs
4. Metabolism of AgNPs
5. Toxicology of AgNPs
6. Mechanisms of Action of AgNPs in Type 2 Diabetes Mellitus
7. Current Challenges in the Treatment of Type 2 Diabetes Mellitus
8. Study Limitations
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- American Diabetes Association Professional Practice Committee. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S20–S42. [Google Scholar] [CrossRef]
- Singh, A.; Shadangi, S.; Gupta, P.K.; Rana, S. Type 2 Diabetes Mellitus: A Comprehensive Review of Pathophysiology, Comorbidities, and Emerging Therapies. Compr. Physiol. 2025, 15, e70003. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. Diabetes Atlas, 11th ed.; International Diabetes Federation: Brussels, Belgium, 2025. [Google Scholar]
- DeFronzo, R.A.; Ferrannini, E.; Groop, L.; Henry, R.R.; Herman, W.H.; Holst, J.J.; Hu, F.B.; Kahn, C.R.; Raz, I.; Shulman, G.I.; et al. Type 2 Diabetes Mellitus. Nat. Rev. Dis. Primers 2015, 1, 15019. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, P.; Alberti, K.G.; Magliano, D.J.; Bennett, P.H. Diabetes Mellitus Statistics on Prevalence and Mortality: Facts and Fallacies. Nat. Rev. Endocrinol. 2016, 12, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Bergman, M.; Abdul-Ghani, M.; DeFronzo, R.A.; Manco, M.; Sesti, G.; Fiorentino, T.V.; Ceriello, A.; Rhee, M.; Phillips, L.S.; Chung, S.; et al. Review of Methods for Detecting Glycemic Disorders. Diabetes Res. Clin. Pract. 2020, 165, 108233. [Google Scholar] [CrossRef]
- Alam, S.; Hasan, M.K.; Neaz, S.; Hussain, N.; Hossain, M.F.; Rahman, T. Diabetes Mellitus: Insights from Epidemiology, Biochemistry, Risk Factors, Diagnosis, Complications and Comprehensive Management. Diabetology 2021, 2, 36–50. [Google Scholar] [CrossRef]
- Hou, Y.; Xiang, J.; Wang, B.; Duan, S.; Song, R.; Zhou, W.; Tan, S.; He, B. Pathogenesis and comprehensive treatment strategies of sarcopenia in elderly patients with type 2 diabetes mellitus. Front. Endocrinol. 2024, 8, 1263650. [Google Scholar] [CrossRef]
- Hallberg, S.J.; Gershuni, V.M.; Athinarayanan, S.J. Reversing Type 2 Diabetes: A Narrative Review of the Evidence. Nutrients 2019, 11, 766. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Huang, Q.; Zhang, Q.; Li, M.; Wu, Y. The Effectiveness of Lifestyle Interventions for Diabetes Remission on Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Worldviews Evid. Based Nurs. 2023, 20, 64–78. [Google Scholar] [CrossRef]
- Tripathi, P.; Kathrikolly, T.R. Lifestyle Intervention for Diabetes Remission: A Paradigm Shift in Diabetes Care and Management. Curr. Diabetes Rev. 2023, 20, 45–49. [Google Scholar] [CrossRef]
- Cartagena, M.V.; Tort-Nasarre, G.; Arnaldo, E.R. Barriers and Facilitators for Physical Activity in Adults with Type 2 Diabetes Mellitus: A Scoping Review. Int. J. Environ. Res. Public. Health 2021, 18, 5359. [Google Scholar] [CrossRef]
- Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; et al. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front. Endocrinol. 2017, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Mahgoub, M.O.; Ali, I.I.; Adeghate, J.O.; Tekes, K.; Kalász, H.; Adeghate, E.A. An Update on the Molecular and Cellular Basis of Pharmacotherapy in Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2023, 24, 9328. [Google Scholar] [CrossRef] [PubMed]
- Simos, Y.V.; Spyrou, K.; Patila, M.; Karouta, N.; Stamatis, H.; Gournis, D.; Dounousi, E.; Peschos, D. Trends of Nanotechnology in Type 2 Diabetes Mellitus Treatment. Asian J. Pharm. Sci. 2021, 16, 62–76. [Google Scholar] [CrossRef]
- Wickramasinghe, A.S.D.; Kalansuriya, P.; Attanayake, A.P. Nanoformulation of Plant-Based Natural Products for Type 2 Diabetes Mellitus: From Formulation Design to Therapeutic Applications. Curr. Ther. Res. Clin. Exp. 2022, 96, 100672. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Alqahtani, A.A.; Ahmed, M.M. Application of Green Synthesized Silver Nanoparticles in Burn Therapy: A Review. Pharmazie 2024, 79, 42–48. [Google Scholar] [CrossRef]
- Chan, C.H.; Ngoh, G.C.; Yusoff, R. A Brief Review on Anti Diabetic Plants: Global Distribution, Active Ingredients, Extraction Techniques and Acting Mechanisms. Pharmacogn. Rev. 2012, 6, 22–28. [Google Scholar] [CrossRef]
- Arumugam, G.; Manjula, P.; Paari, N. A Review: Anti Diabetic Medicinal Plants Used for Diabetes Mellitus. J. Acute Dis. 2013, 2, 196–200. [Google Scholar] [CrossRef]
- Adeyemi, J.O.; Oriola, A.O.; Onwudiwe, D.C.; Oyedeji, A.O. Plant Extracts Mediated Metal-Based Nanoparticles: Synthesis and Biological Applications. Biomolecules 2022, 12, 627. [Google Scholar] [CrossRef]
- Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of Metallic Nanoparticles Using Plant Extracts. Biotechnol. Adv. 2013, 31, 346–356. [Google Scholar] [CrossRef]
- Marinescu, L.; Ficai, D.; Oprea, O.; Marin, A.; Ficai, A.; Andronescu, E.; Holban, A.M. Optimized Synthesis Approaches of Metal Nanoparticles with Antimicrobial Applications. J. Nanomater. 2020, 2020, 6651207. [Google Scholar] [CrossRef]
- Addissouky, T.; Ali, M.; El Sayed, I.E.T.; Wang, Y. Revolutionary Innovations in Diabetes Research: From Biomarkers to Genomic Medicine. Iran. J. Diabetes Obes. 2023, 15, 228–242. [Google Scholar] [CrossRef]
- Cao, G.; Ying, W. Nanostructures and Nanomaterials. Synthesis, Properties, and Applications, 2nd ed.; Imperial College Press: Singapore, 2011; ISBN 978-981-4340-57-1. [Google Scholar]
- Malik, S.; Muhammad, K.; Waheed, Y. Nanotechnology: A Revolution in Modern Industry. Molecules 2023, 28, 661. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Cai, H.; Yang, M. The Application of Nanotechnology for the Diagnosis and Treatment of Endocrine Disorders: A Review of Current Trends, Toxicology and Future Perspective. Int. J. Nanomed. 2024, 19, 9921–9942. [Google Scholar] [CrossRef]
- José-Yacamán, M.; Rendón, L.; Arenas, J.; Carmen, M.; Puche, S. Maya Blue Paint: An Ancient Nanostructured Material. Science 1996, 273, 223–225. [Google Scholar] [CrossRef]
- Turner, P. History of Photography. Metal Nano Particles Synthesis Characterization and Applications, Colloidal Gold. In History of photography; Hamlyn: London, UK, 1987. [Google Scholar]
- Kiranmai, M. Biological and Non-Biological Synthesis of Metallic Nanoparticles: Scope for Current Pharmaceutical Research. Indian J. Pharm. Sci. 2017, 79, 501–512. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Mukherjee, P. Biological Properties of “Naked” Metal Nanoparticles. Adv. Drug Deliv. Rev. 2008, 60, 1289–1306. [Google Scholar] [CrossRef]
- Ali, Z.A.; Yahya, R.; Sekaran, S.D.; Puteh, R. Green Synthesis of Silver Nanoparticles Using Apple Extract and Its Antibacterial Properties. Adv. Mater. Sci. Eng. 2016, 2016, 4102196. [Google Scholar] [CrossRef]
- Narayanan, K.B.; Sakthivel, N. Coriander Leaf Mediated Biosynthesis of Gold Nanoparticles. Mater. Lett. 2008, 62, 4588–4590. [Google Scholar] [CrossRef]
- Saifuddin, N.; Wong, C.W.; Yasumira, A.A.N. Rapid Biosynthesis of Silver Nanoparticles Using Culture Supernatant of Bacteria with Microwave Irradiation. J. Chem. 2009, 6, 61–70. [Google Scholar] [CrossRef]
- Bhakya, S.; Muthukrishnan, S.; Sukumaran, M.; Muthukumar, M. Biogenic Synthesis of Silver Nanoparticles and Their Antioxidant and Antibacterial Activity. Appl. Nanosci. 2016, 6, 755–766. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A Review on Plants Extract Mediated Synthesis of Silver Nanoparticles for Antimicrobial Applications: A Green Expertise. J. Adv. Res. 2016, 7, 17–28. [Google Scholar] [CrossRef]
- Majeed, S.; Danish, M.; Zakariya, N.A.; Hashim, R.; Ansari, M.T.; Alkahtani, S.; Hasnain, M.S. In Vitro Evaluation of Antibacterial, Antioxidant, and Antidiabetic Activities and Glucose Uptake through 2-NBDG by Hep-2 Liver Cancer Cells Treated with Green Synthesized Silver Nanoparticles. Oxid. Med. Cell Longev. 2022, 2022, 1646687. [Google Scholar] [CrossRef] [PubMed]
- Jakinala, P.; Lingampally, N.; Hameeda, B.; Sayyed, R.Z.; Yahya Khan, M.; Elsayed, E.A.; Enshasy, H. El Silver Nanoparticles from Insect Wing Extract: Biosynthesis and Evaluation for Antioxidant and Antimicrobial Potential. PLoS ONE 2021, 16, e0241729. [Google Scholar] [CrossRef]
- George, I.E.; Cherian, T.; Ragavendran, C.; Mohanraju, R.; Dailah, H.G.; Hassani, R.; Alhazmi, H.A.; Khalid, A.; Mohan, S. One-Pot Green Synthesis of Silver Nanoparticles Using Brittle Star Ophiocoma scolopendrina: Assessing Biological Potentialities of Antibacterial, Antioxidant, Anti-Diabetic and Catalytic Degradation of Organic Dyes. Heliyon 2023, 9, e14538. [Google Scholar] [CrossRef] [PubMed]
- Saifuddin, N.N.; Matussin, S.N.; Fariduddin, Q.; Khan, M.M. Potentials of Roots, Stems, Leaves, Flowers, Fruits, and Seeds Extract for the Synthesis of Silver Nanoparticles. Bioprocess. Biosyst. Eng. 2024, 47, 1119–1137. [Google Scholar] [CrossRef]
- Ahamed, M.; AlSalhi, M.S.; Siddiqui, M.K.J. Silver Nanoparticle Applications and Human Health. Clin. Chim. Acta 2010, 411, 1841–1848. [Google Scholar] [CrossRef]
- Herrera-Marín, P.; Fernández, L.; Pilaquinga, F.F.; Debut, A.; Rodríguez, A.; Espinoza-Montero, P. Green Synthesis of Silver Nanoparticles Using Aqueous Extract of the Leaves of Fine Aroma Cocoa Theobroma cacao linneu (Malvaceae): Optimization by Electrochemical Techniques. Electrochim. Acta 2023, 447, 142122. [Google Scholar] [CrossRef]
- Devi, M.; Devi, S.; Sharma, V.; Rana, N.; Bhatia, R.K.; Bhatt, A.K. Green Synthesis of Silver Nanoparticles Using Methanolic Fruit Extract of Aegle marmelos and Their Antimicrobial Potential against Human Bacterial Pathogens. J. Tradit. Complement. Med. 2020, 10, 158–165. [Google Scholar] [CrossRef]
- Thatoi, P.; Kerry, R.G.; Gouda, S.; Das, G.; Pramanik, K.; Thatoi, H.; Patra, J.K. Photo-Mediated Green Synthesis of Silver and Zinc Oxide Nanoparticles Using Aqueous Extracts of Two Mangrove Plant Species, Heritiera fomes and Sonneratia apetala and Investigation of Their Biomedical Applications. J. Photochem. Photobiol. B 2016, 163, 311–318. [Google Scholar] [CrossRef]
- Dhayalan, M.; Denison, M.I.J.; Ayyar, M.; Gandhi, N.N.; Krishnan, K.; Abdulhadi, B. Biogenic Synthesis, Characterization of Gold and Silver Nanoparticles from Coleus forskohlii and Their Clinical Importance. J. Photochem. Photobiol. B 2018, 183, 251–257. [Google Scholar] [CrossRef]
- Padilla-Camberos, E.; Sanchez-Hernandez, I.M.; Torres-Gonzalez, O.R.; Ramirez-Rodriguez, P.; Diaz, E.; Wille, H.; Flores-Fernandez, J.M. Biosynthesis of Silver Nanoparticles Using Stenocereus queretaroensis Fruit Peel Extract: Study of Antimicrobial Activity. Materials 2021, 14, 4543. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.; Ahmad, Z.; Manzoor, M.Z.; Mujahid, M.; Faheem, Z.; Adnan, A. Optimization for Biogenic Microbial Synthesis of Silver Nanoparticles through Response Surface Methodology, Characterization, Their Antimicrobial, Antioxidant, and Catalytic Potential. Sci. Rep. 2021, 11, 770. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Xue, B.; Wang, L.; Zhang, Y.; Liu, L.; Zhou, Y. Fungus-Mediated Green Synthesis of Nano-Silver Using Aspergillus sydowii and Its Antifungal/Antiproliferative Activities. Sci. Rep. 2021, 11, 10356. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, S.; Kumawat, G.; Khandelwal, M.; Khangarot, R.K.; Saharan, V.; Nigam, S. Harish Phyco-Synthesis of Silver Nanoparticles by Environmentally Safe Approach and Their Applications. Sci. Rep. 2024, 14, 9568. [Google Scholar] [CrossRef]
- Gholami-Shabani, M.; Akbarzadeh, A.; Norouzian, D.; Amini, A.; Gholami-Shabani, Z.; Imani, A.; Chiani, M.; Riazi, G.; Shams-Ghahfarokhi, M.; Razzaghi-Abyaneh, M. Antimicrobial Activity and Physical Characterization of Silver Nanoparticles Green Synthesized Using Nitrate Reductase from Fusarium oxysporum. Appl. Biochem. Biotechnol. 2014, 172, 4084–4098. [Google Scholar] [CrossRef]
- Hassan (El-Moushy), R.M. Novel Green Synthesis of Cluster AgNPs by Reduction of Silver (I) by Vitamin C in Presence of Alginate Surfactant Powder in Aqueous Media: Characteristics and Applications. Environ. Nanotechnol. Monit. Manag. 2024, 22, 100971. [Google Scholar] [CrossRef]
- Chakraborty, I.; Feliu, N.; Roy, S.; Dawson, K.; Parak, W.J. Protein-Mediated Shape Control of Silver Nanoparticles. Bioconjug Chem. 2018, 29, 1261–1265. [Google Scholar] [CrossRef]
- Sathianathan, N.; Thazhenandayipurath, V.V.; Mukundan, A.V.; Raj, A.; Latha, V.; Krishnankutty, R.E.; Chellappanpillai, S. One-Pot Synthesis and Characterization of Naringenin-Capped Silver Nanoparticles with Enhanced Biological Activities. Appl. Biochem. Biotechnol. 2025, 197, 3780–3799. [Google Scholar] [CrossRef]
- Rosman, N.S.R.; Harun, N.A.; Idris, I.; Ismail, W.I.W. Eco-Friendly Silver Nanoparticles (AgNPs) Fabricated by Green Synthesis Using the Crude Extract of Marine Polychaete, Marphysa moribidii: Biosynthesis, Characterisation, and Antibacterial Applications. Heliyon 2020, 6, e05462. [Google Scholar] [CrossRef]
- Behravan, M.; Hossein Panahi, A.; Naghizadeh, A.; Ziaee, M.; Mahdavi, R.; Mirzapour, A. Facile Green Synthesis of Silver Nanoparticles Using Berberis vulgaris Leaf and Root Aqueous Extract and Its Antibacterial Activity. Int. J. Biol. Macromol. 2019, 124, 148–154. [Google Scholar] [CrossRef]
- Mikhailov, O.V.; Mikhailova, E.O. Elemental Silver Nanoparticles: Biosynthesis and Bio Applications. Materials 2019, 12, 3177. [Google Scholar] [CrossRef]
- Alaqad, K.; Saleh, T.A. Gold and Silver Nanoparticles: Synthesis Methods, Characterization Routes and Applications towards Drugs. J. Environ. Anal. Toxicol. 2016, 6, 4. [Google Scholar] [CrossRef]
- Paul, S.; Sarkar, I.; Sarkar, N.; Bose, A.; Chakraborty, M.; Chakraborty, A.; Mukherjee, S. Silver Nanoparticles in Diabetes Mellitus: Therapeutic Potential and Mechanistic Insights. Bull. Natl. Res. Cent. 2024, 48, 33. [Google Scholar] [CrossRef]
- Akhter, M.S.; Rahman, M.A.; Ripon, R.K.; Mubarak, M.; Akter, M.; Mahbub, S.; Al Mamun, F.; Sikder, M.T. A Systematic Review on Green Synthesis of Silver Nanoparticles Using Plants Extract and Their Bio-Medical Applications. Heliyon 2024, 10, e29766. [Google Scholar] [CrossRef] [PubMed]
- Parmar, N.; Singla, N.; Amin, S.; Kohli, K. Study of Cosurfactant Effect on Nanoemulsifying Area and Development of Lercanidipine Loaded (SNEDDS) Self Nanoemulsifying Drug Delivery System. Colloids Surf. B Biointerfaces 2011, 86, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.N.; Poon, W.; Tavares, A.J.; McGilvray, I.D.; Chan, W.C.W. Nanoparticle–Liver Interactions: Cellular Uptake and Hepatobiliary Elimination. J. Control. Release 2016, 240, 332–348. [Google Scholar] [CrossRef] [PubMed]
- Mashwani, Z.U.R.; Khan, T.; Khan, M.A.; Nadhman, A. Synthesis in Plants and Plant Extracts of Silver Nanoparticles with Potent Antimicrobial Properties: Current Status and Future Prospects. Appl. Microbiol. Biotechnol. 2015, 99, 9923–9934. [Google Scholar] [CrossRef]
- Niraimathi, K.L.; Sudha, V.; Lavanya, R.; Brindha, P. Biosynthesis of Silver Nanoparticles Using Alternanthera sessilis (Linn.) Extract and Their Antimicrobial, Antioxidant Activities. Colloids Surf. B Biointerfaces 2013, 102, 288–291. [Google Scholar] [CrossRef]
- Ferdous, Z.; Nemmar, A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int. J. Mol. Sci. 2020, 21, 2375. [Google Scholar] [CrossRef]
- Mercier-Bonin, M.; Despax, B.; Raynaud, P.; Houdeau, E.; Thomas, M. Mucus and Microbiota as Emerging Players in Gut Nanotoxicology: The Example of Dietary Silver and Titanium Dioxide Nanoparticles. Crit. Rev. Food Sci. Nutr. 2018, 58, 1023–1032. [Google Scholar] [CrossRef]
- Salieri, B.; Kaiser, J.P.; Rösslein, M.; Nowack, B.; Hischier, R.; Wick, P. Relative Potency Factor Approach Enables the Use of in Vitro Information for Estimation of Human Effect Factors for Nanoparticle Toxicity in Life-Cycle Impact Assessment. Nanotoxicology 2020, 14, 275–286. [Google Scholar] [CrossRef]
- Soon Kim, Y.; Yong Song, M.; Duck Park, J.; Seuk Song, K.; Ryol Ryu, H.; Hyun Chung, Y.; Kyung Chang, H.; Hyun Lee, J.; Hui Oh, K.; Kelman, B.J.; et al. Subchronic Oral Toxicity of Silver Nanoparticles. Part. Fibre Toxicol. 2010, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.F.; Shen, W.; Gurunathan, S. Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model. Int. J. Mol. Sci. 2016, 17, 1603. [Google Scholar] [CrossRef] [PubMed]
- Panzarini, E.; Mariano, S.; Carata, E.; Mura, F.; Rossi, M.; Dini, L. Intracellular Transport of Silver and Gold Nanoparticles and Biological Responses: An Update. Int. J. Mol. Sci. 2018, 19, 1305. [Google Scholar] [CrossRef] [PubMed]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef]
- Adeshirlarijaney, A.; Gewirtz, A.T. Considering Gut Microbiota in Treatment of Type 2 Diabetes Mellitus. Gut Microbes 2020, 11, 253–264. [Google Scholar] [CrossRef]
- Zhang, P.; Li, T.; Wu, X.; Nice, E.C.; Huang, C.; Zhang, Y. Oxidative Stress and Diabetes: Antioxidative Strategies. Front. Med. 2020, 14, 583–600. [Google Scholar] [CrossRef]
- Shah, M.; Nawaz, S.; Jan, H.; Uddin, N.; Ali, A.; Anjum, S.; Giglioli-Guivarc’h, N.; Hano, C.; Abbasi, B.H. Synthesis of Bio-Mediated Silver Nanoparticles from Silybum marianum and Their Biological and Clinical Activities. Mater. Sci. Eng. C 2020, 112, 110889. [Google Scholar] [CrossRef]
- Kurra, H.; Velidandi, A.; Sarvepalli, M.; Pabbathi, N.P.P.; Godishala, V. Aqueous Cymbopogon citratus Extract Mediated Silver Nanoparticles: Part I. Influence of Synthesis Parameters, Characterization, and Biomedical Studies. Nanomaterials 2025, 15, 328. [Google Scholar] [CrossRef]
- Abideen, S.; Vijaya Sankar, M. In-Vitro Screening of Antidiabetic and Antimicrobial Activity against Green Synthesized AgNO3 Using Seaweeds. J. Nanomed. Nanotechnol. 2015, 10, 2157–7439. [Google Scholar] [CrossRef]
- Chinnasamy, G.; Chandrasekharan, S.; Bhatnagar, S. Biosynthesis of Silver Nanoparticles from Melia azedarach: Enhancement of Antibacterial, Wound Healing, Antidiabetic and Antioxidant Activities. Int. J. Nanomed. 2019, 14, 9823–9836. [Google Scholar] [CrossRef]
- Das, G.; Patra, J.K.; Debnath, T.; Ansari, A.; Shin, H.S. Investigation of Antioxidant, Antibacterial, Antidiabetic, and Cytotoxicity Potential of Silver Nanoparticles Synthesized Using the Outer Peel Extract of Ananas comosus (L.). PLoS ONE 2019, 14, e0220950. [Google Scholar] [CrossRef] [PubMed]
- Saratale, G.D.; Saratale, R.G.; Benelli, G.; Kumar, G.; Pugazhendhi, A.; Kim, D.S.; Shin, H.S. Anti-Diabetic Potential of Silver Nanoparticles Synthesized with Argyreia nervosa Leaf Extract High Synergistic Antibacterial Activity with Standard Antibiotics Against Foodborne Bacteria. J. Clust. Sci. 2017, 28, 1709–1727. [Google Scholar] [CrossRef]
- Saratale, R.G.; Saratale, G.D.; Ahn, S.; Shin, H.S. Grape Pomace Extracted Tannin for Green Synthesis of Silver Nanoparticles: Assessment of Their Antidiabetic, Antioxidant Potential and Antimicrobial Activity. Polymers 2021, 13, 4355. [Google Scholar] [CrossRef]
- Anandachockalingam, A.; Shanmugam, R.; Ryntathiang, I.; Dharmalingam Jothinathan, M.K. Green Synthesis of Silver Nanoparticles Using Zingiber officinale and Ocimum gratissimum Formulation for Its Anti-Inflammatory and Antidiabetic Activity: An In Vitro Study. Cureus 2024, 16, e58098. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.A.; Ghufran, M.; Shams, S.; Jamal, A.; Khan, A.; Abdullah; Awan, Z.A.; Khan, M.I. Green Synthesis of Silver Nanoparticles from Plant Fagonia cretica and Evaluating Its Anti-Diabetic Activity through Indepth in-Vitro and in-Vivo Analysis. Front. Pharmacol. 2023, 14, 1194809. [Google Scholar] [CrossRef]
- Ahmed, F.; Sairam, S.; Urooj, A. In Vitro Hypoglycemic Effects of Selected Dietary Fiber Sources. J. Food Sci. Technol. 2011, 48, 285–289. [Google Scholar] [CrossRef]
- Khaleel Basha, S.; Govindaraju, K.; Manikandan, R.; Ahn, J.S.; Bae, E.Y.; Singaravelu, G. Phytochemical Mediated Gold Nanoparticles and Their PTP 1B Inhibitory Activity. Colloids Surf. B Biointerfaces 2010, 75, 405–409. [Google Scholar] [CrossRef]
- Govindappa, M.; Hemashekhar, B.; Arthikala, M.K.; Ravishankar Rai, V.; Ramachandra, Y.L. Characterization, Antibacterial, Antioxidant, Antidiabetic, Anti-Inflammatory and Antityrosinase Activity of Green Synthesized Silver Nanoparticles Using Calophyllum tomentosum Leaves Extract. Results Phys. 2018, 9, 400–408. [Google Scholar] [CrossRef]
- Seneviratne, C.; Narayanan, R.; Liu, W.; Dain, J.A. The in Vitro Inhibition Effect of 2 nm Gold Nanoparticles on Non-Enzymatic Glycation of Human Serum Albumin. Biochem. Biophys. Res. Commun. 2012, 422, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Yarrappagaari, S.; Gutha, R.; Narayanaswamy, L.; Thopireddy, L.; Benne, L.; Mohiyuddin, S.S.; Vijayakumar, V.; Saddala, R.R. Eco-Friendly Synthesis of Silver Nanoparticles from the Whole Plant of Cleome viscosa and Evaluation of Their Characterization, Antibacterial, Antioxidant and Antidiabetic Properties. Saudi J. Biol. Sci. 2020, 27, 3601–3614. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, J.M.; Ansari, M.A.; Fatma, S.; Abdullah, S.M.S.; Iqbal, J.; Madkhali, A.; Hamali, A.H.; Ahmad, S.; Jerah, A.; Echeverria, V.; et al. Inhibiting Effect of Zinc Oxide Nanoparticles on Advanced Glycation Products and Oxidative Modifications: A Potential Tool to Counteract Oxidative Stress in Neurodegenerative Diseases. Mol. Neurobiol. 2018, 55, 7438–7452. [Google Scholar] [CrossRef]
- Jini, D.; Sharmila, S.; Anitha, A.; Pandian, M.; Rajapaksha, R.M.H. In Vitro and in Silico Studies of Silver Nanoparticles (AgNPs) from Allium sativum against Diabetes. Sci. Rep. 2022, 12, 22109. [Google Scholar] [CrossRef] [PubMed]
- Rehman, G.; Umar, M.; Shah, N.; Hamayun, M.; Ali, A.; Khan, W.; Khan, A.; Ahmad, S.; Alrefaei, A.F.; Almutairi, M.H.; et al. Green Synthesis and Characterization of Silver Nanoparticles Using Azadirachta indica Seeds Extract: In Vitro and In Vivo Evaluation of Anti-Diabetic Activity. Pharmaceuticals 2023, 16, 1677. [Google Scholar] [CrossRef]
- Bhinge, S.D.; Bhutkar, M.A.; Randive, D.S.; Wadkar, G.H.; Hasabe, T.S. In Vitro Hypoglycemic Effects of Unripe and Ripe Fruits of Musa sapientum. Braz. J. Pharm. Sci. 2017, 53, e00159. [Google Scholar] [CrossRef]
- Johnson, E.C.; Ebong, S.S.; Ejinwa, G.; Eseyin, O.A. Comparative Assessment of Antidiabetic Properties of Aqueous Extract and Its Silver Nanoparticles from Vernonia amygdalina (ASTERACEAE). Niger. J. Pharm. Appl. Sci. Res. 2024, 13, 2971–7388. [Google Scholar] [CrossRef]
- Bhardwaj, M.; Yadav, P.; Yadav, M.; Chahal, J.; Dalal, S.; Kataria, S.K. Phytochemical Screening and Antidiabetic Efficacy of Balanites aegyptiaca Seed Extract and Their Silver Nanoparticles on Muscle and Pancreatic Cell Lines. ACS Omega 2024, 9, 22660–22676. [Google Scholar] [CrossRef]
- Sengani, M.; Bavithra, V.; Banerjee, M.; Choudhury, A.A.; Chakraborty, S.; Ramasubbu, K.; Rajeswari, V.D.; Al Obaid, S.; Alharbi, S.A.; Subramani, B.; et al. Evaluation of the Anti-Diabetic Effect of Biogenic Silver Nanoparticles and Intervention in PPARγ Gene Regulation. Environ. Res. 2022, 215, 114408. [Google Scholar] [CrossRef]
- Garcia-Campoy, A.H.; Perez-Gutierrez, R.M.; Manriquez-Alvirde, G.; Muñiz-Ramirez, A. Protection of Silver Nanoparticles Using Eysenhardtia polystachya in Peroxide-Induced Pancreatic β-Cell Damage and Their Antidiabetic Properties in Zebrafish. Int. J. Nanomed. 2018, 13, 2601–2612. [Google Scholar] [CrossRef]
- Chaudhari, M.G.; Joshi, B.B.; Mistry, K.N. In Vitro Anti-diabetic and Anti-inflammatory Activity of Stem Bark of Bauhinia purpurea. Bull. Pharm. Med. Sci. (BOPAMS) 2013, 1, 139–150. [Google Scholar]
- Perrone, A.; Giovino, A.; Benny, J.; Martinelli, F. Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. Oxid. Med. Cell Longev. 2020, 2020, 3818196. [Google Scholar] [CrossRef] [PubMed]
- Tahir, H.; Rashid, F.; Ali, S.; Summer, M.; Afzal, M. Synthesis, Characterization, Phytochemistry, and Therapeutic Potential of Azadirachta indica Conjugated Silver Nanoparticles: A Comprehensive Study on Antidiabetic and Antioxidant Properties. Biol. Trace Elem. Res. 2024, 203, 2170–2185. [Google Scholar] [CrossRef] [PubMed]
- Wahab, M.; Bhatti, A.; John, P. Citation: Evaluation of Antidiabetic Activity of Biogenic Silver Nanoparticles Using Thymus serpyllum on Streptozotocin-Induced Diabetic BALB/c Mice. Polymers 2022, 14, 3138. [Google Scholar] [CrossRef]
- Shah, A.H.; Khan, A.; Khan, N.; Jannat, S.; Alarjan, K.M.; Elshikh, M.S.; Afareen, A.; Hameed, H. Synergistic Phytochemical and Nanotechnological Exploration of Melia azedarach With Silver Nitrate: Elucidating Multifaceted Antimicrobial, Antioxidant, Antidiabetic, and Insecticidal Potentials. Microsc. Res. Tech. 2025, 88, 542–554. [Google Scholar] [CrossRef]
- Saratale, R.G.; Shin, H.S.; Kumar, G.; Benelli, G.; Kim, D.-S.; Saratale, G.D. Exploiting Antidiabetic Activity of Silver Nanoparticles Synthesized Using Punica granatum Leaves and Anticancer Potential against Human Liver Cancer Cells (HepG2). Artif. Cells Nanomed. Biotechnol. 2018, 46, 211–222. [Google Scholar] [CrossRef]
- Das, G.; Patra, J.K.; Basavegowda, N.; Vishnuprasad, C.N.; Shin, H.S. Comparative Study on Antidiabetic, Cytotoxicity, Antioxidant and Antibacterial Properties of Biosynthesized Silver Nanoparticles Using Outer Peels of Two Varieties of Ipomoea batatas (L.) Lam. Int. J. Nanomed. 2019, 14, 4741–4754. [Google Scholar] [CrossRef]
- Dugganaboyana, G.K.; Kumar Mukunda, C.; Jain, A.; Kantharaju, R.M.; Nithya, R.R.; Ninganna, D.; Ahalliya, R.M.; Shati, A.A.; Alfaifi, M.Y.; Elbehairi, S.E.I.; et al. Environmentally Benign Silver Bio-Nanomaterials as Potent Antioxidant, Antibacterial, and Antidiabetic Agents: Green Synthesis Using Salacia oblonga Root Extract. Front. Chem. 2023, 11, 1114109. [Google Scholar] [CrossRef]
- Ullah, S.; Shah, S.W.A.; Qureshi, M.T.; Hussain, Z.; Ullah, I.; Kalsoom, U.E.; Rahim, F.; Rahman, S.S.U.; Sultana, N.; Khan, M.K. Antidiabetic and Hypolipidemic Potential of Green AgNPs against Diabetic Mice. ACS Appl. Bio Mater. 2021, 4, 3433–3442. [Google Scholar] [CrossRef]
- Mughal, T.A.; Ali, S.; Mumtaz, S.; Summer, M.; Saleem, M.Z.; Hassan, A.; Hameed, M.U. Evaluating the Biological (Antidiabetic) Potential of TEM, FTIR, XRD, and UV-Spectra Observed Berberis lyceum Conjugated Silver Nanoparticles. Microsc. Res. Tech. 2024, 87, 1286–1305. [Google Scholar] [CrossRef]
- Iqbal, R.; Asghar, A.; Habib, A.; Ali, S.; Zahra, S.; Hussain, M.I.; Ahsan, A.B.; Liang, Y. Therapeutic Potential of Green Synthesized Silver Nanoparticles for Promoting Wound-Healing Process in Diabetic Mice. Biol. Trace Elem. Res. 2024, 202, 5545–5555. [Google Scholar] [CrossRef] [PubMed]
- Sengottaiyan, A.; Aravinthan, A.; Sudhakar, C.; Selvam, K.; Srinivasan, P.; Govarthanan, M.; Manoharan, K.; Selvankumar, T. Synthesis and Characterization of Solanum nigrum-Mediated Silver Nanoparticles and Its Protective Effect on Alloxan-Induced Diabetic Rats. J. Nanostructure Chem. 2016, 6, 41–48. [Google Scholar] [CrossRef]
- Mahmoudi, F.; Mahmoudi, F.; Gollo, K.H.; Amini, M.M. Biosynthesis of Novel Silver Nanoparticles Using Eryngium thyrsoideum boiss Extract and Comparison of Their Antidiabetic Activity with Chemical Synthesized Silver Nanoparticles in Diabetic Rats. Biol. Trace Elem. Res. 2021, 199, 1967–1978. [Google Scholar] [CrossRef]
- Ul Haq, M.N.; Shah, G.M.; Gul, A.; Foudah, A.I.; Alqarni, M.H.; Yusufoglu, H.S.; Hussain, M.; Alkreathy, H.M.; Ullah, I.; Khan, A.M.; et al. Biogenic Synthesis of Silver Nanoparticles Using Phagnalon niveum and Its In Vivo Anti-Diabetic Effect against Alloxan-Induced Diabetic Wistar Rats. Nanomaterials 2022, 12, 830. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Rehman, G.; Shah, N.; Hamayun, M.; Ali, S.; Ali, A.; Shah, S.k.; Khan, W.; Shah, M.I.A.; Alrefaei, A.F. Biosynthesis and Characterization of Silver Nanoparticles Using Tribulus terrestris Seeds: Revealed Promising Antidiabetic Potentials. Molecules 2023, 28, 4203. [Google Scholar] [CrossRef]
- Hosen, E.; Rahman, A.; Rahman, S.; Akash, S.; Khalekuzzaman; Alsahli, A.A.; Bourhia, M.; Nafidi, H.A.; Islam, A.; Zaman, R. Synthesis of Silver Nanoparticles Using Camellia sinensis Leaf Extract: Promising Particles for the Treatment of Cancer and Diabetes. Chem. Biodivers. 2024, 21, e202301661. [Google Scholar] [CrossRef]
- Virgen-Ortiz, A.; Limón-Miranda, S.; Soto-Covarrubias, M.A.; Apolinar-Iribe, A.; Rodríguez-León, E.; Iñiguez-Palomares, R. Biocompatible silver nanoparticles synthesized using Rumex hymenosepalus extract decreases fasting glucose levels in diabetic rats. Dig. J. Nanomater. Biostruct 2015, 10, 927–933. [Google Scholar]
- Shanker, K.; Naradala, J.; Mohan, G.K.; Kumar, G.S.; Pravallika, P.L. A Sub-Acute Oral Toxicity Analysis and Comparative: In Vivo Anti-Diabetic Activity of Zinc Oxide, Cerium Oxide, Silver Nanoparticles, and Momordica charantia in Streptozotocin-Induced Diabetic Wistar Rats. RSC Adv. 2017, 7, 37158–37167. [Google Scholar] [CrossRef]
- Kalakotla, S.; Jayarambabu, N.; Mohan, G.K.; Mydin, R.B.S.M.N.; Gupta, V.R. A Novel Pharmacological Approach of Herbal Mediated Cerium Oxide and Silver Nanoparticles with Improved Biomedical Activity in Comparison with Lawsonia inermis. Colloids Surf. B Biointerfaces 2019, 174, 199–206. [Google Scholar] [CrossRef]
- Nagaraja, S.; Ahmed, S.S.; Bharathi, D.R.; Goudanavar, P.; Rupesh, K.M.; Fattepur, S.; Meravanige, G.; Shariff, A.; Shiroorkar, P.N.; Habeebuddin, M.; et al. Green Synthesis and Characterization of Silver Nanoparticles of Psidium guajava Leaf Extract and Evaluation for Its Antidiabetic Activity. Molecules 2022, 27, 4336. [Google Scholar] [CrossRef]
- Khodeer, D.M.; Nasr, A.M.; Swidan, S.A.; Shabayek, S.; Khinkar, R.M.; Aldurdunji, M.M.; Ramadan, M.A.; Badr, J.M. Characterization, Antibacterial, Antioxidant, Antidiabetic, and Anti-Inflammatory Activities of Green Synthesized Silver Nanoparticles Using Phragmanthera austroarabica A. G. Mill and J. A. Nyberg Extract. Front. Microbiol. 2023, 13, 1078061. [Google Scholar] [CrossRef] [PubMed]
- Pirabbasi, E.; Zangeneh, M.M.; Zangeneh, A.; Moradi, R.; Kalantar, M. Chemical Characterization and Effect of Ziziphora clinopodioides Green-Synthesized Silver Nanoparticles on Cytotoxicity, Antioxidant, and Antidiabetic Activities in Streptozotocin-Induced Hepatotoxicity in Wistar Diabetic Male Rats. Food Sci. Nutr. 2024, 12, 3443–3451. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Bao, M.; Peng, Y.; Gao, J.; Bao, J. Eco-Friendly Nanoparticles Synthesized from Salvia sclarea Ethanol Extract Protect against STZ-Induced Diabetic Nephropathy in Rats via Antioxidant, Anti-Inflammatory, and Apoptosis Mechanisms. J. Oleo Sci. 2024, 73, 1057–1067. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bai, Y.; Jin, Z.; Svensson, B. Food-Derived Non-Phenolic α-Amylase and α-Glucosidase Inhibitors for Controlling Starch Digestion Rate and Guiding Diabetes-Friendly Recipes. LWT 2022, 153, 112455. [Google Scholar] [CrossRef]
- Smith, D.L.; Orlandella, R.M.; Allison, D.B.; Norian, L.A. Diabetes Medications as Potential Calorie Restriction Mimetics—A Focus on the Alpha-Glucosidase Inhibitor Acarbose. Geroscience 2021, 43, 1123–1133. [Google Scholar] [CrossRef]
- Khan, F.; Shah, A.A.; Kumar, A.; Akhtar, S. In Silico Investigation against Inhibitors of Alpha-Amylase Using Structure-Based Screening, Molecular Docking, and Molecular Simulations Studies. Cell Biochem. Biophys. 2024, 82, 2873–2888. [Google Scholar] [CrossRef]
- Badeggi, U.M.; Badmus, J.A.; Botha, S.S.; Ismail, E.; Marnewick, J.L.; Africa, C.W.J.; Hussein, A.A. Biosynthesis, Characterization, and Biological Activities of Procyanidin Capped Silver Nanoparticles. J. Funct. Biomater. 2020, 11, 66. [Google Scholar] [CrossRef]
- Malapermal, V.; Botha, I.; Krishna, S.B.N.; Mbatha, J.N. Enhancing Antidiabetic and Antimicrobial Performance of Ocimum basilicum, and Ocimum sanctum (L.) Using Silver Nanoparticles. Saudi J. Biol. Sci. 2017, 24, 1294–1305. [Google Scholar] [CrossRef]
- Patra, J.K.; Shin, H.S.; Das, G. Characterization and Evaluation of Multiple Biological Activities of Silver Nanoparticles Fabricated from Dragon Tongue Bean Outer Peel Extract. Int. J. Nanomed. 2021, 16, 977–987. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Shin, H.S. Facile Green Biosynthesis of Silver Nanoparticles Using Pisum sativum L. Outer Peel Aqueous Extract and Its Antidiabetic, Cytotoxicity, Antioxidant, and Antibacterial Activity. Int. J. Nanomed. 2019, 14, 6679–6690. [Google Scholar] [CrossRef]
- Das, G.; Shin, H.S.; Patra, J.K. Comparative Assessment of Antioxidant, Anti-Diabetic and Cytotoxic Effects of Three Peel/ Shelle Food Waste Extract-Mediated Silver Nanoparticles. Int. J. Nanomed. 2020, 15, 9075–9088. [Google Scholar] [CrossRef] [PubMed]
- Das, G.; Patra, J.K.; Shin, H.S. Biosynthesis, and Potential Effect of Fern Mediated Biocompatible Silver Nanoparticles by Cytotoxicity, Antidiabetic, Antioxidant and Antibacterial, Studies. Mater. Sci. Eng. C 2020, 114, 111011. [Google Scholar] [CrossRef] [PubMed]
- Sati, S.C.; Kour, G.; Bartwal, A.S.; Sati, M.D. Biosynthesis of Metal Nanoparticles from Leaves of Ficus Palmata and Evaluation of Their Anti-Inflammatory and Anti-Diabetic Activities. Biochemistry 2020, 59, 3019–3025. [Google Scholar] [CrossRef] [PubMed]
- Badmus, J.A.; Oyemomi, S.A.; Adedosu, O.T.; Yekeen, T.A.; Azeez, M.A.; Adebayo, E.A.; Lateef, A.; Badeggi, U.M.; Botha, S.; Hussein, A.A.; et al. Photo-Assisted Bio-Fabrication of Silver Nanoparticles Using Annona muricata Leaf Extract: Exploring the Antioxidant, Anti-Diabetic, Antimicrobial, and Cytotoxic Activities. Heliyon 2020, 6, e05413. [Google Scholar] [CrossRef]
- Antonysamy Johnson, M.A.; Shibila, T.; Amutha, S.; Menezes, I.R.A.; Da Costa, J.G.M.; Sampaio, N.F.L.; Coutinho, H.D.M. Synthesis of Silver Nanoparticles Using Odontosoria chinensis (L.) J. Sm. and Evaluation of Their Biological Potentials. Pharmaceuticals 2020, 13, 66. [Google Scholar] [CrossRef]
- Anjum, S.; Khan, A.K.; Qamar, A.; Fatima, N.; Drouet, S.; Renouard, S.; Blondeau, J.P.; Abbasi, B.H.; Hano, C. Light Tailoring: Impact of UV-C Irradiation on Biosynthesis, Physiognomies, and Clinical Activities of Morus macroura-Mediated Monometallic (Ag and ZnO) and Bimetallic (Ag and ZnO) Nanoparticles. Int. J. Mol. Sci. 2021, 22, 11294. [Google Scholar] [CrossRef]
- Das, G.; Shin, H.S.; Patra, J.K. Multitherapeutic Efficacy of Curly Kale Extract Fabricated Biogenic Silver Nanoparticles. Int. J. Nanomed. 2022, 17, 1125–1137. [Google Scholar] [CrossRef]
- Das, G.; Shin, H.S.; Patra, J.K. Key Health Benefits of Korean ueong Dry Root Extract Combined Silver Nanoparticles. Int. J. Nanomed. 2022, 17, 4261–4275. [Google Scholar] [CrossRef]
- Balu, S.K.; Andra, S.; Damiri, F.; Sivaramalingam, A.; Sudandaradoss, M.V.; Kumarasamy, K.; Bhakthavachalam, K.; Ali, F.; Kundu, M.K.; Rahman, M.H.; et al. Size-Dependent Antibacterial, Antidiabetic, and Toxicity of Silver Nanoparticles Synthesized Using Solvent Extraction of Rosa indica L. Petals. Pharmaceuticals 2022, 15, 689. [Google Scholar] [CrossRef]
- Zubair, M.; Azeem, M.; Mumtaz, R.; Younas, M.; Adrees, M.; Zubair, E.; Khalid, A.; Hafeez, F.; Rizwan, M.; Ali, S. Green Synthesis and Characterization of Silver Nanoparticles from Acacia nilotica and Their Anticancer, Antidiabetic and Antioxidant Efficacy. Environ. Pollut. 2022, 304, 119249. [Google Scholar] [CrossRef]
- Chirumamilla, P.; Dharavath, S.B.; Taduri, S. Eco-Friendly Green Synthesis of Silver Nanoparticles from Leaf Extract of Solanum khasianum: Optical Properties and Biological Applications. Appl. Biochem. Biotechnol. 2023, 195, 353–368. [Google Scholar] [CrossRef] [PubMed]
- Essghaier, B.; Hannachi, H.; Nouir, R.; Mottola, F.; Rocco, L. Green Synthesis and Characterization of Novel Silver Nanoparticles Using Achillea maritima Subsp. Maritima Aqueous Extract: Antioxidant and Antidiabetic Potential and Effect on Virulence Mechanisms of Bacterial and Fungal Pathogens. Nanomaterials 2023, 13, 1964. [Google Scholar] [CrossRef] [PubMed]
- Essghaier, B.; Dridi, R.; Mottola, F.; Rocco, L.; Zid, M.F.; Hannachi, H. Biosynthesis and Characterization of Silver Nanoparticles from the Extremophile Plant Aeonium haworthii and Their Antioxidant, Antimicrobial and Anti-Diabetic Capacities. Nanomaterials 2023, 13, 100. [Google Scholar] [CrossRef] [PubMed]
- Sumra, A.A.; Zain, M.; Saleem, T.; Yasin, G.; Azhar, M.F.; Zaman, Q.U.; Budhram-Mahadeo, V.; Ali, H.M. Biogenic Synthesis, Characterization, and In Vitro Biological Evaluation of Silver Nanoparticles Using Cleome brachycarpa. Plants 2023, 12, 1578. [Google Scholar] [CrossRef]
- Yousefzadeh-Valendeh, S.; Fattahi, M.; Asghari, B.; Alizadeh, Z. Dandelion Flower-Fabricated Ag Nanoparticles versus Synthetic Ones with Characterization and Determination of Photocatalytic, Antioxidant, Antibacterial, and α-Glucosidase Inhibitory Activities. Sci. Rep. 2023, 13, 15444. [Google Scholar] [CrossRef]
- Dilipan, E.; Sivaperumal, P.; Kamala, K.; Ramachandran, M.; Vivekanandhan, P. Green Synthesis of Silver Nanoparticles Using Seagrass Cymodocea serrulata (R.Br.) Asch. & Magnus, Characterization, and Evaluation of Anticancer, Antioxidant, and Antiglycemic Index. Biotechnol. Appl. Biochem. 2023, 70, 1346–1356. [Google Scholar] [CrossRef]
- Paramasivam, D.; Balasubramanian, B.; Suresh, R.; Kumaravelu, J.; Vellingiri, M.M.; Liu, W.C.; Meyyazhagan, A.; Alanazi, A.M.; Rengasamy, K.R.R.; Arumugam, V.A. One-Pot Synthesis of Silver Nanoparticles Derived from Aqueous Leaf Extract of Ageratum conyzoides and Their Biological Efficacy. Antibiotics 2023, 12, 688. [Google Scholar] [CrossRef]
- Kiani, B.H.; Arshad, I.; Najeeb, S.; Okla, M.K.; Almanaa, T.N.; Al-Qahtani, W.H.; Abdel-Maksoud, M.A. Evaluation of Biogenic Silver Nanoparticles Synthesized from Vegetable Waste. Int. J. Nanomed. 2023, 18, 6527–6544. [Google Scholar] [CrossRef]
- Nagime, P.V.; Singh, S.; Shaikh, N.M.; Gomare, K.S.; Chitme, H.; Abdel-Wahab, B.A.; Alqahtany, Y.S.; Khateeb, M.M.; Habeeb, M.S.; Bakir, M.B. Biogenic Fabrication of Silver Nanoparticles Using Calotropis procera Flower Extract with Enhanced Biomimetics Attributes. Materials 2023, 16, 4058. [Google Scholar] [CrossRef]
- Khan, Z.U.R.; Assad, N.; Naeem-ul-Hassan, M.; Sher, M.; Alatawi, S.; Alatawi, M.S.; Omran, A.M.E.; Jame, R.M.A.; Adnan, M.; Khan, M.N.; et al. Aconitum lycoctonum L. (Ranunculaceae) Mediated Biogenic Synthesis of Silver Nanoparticles as Potential Antioxidant, Anti-Inflammatory, Antimicrobial and Antidiabetic Agents. BMC Chem. 2023, 17, 128. [Google Scholar] [CrossRef]
- Rani, P.; Kumar, N.; Perinmbam, K.; Devanesan, S.; AlSalhi, M.S.; Asemi, N.; Nicoletti, M. Synthesis of Silver Nanoparticles by Leaf Extract of Cucumis melo L. and Their In Vitro Antidiabetic and Anticoccidial Activities. Molecules 2023, 28, 4995. [Google Scholar] [CrossRef]
- Ejaz, U.; Afzal, M.; Mazhar, M.; Riaz, M.; Ahmed, N.; Rizg, W.Y.; Alahmadi, A.A.; Badr, M.Y.; Mushtaq, R.Y.; Yean, C.Y. Characterization, Synthesis, and Biological Activities of Silver Nanoparticles Produced via Green Synthesis Method Using Thymus vulgaris Aqueous Extract. Int. J. Nanomed. 2024, 19, 453–469. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Ashraf, G.J.; Baishya, T.; Dua, T.K.; Paul, P.; Nandi, G.; Dutta, A.; Limbu, D.; Kumar, A.; Adhikari, M.D.; et al. Formulation of Silver Nanoparticles Using Duabanga grandiflora Leaf Extract and Evaluation of Their Versatile Therapeutic Applications. Bioprocess. Biosyst. Eng. 2024, 47, 1139–1150. [Google Scholar] [CrossRef]
- Geremew, A.; Gonzalles, J.; Peace, E.; Woldesenbet, S.; Reeves, S.; Brooks, N.; Carson, L. Green Synthesis of Novel Silver Nanoparticles Using Salvia blepharophylla and Salvia greggii: Antioxidant and Antidiabetic Potential and Effect on Foodborne Bacterial Pathogens. Int. J. Mol. Sci. 2024, 25, 904. [Google Scholar] [CrossRef]
- Arya, A.; Chahar, D.; Bhakuni, K.; Vandana; Kumar, S.; Venkatesu, P. Green Synthesis of Silver Nanoparticles Using Drymaria cordata and Their Biocompatibility with Hemoglobin: A Therapeutic Potential Approach. ACS Appl. Bio Mater. 2024, 7, 977–989. [Google Scholar] [CrossRef]
- Naveed, M.; Mahmood, S.; Aziz, T.; Azeem, A.; Rajpoot, Z.; Rehman, S.U.; Al-Asmari, F.; Alahmari, A.S.; Saleh, O.; Sameeh, M.Y.; et al. Green-Synthesis of Silver Nanoparticles AgNPs from Podocarpus macrophyllus for Targeting GBM and LGG Brain Cancers via NOTCH2 Gene Interactions. Sci. Rep. 2024, 14, 25489. [Google Scholar] [CrossRef]
- Sasikala, M.; Mohan, S.; Karuppaiah, A.; Karthick, V.; Ragul, P.A.; Nagarajan, A. NanoFlora: Unveiling the Therapeutic Potential of Ipomoea aquatica Nanoparticles. J. Genet. Eng. Biotechnol. 2025, 23, 100470. [Google Scholar] [CrossRef]
- Hussain, H.; Abbas, G.; Green, I.R.; Ali, I. Dipeptidyl Peptidase IV Inhibitors as a Potential Target for Diabetes: Patent Review (2015–2018). Expert Opin. Ther. Pat. 2019, 29, 535–553. [Google Scholar] [CrossRef]
- Shao, D.W.; Zhao, L.J.; Sun, J.F. Synthesis and Clinical Application of Representative Small-Molecule Dipeptidyl Peptidase-4 (DPP-4) Inhibitors for the Treatment of Type 2 Diabetes Mellitus (T2DM). Eur. J. Med. Chem. 2024, 272, 116464. [Google Scholar] [CrossRef] [PubMed]
- Peres, M.; Costa, H.S.; Silva, M.A.; Albuquerque, T.G. The Health Effects of Low Glycemic Index and Low Glycemic Load Interventions on Prediabetes and Type 2 Diabetes Mellitus: A Literature Review of RCTs. Nutrients 2023, 15, 5060. [Google Scholar] [CrossRef] [PubMed]
- Coronell-Tovar, A.; Pardo, J.P.; Rodríguez-Romero, A.; Sosa-Peinado, A.; Vásquez-Bochm, L.; Cano-Sánchez, P.; Álvarez-Añorve, L.I.; González-Andrade, M. Protein Tyrosine Phosphatase 1B (PTP1B) Function, Structure, and Inhibition Strategies to Develop Antidiabetic Drugs. FEBS Lett. 2024, 598, 1811–1838. [Google Scholar] [CrossRef]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Mechanistic Insight into Oxidative Stress-Triggered Signaling Pathways and Type 2 Diabetes. Molecules 2022, 27, 950. [Google Scholar] [CrossRef]
- Warren, F.J.; Zhang, B.; Waltzer, G.; Gidley, M.J.; Dhital, S. The Interplay of α-Amylase and Amyloglucosidase Activities on the Digestion of Starch in in Vitro Enzymic Systems. Carbohydr. Polym. 2015, 117, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Magkos, F.; Hjorth, M.F.; Astrup, A. Diet and Exercise in the Prevention and Treatment of Type 2 Diabetes Mellitus. Nat. Rev. Endocrinol. 2020, 16, 545–555. [Google Scholar] [CrossRef]
- Petroni, M.L.; Brodosi, L.; Marchignoli, F.; Sasdelli, A.S.; Caraceni, P.; Marchesini, G.; Ravaioli, F. Nutrition in Patients with Type 2 Diabetes: Present Knowledge and Remaining Challenges. Nutrients 2021, 13, 2748. [Google Scholar] [CrossRef] [PubMed]
- Kuryłowicz, A.; Koźniewski, K. Anti-Inflammatory Strategies Targeting Metaflammation in Type 2 Diabetes. Molecules 2020, 25, 2224. [Google Scholar] [CrossRef]
- Khanna, I. Drug Discovery in Pharmaceutical Industry: Productivity Challenges and Trends. Drug Discov. Today 2012, 17, 1088–1102. [Google Scholar] [CrossRef]
- Berdigaliyev, N.; Aljofan, M. An Overview of Drug Discovery and Development. Future Med. Chem. 2020, 12, 939–947. [Google Scholar] [CrossRef] [PubMed]
Methods | Fundamentals | Reference |
---|---|---|
Inhibition of α-glucosidase or α-amylase | Enzymes involved in carbohydrate metabolism; their inhibition prevents the increase in blood glucose. | [74,75,76,77,78,79,80] |
Glucose dialysis retardation index (GDRI) | A dialysis membrane is used, resembling the human intestine, where an amount of glucose is placed with the test compound, and its ability to release the glucose to an external solution is measured. | [74] |
Glucose adsorption capacity | It is a colorimetric assay which evaluates the ability of a compound to bind glucose under incubation conditions at 37 °C for 6 h. | [81] |
Tyrosine phosphatase 1B inhibitory assay (PTP1B) | This enzyme is a negative regulator of the insulin signaling pathway. | [82] |
Dipeptidyl peptidase 4 (DPP-4) inhibition assay | Inhibition of this enzyme regulates the function of incretins, which in turn stimulate insulin production. | [83] |
Non-enzymatic glycosylation of hemoglobin | High values of glycated hemoglobin have been associated with nephropathy, retinopathy and cardiovascular disease in DM. | [84,85] |
Advanced glycation end-products | These molecules are a product of hyperglycemia and are involved in the complications of DM. | [86] |
Glucose uptake in muscle cells | L6 cells (myoblasts of rat skeletal muscle) are the model skeletal cells to study the mechanisms of glucose uptake by muscle cells. | [87] |
Glucose uptake in liver cancer cells | Hep-2 liver cancer cells | [33] |
Glucose uptake in yeast cells | Glucose uptake in yeast cells depends on its diffusion through the membrane, so an increase is favorable. | [88,89,90] |
Hepatic glucose production | HepG2 hepatic cells can release glucose through gluconeogenesis and glycogenolysis | [87] |
Insulin secretion | Insulin secretion by MIN6 pancreatic cells | [87,88,89,90,91] |
Expression of the Peroxisome proliferator-activated receptor gamma (PPARγ) | PPARγ enhances insulin sensitivity. PPARγ expression has been evaluated in RINm5F insulinoma cells | [92] |
Peroxide-induced pancreatic INS-1 cell damage | H2O2 may induce damage with an increase in oxidative stress, as in diabetic chronic hyperglycemia. | [93] |
Assay of non-enzymatic glycosylation of hemoglobin (HbA1c) | Hemoglobin reacts non-enzymatically with glucose through a process known as glycation, resulting in the formation of glycated hemoglobin (HbA1c). | [85,94] |
Vesperlysine-like advanced glycation end products (AGEs) and pentosidine-like AGEs inhibition assays | AGEs accumulation is associated with hyperglycemia and the pathogenic mechanisms underlying T2D | [95] |
1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity * | DPPH is a well-known free radical; its reduction would show effective scavenging activity. | [76,83,96,97,98] |
2,2-azino-bis (3-ethylbenz-thiazoline- 6-sulfonic acid-) (ABTS) antioxidant assay * | ABTS is a free radical; its reduction would show effective scavenging activity. | [76,78,80,99,100] |
Ferric reducing antioxidant power assay (FRAP) * | Evaluation of the ability to reduce ferric ions (Fe3+) to ferrous ions (Fe2+) | [72] |
Total reducing power assay (TRP) or reducing power test * | Calculation of the reduction power utilizing potassium ferricyanide | [72,73,100] |
Nitrite/nitrate oxide (NOx) assay * | Evaluation of the potential of nitric oxide radical scavenging | [100] |
Total antioxidant capacity (TAC) * | Reduction of molybdenum | [72] |
Hydroxyl radical scavenging assay (HRSA) * | Scavenging of hydroxyl radicals | [101] |
In Vivo | Strain/Drug Dose | Fundamentals | Reference |
---|---|---|---|
Diabetic mice induced with alloxan | Swiss albino mice/single i.p. injection of alloxan 150 mg/kg; Albino mice/ single i.p. injection 35 mg/kg; Albino mice/single i.p. injection 180 mg/kg. | Intraperitoneal application of alloxan in mice causes hyperglycemia and induces diabetes. | [96,102,103,104] |
Diabetic rats induced with alloxan | Wistar albino rats/ single i.p. injection of alloxan 200 mg/kg; Wistar rats/ single i.p. injection 150 mg/kg. | Alloxan injection damages rat pancreas and induces diabetes. | [105,106,107] |
Diabetic mice induced with streptozotocin (STZ) | BALB/c mice/ single i.p. injection of STZ 45 or 50 mg/kg; BALB/c mice with high-fat diet and two doses of STZ 100 mg/kg; Swiss albino mice/single i.p. injection of STZ 65 mg/kg. | Streptozotocin injection damages mouse pancreas and induces diabetes. | [80,88,97,108,109] |
Diabetic rats induced with streptozotocin | Wistar rats/single i.p. injection of streptozotocin dose (40, 50, 55 or 60 mg/kg); A high-fat diet during 7 weeks followed by an i.p. low dose of streptozotocin (30 mg/kg). | Streptozotocin injection damages rat pancreas and induces diabetes. | [110,111,112,113,114,115,116] |
Zebra fish | Immersion of adult zebrafish (Danio rerio) in 111 mM glucose solution for 14 days. | Immersion in a glucose solution resulted in a sustained hyperglycemic state. | [93] |
Plant | Nanoparticle Size | In Vitro Method | Concentration | Results | Reference |
---|---|---|---|---|---|
Gracelliaria edulis and syringodium isoetifolium | 71 and 110 nm | α-amylase inhibition Glucose difusion inhibition test | Four concentrations ranging from 100 to 400 μg/mL | Gracillaria Edulis AgNPs were more effective for amylase inhibition (68.75–98.75%) than syringodium isoetifolium AgNPs (25.35–77.25%). Gracillaria Edulis AgNPs were more effective (58.75–78.75%) inhibiting glucose diffusion than syringodium isoetifolium AgNPs (10.35–45.25%). | [74] |
Ocimum basilicum, and Ocimum sanctum (L.) | Size range of 17.0 ± 8.94 nm for O. basilicum AgNps; 15.0 ± 12.34 nm for O. sanctum AgNps, and 17.0 ± 8.44 nm for the combination O. sanctum combined with O. basilicum AgNps | α-amylase and α-glucosidase inhibition | α-amylase assay: 3 mg/mL α-glucosidase assay: 0.3 mg/mL | The AgNPs derived from O. sanctum (AgNPs OS) and O. basilicum (AgNPs OB) displayed an inhibitory effect on α-amylase: 59.57 ± 3.72% and 59.79 ± 6.91, respectively. AgNPs OS inhibited α -glucosidase at 89.31 ± 5.32%, while AgNPs OB inhibited 79.74 ± 9.51%. | [121] |
Punica granatum | Particle size ranging from approximately 35 to 60 nm. Average size 48 nm Z potential −26.6 mV | α-Amylase and α-glucosidase inhibition. ABTS and DPPH assays | 20–100 μg/mL | AgNPs inhibited α-amylase and α-glucosidase (IC50: 65.2 and 53.8 μg/mL, respectively). ABTS (IC50 = 52.2 μg/mL) and DPPH (IC50 = 67.1 μg/mL) antioxidant activity. | [99] |
Melia azedarach | 14–20 nm. Mean size: 17.75 ± 1.26 nm | α-Amylase and α-glucosidase inhibition DPPH and ABTS assay | 200 and 400 μg/mL | AgNPs (400 μg/mL) demonstrated high antidiabetic efficacy as measured by α-amylase (85.75%) and α-glucosidase (80.33%) inhibition assays. Antioxidant activity by DPPH: (63.83%) and ABTS (63.61%) radical scavenging assays. | [75] |
Ananas comosus (L.) | Not specified | α-glucosidase inhibition DPPH and ABTS assays | Enzyme inhibition: 0.008–1.000 μg/mL (10 μg/mL serially diluted) DPPH and ABTS assays: 25–100 μg/mL | AgNPs at concentrations of 0.063, 0.125, 0.250, 0.500, and 1.000 μg/mL showed a 100% α-glucosidase inhibition DPPH scavenging activity: 27.23% to 43.41%. Scavenging activity in ABTS: 9.18–13.32%. | [76] |
Ipomoea batatas (L.) Lam peels, varieties Korean red skin, and Korean pumpkin | Not specified | α-glucosidase inhibition DPPH, ABTS, and NOX assays Reducing power assay | 0.25–1.00 μg/mL | α-glucosidase inhibition: Korean red skin AgNPs: IC50 = 0.36 μg/mL; Korean pumpkin AgNPs IC50 = 0.77 μg/mL. The antioxidant activity was higher in AgNPs from Korean pumpkin skin than Korean red skin. | [100] |
Phaseolus vulgaris | 78.02 nm | α-glucosidase inhibition DPPH, ABTS, NOX, reducing power assays | 1, 5, and 10 µg/mL | Glucosidase inhibition IC50 = 1.98 μg/mL. A reasonable antioxidant activity. | [122] |
Pisum sativum L. | 10–25 nm | α-glucosidase inhibition DPPH assay | 1.0–10 µg/mL | α-glucosidase (95.29% inhibition at 10 µg/mL and IC50 = 2.10 µg/mL. Moderate antioxidant activity (50.17% reduction of DPPH at 100 μg/mL). | [123] |
P. americana, Beta vulgaris, and Arachis hypogaea shell | Not specified | α-glucosidase inhibition DPPH ABTS Reducing power | 1.0–5.0 µg/mL 25, 50 and 100 µg/mL | AgNPs of Arachis hypogaea shell exhibited a higher α-glucosidase inhibition IC50 value (1.68 μg/mL) than the other two tested AgNPs. The three generated AgNPs showed a moderate antioxidant activity. | [124] |
Equisetum arvense plants | 170.5 nm | α-glucosidase inhibition DPPH, ABTS, NOX, and reducing power assays | 0.5–2.5 µg/mL 25, 50 and 100 µg/mL | α-glucosidase inhibition ranged from 20 to 95.77%. The IC50 value was estimated as 1.73 μg/mL. High antioxidant effect | [125] |
Leucosidea sericea | 7.8, 2.9, and 3.3 nm | α-Amylase and α-glucosidase inhibition ABTS and FRAP assays | 2.5–200 µg/mL | AgNPs made with total extract and two different extract fractions. AgNPs exhibited α-amylase inhibition range: IC50 = 13.24–19.13 µg/mL. AgNPs α-glucosidase inhibition: IC50 = 8.75–21.48 µg/mL. AgNPs showed comparable or significantly lower antioxidant activity than those of the intact extract fractions. | [120] |
Silybum marianum | 18.12 and 13.20 nm | α-Amylase and α-glucosidase inhibition ABTS, FRAP, DPPH, TAC, and TRP | Not specified | AgNPs from plant and seeds α-amylase inhibition: 25.36% and 26.78%, respectively AgNPs exhibited lower enzyme inhibition and antioxidant activities than those of the extracts. | [72] |
Ficus palmata | 9.26 nm | α-Amylase and α-glucosidase inhibition | 10.0–90.0 µg/mL | α-amylase inhibition IC50 = 27 μg/mL α-glucosidase inhibition IC50 = 32 μg/mL | [126] |
Annona muricata | 86.78 nm | α-Amylase and α-glucosidase inhibition DPPH and ABTS assays | Not specified | AgNPs displayed strong activities against α-amylase (IC50 = 0.90 μg/mL), α-glucosidase (IC50 =3.32 μg/mL), DPPH (IC50 = 51.80 μg/mL), and ABTS (IC50 = 30.78 μg/mL) | [127] |
Cleome viscosa | 5–50 nm | α-Amylase and α-glucosidase inhibition Assay of non-enzymatic glycosylation of hemoglobin (HbA1c) DPPH, ABTS, H2O2, Phosphomolybdenum method, and reducing power ability assays | 20.0–100.0 µg/mL | One type of the AgNPs synthesized exhibited IC50: 21.92 ± 1.74 and 21.76 ± 1.91 µg/mL of α-Amylase and α-glucosidase inhibition, respectively. Inhibition of enzymatic glycosylation of hemoglobin, IC50 = 159.31 ± 9.9 µg/mL. AgNPs displayed good antioxidant activity | [85] |
Odontosoria chinensis (L.) | 22.3–48.2 nm | α-amylase inhibition | 50, 100, 150, 200 and 250 µL/mL | 21.53–51.85% of α-amylase inhibition | [128] |
Heritiera fomes and Sonneratia apetala | 20–30 nm and 70–100 nm | α-amylase inhibition | 100–500 µg/mL | 280.39 and 273.48 μg/mL for AgNPs from bark and leaf extracts, respectively | [43] |
Vitis vinifera | 20–35 nm | α-amylase and α-glucosidase inhibition DPPH and ABTS assays | 20, 40, 60, 80, and 100 µg/mL | Inhibition of α-amylase (IC50, 60.2 ± 2.15 μg/mL) and α-glucosidase (IC50, 62.5 ± 2.75 μg/mL). AgNPs exhibited significant free radical scavenging activity, mainly DPPH radical (IC50, 50.0 ± 2.25 μg/mL) and ABTS radical (IC50, 38.46 ± 1.14 μg/mL). | [78] |
Morus macroura | 22.93 nm | α-amylase and α-glucosidase inhibition | Not specified | α-amylase inhibition 67.77 ± 3.29% and α-glucosidase inhibition 35.83 ± 2.40%. Anti-glycation activity (37.68 ± 3.34%) against pentosidine-like advanced glycation end products (AGEs) and 67.87 ± 2.99% against vesperlysine-like AGEs. | [129] |
Zinger officinale | Not reported | α-amylase and α-glucosidase inhibition | 10 to 50 µg/mL | At the highest concentration, the α-amylase inhibitory assay and the β-glucosidase inhibitory assay showed approximately 78% and 80% inhibition. | [79] |
Allium sativum | 10–30 nm | α-amylase and α-glucosidase inhibition Utilization of Glucose by the L-6 cell line. Glucose production in HepG2. DPPH radical scavenging activity | 20 to 100 µg/mL | AgNPs inhibited significally higher α-amylase and α-glucosidase compared to control acarbose. Glucose uptake level from 28.9 to 41.5%. AgNPs (50 μg/mL) surpassed the glucose uptake ability (32.4%) compared to the control metformin (28.8%). AgNPs significantly inhibited glucose production over the control at all the tested concentrations. AgNPs exhibited the antioxidant activity of 31% to 63% with an average IC50 value of 61.81 ± 19.4. AgNPs exhibited lower scavenging activity of DPPH than the standard (IC50 value 32.63 ± 14.8). | [87] |
Brassica oleracea | 276.35 nm | α-glucosidase inhibition DPPH, ABTS, NOX, and reducing power assays | 1.0–5.0 μg/mL | At 2.5 μg/mL AgNPs displayed 80.44% inhibition | [130] |
Korean Ueong | 170.3 nm | α-glucosidase inhibition | 1.0–100.0 μg/mL | α-glucosidase with a maximum inhibition value of 95.41% at 5.0 µg/mL and more than 86% inhibition at 2.5 µg/mL and the estimated IC50 value was found to be 0.653 µg/mL | [131] |
Rosa indica L. | 18, 12, and 770 nm | α-amylase and α-glucosidase inhibition DPPH assay | 10, 25, 50, 75, and 100 µg/mL) | IC50 values of α-amylase and α-glycosidase being 50, 50, and 75 µg/mL for ethanolic, acetone and aqueous extract synthetized AgNPs. DPPH scavenging was well, higher with AgNPs synthesized with ethanolic and acetone extract. | [132] |
Kigelia africana | 25–35 nm | PPARγ expression (semiquantitative Real Time-PCR) in RINm5F insulinoma cells | 25 and 50 µg/mL | AgNPs upregulated PPARγ expression | [92] |
A. nilotica | 20–50 nm | α-glucosidase inhibition DPPH assay | 50 and 250 µg/mL | Silver nitrate at 0.1 M and 3 mM were used to synthesize AgNPs, α-glucosidase inhibition range: 47.87–73.93% | [133] |
Fagonia cretica | 20 to 50 nm | α-amylase, α-glucosidase inhibition DPPH assay | 62–1000 µg/mL | α-amylase inhibition 51.10 to 83.53%. α-glucosidase inhibition 39.50 81.74%. | [80] |
Solanum khasianum | 15.96 nm | α-amylase inhibition | 50–250 μg/mL | Maximum inhibition of 79.56% | [134] |
Achillea maritima subsp. Marítima | 14.13 to 21.26 nm | α-amylase, α-glucosidase inhibition DPPH assay | 20–120 μg/mL | α-amylase IC50 = 64.9 μg/mL. α-glucosidase IC50 = 41.6 μg/mL. DPPH assay IC50 = 41.6 μg/mL Strong antioxidant activity | [135] |
Aeonium haworthii | 35–55 nm | α-amylase inhibition DPPH assay | 20–120 μg/mL | α-amylase inhibition IC50 = 62.84 μg/mL DPPH antioxidant assay: IC50 = 0.044 mg/mL | [136] |
Cleome brachycarpa | 20 to 80 nm | α-amylase inhibition DPPH assay Reducing power assay | 0.3–1.5 μg/mL | Higher α-amylase inhibition than control acarbose Similar antioxidant activity to butylhydroxytoluene | [137] |
Azadirachta indica | 34.43 nm | Glucose uptake by yeast α-amylase inhibition | 10, 20, 40, 80, 100 μg/mL | AgNPs showed the highest activity (75.0%) glucose uptake by yeast. The alpha-amylase assay, AgNPs exhibited the maximum activity of 73.85% | [88] |
Taraxacum officinale | 45–55 nm | α-glucosidase inhibition | 100, 300, and 600 μg/mL | α-glucosidase enzyme inhibitory effect (88.37%) in comparison with controls C-AgNPs1 (61.7%) and C-AgNPs2 (50.5%). | [138] |
Cymodocea serrulata (R.Br.) Asch. & Magnus | 60 and 69 nm | α-amylase, α-glucosidase inhibition DPPH, hydroxyl scavenging activity, and ABTS assays | 25–125 μg/mL | AgNPs exhibited α-amylase and α-glucosidase inhibition of 13.56–57.31% and 15.78–54.5%, respectively. AgNPs strongly impacted free radical scavenging against DPPH, H2O2 radicals, and the ABTS test. | [139] |
Ageratum conyzoides | 30–90 nm | α-amylase inhibition DPPH, FRAP, hydrogen peroxide scavenging assays | 3.12–100 μg/mL | α-amylase inhibition: IC50 = 21.52 μg/mL. Better antioxidant property than extract: DPPH 87.86%, FRAP 85.95%, and H2O2 assay 90.11% | [140] |
Solanum tuberosum and Coriander sativum | 65 nm for potato peels extract and 70 nm for coriander stems extract | α-amylase inhibition DPPH assay | Not specified | AgNPs from potato peel extracts inhibited more than positive control (86.72 ± 0.19%). AgNPs from the coriander stem extracts showed 85 ± 0.98% as compared to control. Strong antioxidant activity, higher than their respective extracts. | [141] |
Salacia oblonga | 99.8 nm | α-amylase inhibition DPPH assay, reducing power capacity, and hydroxyl radical scavenging assay (HRSA) | 20–100 μg/mL | EC50 for α-amylase inhibition = 58.38 μg/mL, IC50 DPPH assay: 80.64 μg/mL, reducing power capacity: 81.09 μg/mL, nitric oxide 96.58 μg/mL, and hydroxyl 58.38 μg/mL radical scavenging activities. | [101] |
Calotropis procera | 23.8 nm | α-amylase inhibition Hydrogen peroxide scavenging activity | Not specified | α-amylase inhibitory activity higher (36.33%) than that of metformin (1.44%) Remarkable reducing capacity of AgNPs compared to the ascorbic acid. | [142] |
Aconitum lycoctonum L. (Ranunculaceae) | 67 nm | α-amylase inhibition FRAP and DPPH assays | 10–30 mg/mL | The highest concentration achieved 59.12% inhibition. Good antioxidant potential: the highest value of FRAP (50.47%) was detected at a concentration of 90 ppm and a DPPH scavenging activity of 69.63% was detected at a concentration of 20 μg/mL of AgNPs. | [143] |
Cucumis melo L. | 66.7–92.3 | α-amylase and α-glucosidase inhibition | 20–100 μg/mL | AgNPs showed the highest inhibition activity on both enzymes at the 100 µg/mL concentration | [144] |
Thymus Vulgaris | 44.6 nm | α-amylase inhibition DPPH assay | 250–1000 μg/mL | Inhibitory activity was observed from 50.67% to 82.57%. The antioxidant activity of AgNPs showed 92% inhibition at the concentration of at 1000 μg/mL. | [145] |
Duabanga grandiflora | 99.72 nm | α-amylase inhibition DDPH assay | 10–1000 μg/mL | α-Amylase inhibitory activity: IC50 = 162.11 μg/mL | [146] |
Salvia blepharophylla and Salvia greggii | 52.4 and 62.5 nm | α-amylase inhibition DDPH assay | 20–100 μg/mL | α-amylase inhibition of Salvia blepharophylla AgNPs: 35.4% and 86.5%; for Salvia greggii AgNPs: 29% and 80.5% Higher antioxidant activity than standard | [147] |
Drymaria cordata | 5–100 nm | α-amylase and α-glucosidase inhibition DPPH and ABTS assays | 25–1000 μg/mL | α-amylase inhibition: 68.92 ± 0.16%; α-glucosidase inhibition: 66.79 ± 0.08%. AgNPs exhibit better scavenging activity than D. cordata extracts. | [148] |
B. aegyptiaca | 10.352 nm | Glucose Uptake Assay in C2C12 cells Insulin secretion in Min6 cells | 6.25–100 μg/mL | Glucose increase uptake: 156.00% compared to control. Insulin enhanced secretion 3.92-fold compared to control. | [91] |
Podocarpus macrophyllus | 13 nm | α-amylase inhibition DPPH assay | 200–1000 μg/mL | α-amylase inhibition 92.7% at 1000 μg/mL 90% free radical scavenging | [149] |
Ipomoea aquatica | 36.27 nm | α-amylase inhibition DPPH assay | Not specified | α-amylase inhibition = 78.55%. Significant antioxidant activity, surpassing standard ascorbic acid. | [150] |
Cymbopogon citratus | 135.41 | α-amylase and α-glucosidase inhibition DPPH, ABTS, and TRP assays | 10–50 μg/mL | α-amylase inhibition IC50 = 34.81 μg/mL α-glucosidase inhibition IC50 = 20.84 μg/mL Strong antioxidant activity at higher concentration | [73] |
Melia azedarac | 20–30 nm | α-amylase inhibition DPPH assay | Not specified | α-amylase inhibition: 80.33%. Strong free radical scavenging properties. | [98] |
Berberis lyceum | 11.02 nm | α-amylase and α-glucosidase inhibition DPPH assay | 50–250 μg/mL | α-amylase inhibition: 78 ± 0.38% α-glucosidase inhibition: 88 ± 0.58%. α-amylase and α-glucosidase inhibition were similar to that of acarbose, also higher than the extract. Higher antioxidant activity than that of the extract. | [103] |
Origin | Nanoparticle Size | Animal Model (Species, Strain, Sex, Age, Weight) | Dose and Time of AgNPs | Results | Reference |
---|---|---|---|---|---|
Eysenhardtia polystachya | 10–12 nm | Glucose-induced diabetic zebrafish. | 5 and 10 μg/mL. 14 days. | Diminution of hyperglycemia improved hyperlipidemia. | [93] |
E. phyllantus | 30, 45, and 65 nm | Albino mice, 60 days old (male or female), weighting 18−21 g Diabetes induction with alloxan | 150 and 300 mM for 15 days. | A significant decrease in the glucose level and significant recovery in the liver and kidney. | [102] |
Cucumis sativus | 27–97 nm | Adult albino mice, 4 and 6 weeks, weight approximately 25 g. Diabetes induction with alloxan | A 5% ointment: 50 mg of silver nanoparticles into 1000 mg of pure vaseline. 15 days. | Nanoparticles ointment treated mice showed significant wound contraction at day 15 as compared to control. | [104] |
Azadirachta indica | Not reported | Mature male Swiss albino mice, weight: 30–35 g; average age 8 weeks. Diabetes induction with alloxan | AgNPs 100 mg/kg; AgNPs 100 mg/kg + glibenclamide. 28 days. | Improvement in the body weight and blood glucose level. Significant regeneration in the histomorphology of the kidney, liver’s central vein, and islets of Langerhans Radical scavenging activity. | [96] |
Berberis lyceum | 11.02 nm | Diabetic induced by alloxan, Swiss albino mice weighing 38.6 ± 3.0 g. Average age: 8 weeks | 200 mg/kg. 28 consecutive days. | AgNPs decreased in blood glucose. | [103] |
Phagnalon niveum | 12 to 28 nm. Average: 21 nm. | 8-week-old Wistar rats weighing 140–150 g. Alloxan-induced diabetes. | 10 mg/kg of body weight for 21 days. | A significant reduction in blood glucose levels and an increase in body weight, as well as a remarkable improvement in lipid, liver, and kidney profiles, were noticed. | [107] |
Solanum nigrum | 4–25 nm |
Male Wistar albino rats aged more than 8 weeks (140–160 g body weight). Diabetes induction by single dose of alloxan |
AgNPs 10 mg/kg for 21 days. | Reduced the blood glucose level over the period of treatment. Improved the dyslipidemic condition and body weight. | [105] |
Eryngium thyrsoideum Boiss | 10 and 56 nm | Male Wistar rats weighing 180–200 g. Alloxan induced diabetes | 2.5 mg/kg for 14 consecutive days. |
Silver nanoparticles decreased significantly liver enzyme levels including alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and may exert protective effects on liver damage. | [106] |
Camellia sinensis | 15.954 nm | Male Swiss albino mice (20–25 g) Diabetes induction with streptozotocin | 100 mg/kg/ bw/day. 14 days. | AgNPs reduced blood glucose, total cholesterol, triglyceride, low-density lipoprotein (LDL) and creatinine levels. | [109] |
Fagonia cretica | 29.39 nm | Male Balb/C albino mice that were 6 weeks old and weighed between 25 and 35 g Diabetes induction with streptozotocin | 200 mg/kg body weight. 21 days. | Significant weight gain and a decrease in all biochemical markers (blood glucose, pancreas panel, liver function panel, renal function panel, and lipid profile). | [80] |
Azadirachta indica | 34.43 nm | Adult BALB/C mice weighing 25–30 g and 5 weeks old. Diabetes induction: one dose (50 mg/kg body weight) of streptozotocin i.p. | 10–40 mg/kg Treatment for 30 days. | A significant decrease in blood glucose level. Diabetic mice treated with different doses of AI-AgNPs revealed regeneration of islet cells in pancreas. The diabetic group of mice treated with 40 mg/kg b/w showed a histological appearance that was comparable to the normal control group. | [88] |
Thymus serpyllum | Average: 42 nm | 4-week-old male BALB/c mice. Mice were fed a high-fat diet and low doses of streptozotocin | 5 and 10 mg per kg of body weight for 28 days. | A 10 mg/kg dose increases the expression of AMP-activated protein kinase (AMPK) and insulin receptor substrate 1 (IRS1), enhancing glucose uptake in cells. | [97] |
Tribulus terrestris | 22 nm | 5-week-old BALB/C mice, weight: 25–30 g. Diabetes induction with streptozotocin. | 10, 20, 30, or 40 mg/kg for 30 days. | Treated groups displayed histological improvements in pancreas and liver, also blood glucose levels dropped in a dose-dependent manner. | [108] |
Momordica charantia | Less than 100 nm | Male Wistar rats, weighing between 180 and 200 g. Diabetes induction with a single intraperitoneal dose of streptozotocin. | 800, 1000, and 2000 mg/kg for 14 weeks. | AgNPs showed potent anti-hyperglycemic properties and improved different entanglements of diabetes. | [111] |
Psidium guajava | 52.12–65.02 nm | Both sexes of 160–200 g Wistar. Streptozotocin-induced diabetic rats. | 200 and 400 mg/kg for 21 days. | Decrease in the blood glucose level, preventing subsequent weight loss and ameliorating lipid profile parameters. Improvements in pancreas and liver cells | [113] |
Phragmanthera austroarabica | 13 nm | Male Wistar rats 130 and 170 g. High-fat diet for 7 weeks and a low streptozotocin injection | 200 mg/kg/day, p.o. 4 weeks. | AgNPs decreased insulin, serum glucose, leptin, and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR). | [114] |
Salvia Sclarea | Average size range 40 ± 5 nm | Adult male Wistar rats with weights between 100 and 150 Diabetes induction with streptozotocin | 10 mg/kg/day, intraperitoneal. 16 weeks. | AgNPs led to a significant rise in glutathione, superoxide dismutase, glutathione peroxidase, and catalase enzyme levels and decreased malondialdehyde levels in the treated group. AgNPs attenuated hyperglycemia induced oxidative stress, inflammation by reducing TNF-α, IL-1β and PKC-β in renal cells of diabetic rats | [116] |
Ziziphora clinopodioides | Below 100 nm | Streptozotocin-induced Wistar diabetic male rats | 50–400 μg/kg 20 days of treatment. | AgNPs reduced the fasting blood glucose levels compared to the diabetic group. | [115] |
Rumex hymenosepalus | 9 ± 3 nm | Streptozotocin-induced Male rats of the Wistar strain, weighing 150 ± 15 g. | 150 μg/kg. 9 days. | Treatment during 9 days with AgNPs decreased 50% the blood glucose in diabetic rats. The glucose tolerance test showed that in diabetic rats treated with AgNPs, there was a minimal increase in blood glucose. | [110] |
Lawsonia inermis | 14.9 nm | Male Wistar rats, weighing between 180 and 200 g Diabetes induced with streptozotocin | 200 mg/kg. 14 days. | Potent hypoglycemic activity compared to the extract group | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Garibay, A.S.; Torres-González, O.R.; Sánchez-Hernández, I.M.; Padilla-Camberos, E. Biosynthesized Silver Nanoparticles and Their Antidiabetic Potential. Pharmaceuticals 2025, 18, 1412. https://doi.org/10.3390/ph18091412
González-Garibay AS, Torres-González OR, Sánchez-Hernández IM, Padilla-Camberos E. Biosynthesized Silver Nanoparticles and Their Antidiabetic Potential. Pharmaceuticals. 2025; 18(9):1412. https://doi.org/10.3390/ph18091412
Chicago/Turabian StyleGonzález-Garibay, Angélica Sofía, Omar Ricardo Torres-González, Iván Moisés Sánchez-Hernández, and Eduardo Padilla-Camberos. 2025. "Biosynthesized Silver Nanoparticles and Their Antidiabetic Potential" Pharmaceuticals 18, no. 9: 1412. https://doi.org/10.3390/ph18091412
APA StyleGonzález-Garibay, A. S., Torres-González, O. R., Sánchez-Hernández, I. M., & Padilla-Camberos, E. (2025). Biosynthesized Silver Nanoparticles and Their Antidiabetic Potential. Pharmaceuticals, 18(9), 1412. https://doi.org/10.3390/ph18091412