White Grape Skin Extraction, Analytical Profile, and Biological Activity: From the Laboratory to the Industrial Scale Within a Circular Economy Framework
Abstract
1. Introduction
2. Results and Discussion
2.1. Extraction Yield
2.2. Analytical Characterization
2.2.1. Untargeted Metabolomics Analysis
2.2.2. Targeted HPLC-HRMS Analysis for Polyphenol Identification
2.3. Total Polyphenol, Anthocyanin, and Tannin Content
2.4. In Vitro Cellular Viability Assay
2.5. Antioxidant Capacity: Cell-Free and In Vitro Assay
2.6. In Vitro Studies: Anti-Inflammatory Activity
2.7. Translational Relevance and Future Perspectives
3. Materials and Methods
3.1. Chemicals
3.2. Extracts Preparation
3.3. HPLC-HRMS Analysis
3.4. Data Processing
3.4.1. Targeted Annotation
3.4.2. Spectral Organization Through Molecular Networking with GNPS
3.5. Statistical Analysis
3.6. Total Polyphenol Content
3.7. Tannin Content
3.8. Anthocyanin Content
3.9. Radical Scavenging Activity
3.10. In Vitro Assays
3.10.1. Cell Lines and MTT Assay
3.10.2. Antioxidant Activity
3.10.3. Anti-Inflammatory Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Velenturf, A.P.M.; Purnell, P. Principles for a sustainable circular economy. Sustain. Prod. Consum. 2021, 27, 1437–1457. [Google Scholar] [CrossRef]
- Murray, A.; Skene, K.; Haynes, K. The Circular Economy: An Interdisciplinary Exploration of the Concept and Application in a Global Context. J. Bus. Ethics 2017, 140, 369–380. [Google Scholar] [CrossRef]
- Vinci, G.; Prencipe, S.A.; Abbafati, A.; Filippi, M. Environmental Impact Assessment of an Organic Wine Production in Central Italy: Case Study from Lazio. Sustainability 2022, 14, 15483. [Google Scholar] [CrossRef]
- Kalli, E.; Lappa, I.; Bouchagier, P.; Tarantilis, P.A.; Skotti, E. Novel application and industrial exploitation of winery by-products. Bioresour. Bioprocess. 2018, 5, 46. [Google Scholar] [CrossRef]
- García-Lomillo, J.; González-SanJosé, M.L.; Pino-García, R.D.; Rivero-Pérez, M.D.; Muñiz-Rodríguez, P. Antioxidant and Antimicrobial Properties of Wine Byproducts and Their Potential Uses in the Food Industry. J. Agric. Food Chem. 2014, 62, 12595–12602. [Google Scholar] [CrossRef]
- O’Shea, N.; Arendt, E.K.; Gallagher, E. Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innov. Food Sci. Emerg. Technol. 2012, 16, 1–10. [Google Scholar] [CrossRef]
- Galanakis, C.M. Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 2012, 26, 68–87. [Google Scholar] [CrossRef]
- Gullón, P.; Gullón, B.; Romaní, A.; Rocchetti, G.; Lorenzo, J.M. Smart advanced solvents for bioactive compounds recovery from agri-food by-products: A review. Trends Food Sci. Technol. 2020, 101, 182–197. [Google Scholar] [CrossRef]
- Kovačević, D.B.; Barba, F.J.; Granato, D.; Galanakis, C.M.; Herceg, Z.; Dragović-Uzelac, V.; Putnik, P. Pressurized hot water extraction (PHWE) for the green recovery of bioactive compounds and steviol glycosides from Stevia rebaudiana Bertoni leaves. Food Chem. 2018, 254, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Barba, F.J.; Zhu, Z.; Koubaa, M.; Sant’Ana, A.S.; Orlien, V. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends Food Sci. Technol. 2016, 49, 96–109. [Google Scholar] [CrossRef]
- Maroun, R.G.; Rajha, H.N.; Vorobiev, E.; Louka, N. Emerging Technologies for the Recovery of Valuable Compounds from Grape Processing By-Products. In Handbook of Grape Processing By-Products; Elsevier: Amsterdam, The Netherlands, 2017; pp. 155–181. [Google Scholar] [CrossRef]
- Maicas, S.; Mateo, J.J. Sustainability of Wine Production. Sustainability 2020, 12, 559. [Google Scholar] [CrossRef]
- de Moura, R.S.; Viana, F.S.C.; Souza, M.A.V.; Kovary, K.; Guedes, D.C.; Oliveira, E.P.B.; Rubenich, L.M.S.; Carvalho, L.C.R.M.; Oliveira, R.M.; Tano, T.; et al. Antihypertensive, vasodilator and antioxidant effects of a vinifera grape skin extract. J. Pharm. Pharmacol. 2002, 54, 1515–1520. [Google Scholar] [CrossRef]
- Yadav, M.; Jain, S.; Bhardwaj, A.; Nagpal, R.; Puniya, M.; Tomar, R.; Singh, V.; Parkash, O.; Prasad, G.; Marotta, F.; et al. Biological and Medicinal Properties of Grapes and Their Bioactive Constituents: An Update. J. Med. Food 2009, 12, 473–484. [Google Scholar] [CrossRef]
- de Moura, R.S.; da Costa, G.F.; Moreira, A.S.B.; Queiroz, E.F.; Moreira, D.D.C.; Garcia-Souza, E.P.; Resende, Â.C.; Moura, A.S.; Teixeira, M.T. Vitis vinifera L. grape skin extract activates the insulin-signalling cascade and reduces hyperglycaemia in alloxan-induced diabetic mice. J. Pharm. Pharmacol. 2012, 64, 268–276. [Google Scholar] [CrossRef]
- Colombo, F.; Di Lorenzo, C.; Regazzoni, L.; Fumagalli, M.; Sangiovanni, E.; de Sousa, L.P.; Bavaresco, L.; Tomasi, D.; Bosso, A.; Aldini, G.; et al. Phenolic profiles and anti-inflammatory activities of sixteen table grape (Vitis vinifera L.) varieties. Food Funct. 2019, 10, 1797–1807. [Google Scholar] [CrossRef]
- Capello, C.; Fischer, U.; Hungerbühler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green. Chem. 2007, 9, 927. [Google Scholar] [CrossRef]
- Ethanol (ethyl alcohol). Australian Government Website, 2022. Available online: https://www.dcceew.gov.au/environment/protection/npi/substances/fact-sheets/ethanol-ethyl-alcohol (accessed on 18 June 2024).
- Castro-Puyana, M.; Marina, M.L.; Plaza, M. Water as green extraction solvent: Principles and reasons for its use. Curr. Opin. Green. Sustain. Chem. 2017, 5, 31–36. [Google Scholar] [CrossRef]
- Gil-Martín, E.; Forbes-Hernández, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem. 2022, 378, 131918. [Google Scholar] [CrossRef] [PubMed]
- Aron, A.T.; Gentry, E.C.; McPhail, K.L.; Nothias, L.-F.; Nothias-Esposito, M.; Bouslimani, A.; Petras, D.; Gauglitz, J.M.; Sikora, N.; Vargas, F.; et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 2020, 15, 1954–1991. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, M.; Lam, P.-Y.; Dini-Andreote, F.; Dai, L.; Wei, Z. Multifaceted roles of flavonoids mediating plant-microbe interactions. Microbiome 2022, 10, 233. [Google Scholar] [CrossRef]
- Huang, E.C.; Pramanik, B.N.; Tsarbopoulos, A.; Reichert, P.; Ganguly, A.K.; Trotta, P.P.; Nagabhushan, T.L.; Covey, T.R. Application of Electrospray Mass Spectrometry in Probing Protein-Protein and Protein-Ligand Noncovalent Interactions. J. Am. SK Mass. Spectrom. 1993, 4, 624–630. [Google Scholar] [CrossRef]
- Bass, T.M.; Weinkove, D.; Houthoofd, K.; Gems, D.; Partridge, L. Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech. Ageing Dev. 2007, 128, 546–552. [Google Scholar] [CrossRef]
- Jackson, R.S. Chemical Constituents of Grapes and Wine. In Wine Science; Elsevier: Amsterdam, The Netherlands, 2014; pp. 347–426. [Google Scholar] [CrossRef]
- Pérez, M.; Dominguez-López, I.; Lamuela-Raventós, R.M. The Chemistry Behind the Folin–Ciocalteu Method for the Estimation of (Poly)phenol Content in Food: Total Phenolic Intake in a Mediterranean Dietary Pattern. J. Agric. Food Chem. 2023, 71, 17543–17553. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Morazzoni, P.; Vanzani, P.; Santinello, S.; Gucciardi, A.; Zennaro, L.; Miotto, G.; Ursini, F. Grape Seeds Proanthocyanidins: Advanced Technological Preparation and Analytical Characterization. Antioxidants 2021, 10, 418. [Google Scholar] [CrossRef]
- Abderrahim, F.; Arribas, S.M.; Gonzalez, M.C.; Condezo-Hoyos, L. Rapid high-throughput assay to assess scavenging capacity index using DPPH. Food Chem. 2013, 141, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, G.; Baron, G.; Gado, F.; Della Vedova, L.; Bombardelli, E.; Carini, M.; D’amato, A.; Aldini, G.; Altomare, A. Polyphenols from Thinned Young Apples: HPLC-HRMS Profile and Evaluation of Their Anti-Oxidant and Anti-Inflammatory Activities by Proteomic Studies. Antioxidants 2022, 11, 1577. [Google Scholar] [CrossRef] [PubMed]
- Silva-Islas, C.A.; Maldonado, P.D. Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol. Res. 2018, 134, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Della Vedova, L.; Gado, F.; Vieira, T.A.; Grandini, N.A.; Palácio, T.L.N.; Siqueira, J.S.; Carini, M.; Bombardelli, E.; Correa, C.R.; Aldini, G.; et al. Chemical, Nutritional and Biological Evaluation of a Sustainable and Scalable Complex of Phytochemicals from Bergamot By-Products. Molecules 2023, 28, 2964. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Osakabe, N.; Di Paola, R.; Siracusa, R.; Fusco, R.; D’aMico, R.; Impellizzeri, D.; Cuzzocrea, S.; Fritsch, T.; Abdelhameed, A.S.; et al. Hormesis defines the limits of lifespan. Ageing Res. Rev. 2023, 91, 102074. [Google Scholar] [CrossRef]
- Della Vedova, L.; Ferrario, G.; Gado, F.; Altomare, A.; Carini, M.; Morazzoni, P.; Aldini, G.; Baron, G. Liquid Chromatography–High-Resolution Mass Spectrometry (LC-HRMS) Profiling of Commercial Enocianina and Evaluation of Their Antioxidant and Anti-Inflammatory Activity. Antioxidants 2022, 11, 1187. [Google Scholar] [CrossRef]
- Lin, D.; Dai, F.; Sun, L.-D.; Zhou, B. Toward an understanding of the role of a catechol moiety in cancer chemoprevention: The case of copper- and o -quinone-dependent Nrf2 activation by a catechol-type resveratrol analog. Mol. Nutr. Food Res. 2015, 59, 2395–2406. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Buttari, B.; Panieri, E.; Profumo, E.; Saso, L. An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules 2020, 25, 5474. [Google Scholar] [CrossRef] [PubMed]
- Baron, G.; Altomare, A.; Della Vedova, L.; Gado, F.; Quagliano, O.; Casati, S.; Tosi, N.; Bresciani, L.; Del Rio, D.; Roda, G.; et al. Unraveling the parahormetic mechanism underlying the health-protecting effects of grapeseed procyanidins. Redox Biol. 2024, 69, 102981. [Google Scholar] [CrossRef]
- Della Vedova, L.; Husain, I.; Wang, Y.; Kothapalli, H.B.; Gado, F.; Baron, G.; Manzi, S.; Morazzoni, P.; Aldini, G.; Khan, I.A. Pre-ADMET studies of 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone, the bioactive intestinal metabolite of proanthocyanidins. Archiv. Der Pharmazie 2025, 358, e2400575. [Google Scholar] [CrossRef]
- Salem, Y.; Rajha, H.N.; Sunoqrot, S.; Hammad, A.M.; Castangia, I.; Manconi, M.; Manca, M.L.; Al Lababidi, D.; Touma, J.A.; Maroun, R.G.; et al. Exhausted Grape Seed Residues as a Valuable Source of Antioxidant Molecules for the Formulation of Biocompatible Cosmetic Scrubs. Molecules 2023, 28, 5049. [Google Scholar] [CrossRef]
- Miller, S.A.; White, J.A.; Chowdhury, R.; Gales, D.N.; Tameru, B.; Tiwari, A.K.; Samuel, T. Effects of consumption of whole grape powder on basal NF-κB signaling and inflammatory cytokine secretion in a mouse model of inflammation. J. Nutr. Intermed. Metab. 2018, 11, 1–8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chedea, V.S.; Macovei, Ș.O.; Bocșan, I.C.; Măgureanu, D.C.; Levai, A.M.; Buzoianu, A.D.; Pop, R.M. Grape Pomace Polyphenols as a Source of Compounds for Management of Oxidative Stress and Inflammation-A Possible Alternative for Non-Steroidal Anti-Inflammatory Drugs? Molecules 2022, 27, 6826. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Magrone, T.; Magrone, M.; Russo, M.A.; Jirillo, E. Recent Advances on the Anti-Inflammatory and Antioxidant Properties of Red Grape Polyphenols: In Vitro and In Vivo Studies. Antioxidants 2019, 9, 35. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baron, G.; Ferrario, G.; Marinello, C.; Carini, M.; Morazzoni, P.; Aldini, G. Effect of Extraction Solvent and Temperature on Polyphenol Profiles, Antioxidant and Anti-Inflammatory Effects of Red Grape Skin By-Product. Molecules 2021, 26, 5454. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef]
- Pang, Z.; Zhou, G.; Ewald, J.; Chang, L.; Hacariz, O.; Basu, N.; Xia, J. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 2022, 17, 1735–1761. [Google Scholar] [CrossRef]
- Cao, K.-A.L.; Boitard, S.; Besse, P. Sparse PLS discriminant analysis: Biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinform. 2011, 12, 253. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, C.; Zhang, Y.; Feng, Y.; Wang, Y.; Zhu, Y. Sparse Partial-least-squares Discriminant Analysis for Different Geographical Origins of Salvia miltiorrhiza by 1 H-NMR-based Metabolomics. Phytochem. Anal. 2014, 25, 50–58. [Google Scholar] [CrossRef]
- Sun, B.; Ricardo-da-Silva, J.M.; Spranger, I. Critical Factors of Vanillin Assay for Catechins and Proanthocyanidins. J. Agric. Food Chem. 1998, 46, 4267–4274. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Piazza, S.; Colombo, F.; Bani, C.; Fumagalli, M.; Vincentini, O.; Sangiovanni, E.; Martinelli, G.; Biella, S.; Silano, M.; Restani, P.; et al. Evaluation of the Potential Anti-Inflammatory Activity of Black Rice in the Framework of Celiac Disease. Foods 2022, 12, 63. [Google Scholar] [CrossRef]
Sample | Yield of Extraction (%) |
---|---|
Hydroalcoholic extract (HE) | 9.27% |
Water-based extract (WE) | 24% |
Industrial-scaled extract (IE) | 20% |
Name | [M-H]− | [M]+/[M+H]+ | RT | MS2 (Negative Ion Mode) | MS2 (Positive Ion Mode) | HE | WE | IE |
---|---|---|---|---|---|---|---|---|
Caffeic acid | 179.03443 | 2.32 | 135 | x | x | nd | ||
Caffeoyl glucoside | 341.08725 | 3.17 | 179-251-281 | x | x | x | ||
Caffeoyl glucoside 1 | 341.08732 | 3.37 | 179-221-251-281 | nd | x | x | ||
Caffeoyl glucoside 2 | 341.08722 | 3.97 | 179-221-251-281 | nd | x | x | ||
Caftaric acid | 311.04031 | 2.88 | 149-179 | x | x | nd | ||
Catechin | 289.07121 | 291.08685 | 3.43 | 245-205-203-247-179 | 123-139-151-165 | x | x | x |
Catechin gallate/epicatechin gallate | 441.08217 | 443.09781 | 14.43 | 169-289 | 139-151-273-291 | x | x | nd |
citric acid | 191.0191772 | 1.78 | 191 | nd | nd | x | ||
Coumaric acid | 163.03952 | 4.57 | 119 | nd | x | nd | ||
Coutaric acid | 295.04539 | 4.47 | 175 | x | x | x | ||
Dihydrokaempferol-3-rhamnoside | 433.11347 | 32.21 | 225-269-359-387 | nd | x | nd | ||
Dihydroquercetin-3-acetylglucoside | 507.11386 | 30.57 | 329-344-345 | nd | x | nd | ||
Dihydroquercetin-3-rhamnoside | 449.10838 | 20.13 | 151-285-302-323-403 | nd | x | nd | ||
Epicatechin | 289.07121 | 291.08685 | 5.64 | 245-205-203-247-179 | 123-139-151-165 | x | x | x |
Ethyl gallate | 197.045 | 5.80 | 153 | x | x | x | ||
Fertaric acid | 325.05595 | 6.1 | 163-193-265 | x | x | x | ||
Gallic acid | 169.0137 | 1.46 | 125 | x | x | x | ||
Gallocatechin/Epigallocatechin | 305.06612 | 1.8 | 179-221-219-261 | x | x | x | ||
Galloyl glucose | 331.06652 | 1.52 | 169-271 | x | nd | x | ||
Hexoside of protocatechuic acid | 315.0716 | 2.88 | 153 | x | x | nd | ||
Hexoside of vanillic acid | 329.08725 | 6.46 | 191-299-197 | x | x | nd | ||
Isorhamnetin 3-glucoside | 477.1033 | 27.05 | 314-315 | x | nd | nd | ||
Isorhamnetin-rhamnoside | 461.10838 | 6.47 | 299 | x | nd | nd | ||
Kaempferol 3-galactoside/Kaempferol 3-glucoside | 447.09273 | 24.54 | 255-285 | x | nd | x | ||
Kaempferol 3-glucuronide | 461.07222 | 26.99 | 229-257-285-329-346 | nd | nd | x | ||
Kaempferol 3-rutinoside | 595.16651 | 15.77 | 387 | nd | nd | x | ||
Laricitrin 3-galactoside/Laricitrin-3-glucoside | 493.09821 | 20.90 | 331-317 | x | x | x | ||
Laricitrin-3-acetylglucoside | 537.12478 | 8.95 | 493 | nd | nd | x | ||
Malvidin 3-(6″-acetyl)-glucoside | 535.14515 | 21.68 | 331 | x | nd | |||
Malvidin 3-glucoside/Malvidin 3-galactoside | 493.13459 | 5.99 | 331 | x | nd | x | ||
Malvidin-3-(6″-coumaroyl)-glucoside | 639.17137 | 38.26 | 331 | x | x | x | ||
Myricetin | 317.02974 | 27.80 | 249 | x | nd | nd | ||
Myricetin 3-galactoside/Myricetin 3-glucoside | 479.08256 | 481.0982 | 11.4 | 179-317 | 319 | x | x | x |
Myricetin 3-glucuronide | 493.06183 | 495.07747 | 11.74 | 317 | 319 | x | x | x |
Myricetin-3-rhamnoside | 463.08758 | 19.42 | 301 | x | x | nd | ||
p-Coumaric acid | 163.03952 | 165.05516 | 4.40 | 119 | x | nd | x | |
p-Coumaroyl-glucose 1 | 325.09234 | 327.10798 | 4.27 | 265-235-163 | 147-281-299 | x | x | x |
p-Coumaroyl-glucose 2 | 325.09234 | 327.10798 | 5.57 | 265-235-163 | 147-165-291 | x | x | x |
Peonidin 3-(6″-coumaroyl)-glucoside | 609.1608 | 37.82 | 301 | x | nd | nd | ||
Peonidin 3-glucoside | 463.12403 | 5.58 | 301 | x | nd | nd | ||
Petunidin 3-glucoside | 479.11894 | 3.46 | 317 | x | nd | nd | ||
p-Hydroxybenzoic acid | 137.02387 | 3.72 | 108-137 | x | nd | nd | ||
Piceid/Resveratrol-glucose | 389.12364 | 13.2 | 227-320-343-360 | x | nd | nd | ||
Procyandin B peak1 | 577.13459 | 579.15023 | 2.38 | 289-407-425-451 | 247-291-301-409-427 | x | x | x |
Procyanidin B peak2 | 577.13459 | 579.15023 | 3.55 | 289-407-425-451 | 247-291-301-409-427-453-533 | x | x | x |
Procyanidin B peak3 | 577.13459 | 579.15023 | 5.25 | 289-407-425-451 | 247-287-291-301-409-427 | x | x | x |
Procyanidin B peak4 | 577.13459 | 579.15023 | 10.24 | 289-407-425-451 | 409-427-435-439-453 | x | x | x |
Procyanidin trimer peak 1 | 865.19798 | 867.21362 | 3.93 | 696-793 | 409-577-698-715 | x | x | nd |
Procyanidin trimer peak 3 | 865.19798 | 867.21362 | 8.88 | 577 | 579-715-823 | x | x | nd |
Protocatechuic acid | 153.01878 | 2.29 | 109-123 | x | x | nd | ||
protocatechuic acid | 153.01962 | 2.93 | 88-108-113-123-153 | nd | nd | x | ||
Quercetin | 301.03483 | 43.75 | 151-273-301 | x | nd | x | ||
Quercetin 3-galactoside/Quercetin 3-glucoside | 463.08765 | 465.10329 | 17.68 | 301-271-311 | 303 | x | x | x |
Quercetin 3-glucuronide | 477.06758 | 479.08255 | 18.21 | 301 | 303 | x | x | x |
Quercetin 3-rutinoside | 609.14555 | 18.39 | 301 | x | nd | nd | ||
Quercetin-3-rhamnoside | 609.14555 | 18.39 | 301 | x | nd | x | ||
Quercetin-3-rhamnoside-glucoside | 609.14555 | 18.39 | 301 | x | nd | nd | ||
Syringetin | 347.07662 | 55.14 | nd | nd | x | |||
Syringetin 3-(6″-coumaroyl)-glucoside | 653.15064 | 55.49 | 301-345-386 | x | nd | nd | ||
Syringetin 3-glucoside/Syringetin 3-galactoside | 507.11386 | 509.1295 | 29.61 | 329-344-345 | 347 | x | x | x |
tartaric acid | 149.008613 | 1.29 | 58-86-103-105-149 | nd | nd | x | ||
Vitisin A | 561.12443 | 13.28 | 399 | x | nd | x | ||
Vitisin B | 519.15025 | 14.05 | 355 | x | nd | nd |
Assay | HE (Mean ± SD) | WE (Mean ± SD) | IE (Mean ± SD) |
---|---|---|---|
Polyphenol content (HPLC-UV/DAD) | 43.682% ± 2.665% | 2.999% ± 0.052% | 2.470% ± 0.059% |
Polyphenol content (Folin–Ciocalteu) | 51.612% ± 1.674% | 2.714% ± 0.098% | 7.154% ± 0.412% |
Anthocyanin content | 1.232% ± 0.060% | <0.005% | 0.141% ± 0.034% |
Tannin content | 13.637% ± 2.233% | 2.471% ± 0.079% | 2.479% ± 0.057% |
Assay | HE (Mean ± SD) | WE (Mean ± SD) | IE (Mean ± SD) | Ascorbic Acid (Mean ± SD) |
---|---|---|---|---|
Radical scavenging capacity IC50 (µg/mL) | 4.388 ± 0.041 | 113.565 ± 2.148 | 58.335 ± 7.217 | 3.918 ± 0.047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Della Vedova, L.; Baron, G.; Morazzoni, P.; Santinello, S.; El Haddad, S.M.; Valdés-González, J.A.; Piazza, S.; Dell’Agli, M.; Aldini, G.; Gado, F. White Grape Skin Extraction, Analytical Profile, and Biological Activity: From the Laboratory to the Industrial Scale Within a Circular Economy Framework. Pharmaceuticals 2025, 18, 1373. https://doi.org/10.3390/ph18091373
Della Vedova L, Baron G, Morazzoni P, Santinello S, El Haddad SM, Valdés-González JA, Piazza S, Dell’Agli M, Aldini G, Gado F. White Grape Skin Extraction, Analytical Profile, and Biological Activity: From the Laboratory to the Industrial Scale Within a Circular Economy Framework. Pharmaceuticals. 2025; 18(9):1373. https://doi.org/10.3390/ph18091373
Chicago/Turabian StyleDella Vedova, Larissa, Giovanna Baron, Paolo Morazzoni, Sandro Santinello, Safwa Moheb El Haddad, Jose Antonio Valdés-González, Stefano Piazza, Mario Dell’Agli, Giancarlo Aldini, and Francesca Gado. 2025. "White Grape Skin Extraction, Analytical Profile, and Biological Activity: From the Laboratory to the Industrial Scale Within a Circular Economy Framework" Pharmaceuticals 18, no. 9: 1373. https://doi.org/10.3390/ph18091373
APA StyleDella Vedova, L., Baron, G., Morazzoni, P., Santinello, S., El Haddad, S. M., Valdés-González, J. A., Piazza, S., Dell’Agli, M., Aldini, G., & Gado, F. (2025). White Grape Skin Extraction, Analytical Profile, and Biological Activity: From the Laboratory to the Industrial Scale Within a Circular Economy Framework. Pharmaceuticals, 18(9), 1373. https://doi.org/10.3390/ph18091373