Antimicrobial Activity and Potential of Olive Leaf Extract as a Topical Agent to Combat Staphylococcus aureus and MRSA Strains: An In Vitro Evaluation
Abstract
1. Introduction
2. Results
2.1. Epidemiological Description of Clinical Samples
2.2. Antibiotic Resistance Patterns
2.2.1. Susceptibility Tests on ATCC (American Type Culture Collection) Samples
2.2.2. Susceptibility Tests on Clinical Samples
2.2.3. Antibiotic Families and Efficacy
3. Discussion
4. Materials and Methods
4.1. OLE Extraction
4.2. OLE Phenolic Profile
4.3. Bacteria
4.3.1. Reference S. aureus Strains
4.3.2. S. aureus Strains from Clinical Samples
4.4. OLE Bacterial Susceptibility Test on Agar Plate
4.5. Minimum Bactericidal Concentration (MBC)
4.6. Lethal Curve
4.7. Antibiotic Susceptibility
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SSTIs | Skin and soft tissue infections |
MSSA | Methicillin-susceptible Staphylococcus aureus |
MRSA | Methicillin-resistant Staphylococcus aureus |
OLE | Olive leaf extract |
MBC | Minimum bactericidal concentration |
CFU | Colony-forming units |
AMR | Antimicrobial resistance |
UVB | Ultraviolet B |
IQR | Interquartile range |
DF | Diabetic foot |
IS | Immunosuppression |
PU | Pressure ulcer |
SIWDD | Skin infection with dermatological disease |
SIWODF | Skin infection without dermatological factors |
SP | Surgical procedure |
VD | Vascular disease |
ATCC | American Type Culture Collection |
EUCAST | European Committee on Antimicrobial Susceptibility Testing |
MIC | Minimum inhibitory concentration |
CBA | Columbia blood agar |
MALDI-TOF | Matrix-Assisted Laser Desorption/Ionisation Time of Flight |
MHA | Müller-Hinton agar |
CAMHB | Cation Adjusted Müller-Hinton Broth |
SD | Standard deviation |
UPLC-MS/MS | Ultra-Performance liquid chromatography/tandem mass spectrometry system |
References
- Gehrke, A.-K.E.; Giai, C.; Gómez, M.I. Staphylococcus aureus Adaptation to the Skin in Health and Persistent/Recurrent Infections. Antibiotics 2023, 12, 1520. [Google Scholar] [CrossRef]
- Ikuta, K.S.; Swetschinski, L.R.; Robles Aguilar, G.; Sharara, F.; Mestrovic, T.; Gray, A.P.; Davis Weaver, N.; Wool, E.E.; Han, C.; Gershberg Hayoon, A.; et al. Global Mortality Associated with 33 Bacterial Pathogens in 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef]
- Schachner, L.A.; Andriessen, A.; Gonzalez, M.E.; Lal, K.; Hebert, A.A.; Eichenfield, L.F.; Lio, P. A Consensus on Staphylococcus aureus Exacerbated Atopic Dermatitis and the Need for a Novel Treatment. J. Drugs Dermatol. 2024, 23, 825–832. [Google Scholar] [CrossRef]
- Tomi, N.S.; Kränke, B.; Aberer, E. Staphylococcal Toxins in Patients with Psoriasis, Atopic Dermatitis, and Erythroderma, and in Healthy Control Subjects. J. Am. Acad. Dermatol. 2005, 53, 67–72. [Google Scholar] [CrossRef]
- Linz, M.S.; Mattappallil, A.; Finkel, D.; Parker, D. Clinical Impact of Staphylococcus aureus Skin and Soft Tissue Infections. Antibiotics 2023, 12, 557. [Google Scholar] [CrossRef]
- Ki, V.; Rotstein, C. Bacterial Skin and Soft Tissue Infections in Adults: A Review of Their Epidemiology, Pathogenesis, Diagnosis, Treatment and Site of Care. Can. J. Infect. Dis. Med. Microbiol. 2008, 19, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Tognetti, L.; Martinelli, C.; Berti, S.; Hercogova, J.; Lotti, T.; Leoncini, F.; Moretti, S. Bacterial Skin and Soft Tissue Infections: Review of the Epidemiology, Microbiology, Aetiopathogenesis and Treatment: A Collaboration between Dermatologists and Infectivologists. J. Eur. Acad. Dermatol. Venereol. 2012, 26, 931–941. [Google Scholar] [CrossRef]
- Manzur, A.; Gavalda, L.; Ruiz De Gopegui, E.; Mariscal, D.; Dominguez, M.A.; Perez, J.L.; Segura, F.; Pujol, M. Prevalence of Methicillin-Resistant Staphylococcus aureus and Factors Associated with Colonization among Residents in Community Long-Term-Care Facilities in Spain. Clin. Microbiol. Infect. 2008, 14, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Habib, A.; Qadir, A. Frequency and Antibiotic Susceptibility Pattern of Community-Associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA) in Uncomplicated Skin and Soft Tissue Infections. J. Coll. Physicians Surg. Pak. 2022, 32, 1398–1403. [Google Scholar] [CrossRef] [PubMed]
- Frazee, B.W.; Lynn, J.; Charlebois, E.D.; Lambert, L.; Lowery, D.; Perdreau-Remington, F. High Prevalence of Methicillin-Resistant Staphylococcus aureus in Emergency Department Skin and Soft Tissue Infections. Ann. Emerg. Med. 2005, 45, 311–320. [Google Scholar] [CrossRef]
- King, M.D.; Humphrey, B.J.; Wang, Y.F.; Kourbatova, E.V.; Ray, S.M.; Blumberg, H.M. Emergence of Community-Acquired Methicillin-Resistant Staphylococcus aureus USA 300 Clone as the Predominant Cause of Skin and Soft-Tissue Infections. Ann. Intern. Med. 2006, 144, 309–317. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU-EEA (EARS-Net) Annual Epidemiological Report for 2021; ECDC: Stockholm, Sweden, 2022; p. 20.
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, M.A.; Khan, A.; Hanif, M.; Farooq, U.; Perveen, S. Traditional Uses, Phytochemistry, and Pharmacology of Olea europaea (Olive). Evid.-Based Complement. Altern. Med. 2015, 2015, 541591. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Vique, C.; Navarro-Alarcón, M.; Rodríguez Martínez, C.; Fonollá-Joya, J. Efecto hipotensor de un extracto de componentes bioactivos de hojas de olivo: Estudio clínico preliminar. Nutr. Hosp. 2015, 32, 242–249. [Google Scholar] [CrossRef]
- Ismail, M.A.; Norhayati, M.N.; Mohamad, N. Olive Leaf Extract Effect on Cardiometabolic Profile among Adults with Prehypertension and Hypertension: A Systematic Review and Meta-Analysis. PeerJ 2021, 9, e11173. [Google Scholar] [CrossRef] [PubMed]
- Lins, P.G.; Marina Piccoli Pugine, S.; Scatolini, A.M.; De Melo, M.P. In Vitro Antioxidant Activity of Olive Leaf Extract (Olea europaea L.) and Its Protective Effect on Oxidative Damage in Human Erythrocytes. Heliyon 2018, 4, e00805. [Google Scholar] [CrossRef] [PubMed]
- Wainstein, J.; Ganz, T.; Boaz, M.; Bar Dayan, Y.; Dolev, E.; Kerem, Z.; Madar, Z. Olive Leaf Extract as a Hypoglycemic Agent in Both Human Diabetic Subjects and in Rats. J. Med. Food 2012, 15, 605–610. [Google Scholar] [CrossRef]
- Goldsmith, C.D.; Bond, D.R.; Jankowski, H.; Weidenhofer, J.; Stathopoulos, C.E.; Roach, P.D.; Scarlett, C.J. The Olive Biophenols Oleuropein and Hydroxytyrosol Selectively Reduce Proliferation, Influence the Cell Cycle, and Induce Apoptosis in Pancreatic Cancer Cells. Int. J. Mol. Sci. 2018, 19, 1937. [Google Scholar] [CrossRef]
- European Medicines Agency Oleae Folium—Herbal Medicinal Product | European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/medicines/herbal/oleae-folium (accessed on 21 March 2025).
- Borjan, D.; Leitgeb, M.; Knez, Ž.; Hrnčič, M.K. Microbiological and Antioxidant Activity of Phenolic Compounds in Olive Leaf Extract. Molecules 2020, 25, 5946. [Google Scholar] [CrossRef]
- Pereira, A.P.; Ferreira, I.C.; Marcelino, F.; Valentão, P.; Andrade, P.B.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J.A. Phenolic Compounds and Antimicrobial Activity of Olive (Olea europaea L. Cv. Cobrançosa) Leaves. Molecules 2007, 12, 1153–1162. [Google Scholar] [CrossRef]
- Karygianni, L.; Cecere, M.; Skaltsounis, A.L.; Argyropoulou, A.; Hellwig, E.; Aligiannis, N.; Wittmer, A.; Al-Ahmad, A. High-Level Antimicrobial Efficacy of Representative Mediterranean Natural Plant Extracts against Oral Microorganisms. BioMed Res. Int. 2014, 2014, 839019. [Google Scholar] [CrossRef]
- Markin, D.; Duek, L.; Berdicevsky, I. In Vitro Antimicrobial Activity of Olive Leaves. Antimikrobielle Wirksamkeit von Olivenblättern in Vitro. Mycoses 2003, 46, 132–136. [Google Scholar] [CrossRef]
- Sudjana, A.N.; D’Orazio, C.; Ryan, V.; Rasool, N.; Ng, J.; Islam, N.; Riley, T.V.; Hammer, K.A. Antimicrobial Activity of Commercial Olea europaea (Olive) Leaf Extract. Int. J. Antimicrob. Agents 2009, 33, 461–463. [Google Scholar] [CrossRef]
- Zorić, N.; Kopjar, N.; Bobnjarić, I.; Horvat, I.; Tomić, S.; Kosalec, I. Antifungal Activity of Oleuropein against Candida albicans—The In Vitro Study. Molecules 2016, 21, 1631. [Google Scholar] [CrossRef]
- Ayana, B.; Turhan, K.N. Use of Antimicrobial Methylcellulose Films to Control Staphylococcus aureus during Storage of Kasar Cheese. Packag. Technol. Sci. 2009, 22, 461–469. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Rabii, N.S.; Garbaj, A.M.; Abolghait, S.K. Antibacterial Effect of Olive (Olea europaea L.) Leaves Extract in Raw Peeled Undeveined Shrimp (Penaeus semisulcatus). Int. J. Vet. Sci. Med. 2014, 2, 53–56. [Google Scholar] [CrossRef]
- Liu, Y.; McKeever, L.C.; Malik, N.S.A. Assessment of the Antimicrobial Activity of Olive Leaf Extract Against Foodborne Bacterial Pathogens. Front. Microbiol. 2017, 8, 113. [Google Scholar] [CrossRef] [PubMed]
- Melguizo-Rodríguez, L.; González-Acedo, A.; Illescas-Montes, R.; García-Recio, E.; Ramos-Torrecillas, J.; Costela-Ruiz, V.J.; García-Martínez, O. Biological Effects of the Olive Tree and Its Derivatives on the Skin. Food Funct. 2022, 13, 11410–11424. [Google Scholar] [CrossRef] [PubMed]
- Torrecillas-Baena, B.; Camacho-Cardenosa, M.; Carmona-Luque, M.D.; Dorado, G.; Berenguer-Pérez, M.; Quesada-Gómez, J.M.; Gálvez-Moreno, M.Á.; Casado-Díaz, A. Comparative Study of the Efficacy of EHO-85, a Hydrogel Containing Olive Tree (Olea europaea) Leaf Extract, in Skin Wound Healing. Int. J. Mol. Sci. 2023, 24, 13328. [Google Scholar] [CrossRef]
- Sumiyoshi, M.; Kimura, Y. Effects of Olive Leaf Extract and Its Main Component Oleuroepin on Acute Ultraviolet B Irradiation-induced Skin Changes in C57BL/6J Mice. Phytother. Res. 2010, 24, 995–1003. [Google Scholar] [CrossRef]
- Mehraein, F.; Sarbishegi, M.; Aslani, A. Evaluation of Effect of Oleuropein on Skin Wound Healing in Aged Male Balb/c Mice. Cell J. 2014, 16, 25–30. [Google Scholar]
- Elnahas, R.A.; Elwakil, B.H.; Elshewemi, S.S.; Olama, Z.A. Egyptian Olea europaea Leaves Bioactive Extract: Antibacterial and Wound Healing Activity in Normal and Diabetic Rats. J. Tradit. Complement. Med. 2021, 11, 427–434. [Google Scholar] [CrossRef]
- Zamanifard, M.; Nasiri, M.; Yarahmadi, F.; Zonoori, S.; Razani, O.; Salajegheh, Z.; Imanipour, M.; Mohammadi, S.M.; Jomehzadeh, N.; Asadi, M. Healing of Diabetic Foot Ulcer with Topical and Oral Administrations of Herbal Products: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Int. Wound J. 2024, 21, e14760. [Google Scholar] [CrossRef]
- Mehrabi Rad, F.; Changaee, F.; Toulabi, T.; Yari, F.; Rashidipour, M.; Mohammadi, R.; Yarahmadi, S.; Almasian, M. The Efficacy of Combined Olive Leaf and Curcumin Extract on Healing Human Papillomavirus: A Randomized Clinical Trial. Evid.-Based Complement. Altern. Med. 2023, 2023, 2001770. [Google Scholar] [CrossRef]
- Toulabi, T.; Delfan, B.; Rashidipour, M.; Yarahmadi, S.; Ravanshad, F.; Javanbakht, A.; Almasian, M. The Efficacy of Olive Leaf Extract on Healing Herpes Simplex Virus Labialis: A Randomized Double-Blind Study. Explore 2022, 18, 287–292. [Google Scholar] [CrossRef] [PubMed]
- European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 14.0; European Committee on Antimicrobial Susceptibility Testing: Växjö, Sweden, 2024; Available online: https://www.eucast.org (accessed on 1 December 2024).
- Hiramatsu, K.; Ito, T.; Tsubakishita, S.; Sasaki, T.; Takeuchi, F.; Morimoto, Y.; Katayama, Y.; Matsuo, M.; Kuwahara-Arai, K.; Hishinuma, T.; et al. Genomic Basis for Methicillin Resistance in Staphylococcus aureus. Infect. Chemother. 2013, 45, 117. [Google Scholar] [CrossRef]
- Laurent, F. Fitness and Competitive Growth Advantage of New Gentamicin-Susceptible MRSA Clones Spreading in French Hospitals. J. Antimicrob. Chemother. 2001, 47, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.E.; Deventer, A.T.; Johnston, P.R.; Lowe, P.T.; Boraston, A.B.; Hobbs, J.K. Staphylococcus aureus COL: An Atypical Model Strain of MRSA That Exhibits Slow Growth and Antibiotic Tolerance Due to a Mutation in PRPP Synthetase. Mol. Microbiol. 2025, mmi.70000. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Jia, Q.; LaMacchia, V.; O’Donoghue, K.; Huang, Z. A Systems Biology Approach to Investigate the Antimicrobial Activity of Oleuropein. J. Ind. Microbiol. Biotechnol. 2016, 43, 1705–1717. [Google Scholar] [CrossRef]
- Silvan, J.M.; Guerrero-Hurtado, E.; Gutierrez-Docio, A.; Prodanov, M.; Martinez-Rodriguez, A.J. Olive Leaf as a Source of Antibacterial Compounds Active against Antibiotic-Resistant Strains of Campylobacter jejuni and Campylobacter coli. Antibiotics 2023, 12, 26. [Google Scholar] [CrossRef]
- Kim, S.; Lee, H.; Lee, S.; Yoon, Y.; Choi, K.-H. Antimicrobial Action of Oleanolic Acid on Listeria monocytogenes, Enterococcus faecium, and Enterococcus faecalis. PLoS ONE 2015, 10, e0118800. [Google Scholar] [CrossRef]
- Carraro, L.; Fasolato, L.; Montemurro, F.; Martino, M.E.; Balzan, S.; Servili, M.; Novelli, E.; Cardazzo, B. Polyphenols from Olive Mill Waste Affect Biofilm Formation and Motility in Escherichia coli K-12. Microb. Biotechnol. 2014, 7, 265–275. [Google Scholar] [CrossRef]
- Zouhir, A.; Jridi, T.; Nefzi, A.; Ben Hamida, J.; Sebei, K. Inhibition of Methicillin-Resistant Staphylococcus aureus (MRSA) by Antimicrobial Peptides (AMPs) and Plant Essential Oils. Pharm. Biol. 2016, 54, 3136–3150. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.; Subhan, N.; Jazayeri, J.A.; John, G.; Vanniasinkam, T.; Obied, H.K. Plant Phenols as Antibiotic Boosters: In Vitro Interaction of Olive Leaf Phenols with Ampicillin. Phytother. Res. 2016, 30, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Cela, E.M.; Urquiza, D.; Gómez, M.I.; Gonzalez, C.D. New Weapons to Fight against Staphylococcus aureus Skin Infections. Antibiotics 2023, 12, 1477. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.; Kest, H.; Sood, M.; Steussy, B.; Thieman, C.; Gupta, S. Biofilm Producing Methicillin-Resistant Staphylococcus aureus (MRSA) Infections in Humans: Clinical Implications and Management. Pathogens 2024, 13, 76. [Google Scholar] [CrossRef]
- Porras-Luque, J.I. Antimicrobianos tópicos en Dermatología. Actas Dermo-Sifiliográficas 2007, 98, 29–39. [Google Scholar] [CrossRef]
- Zabielinski, M.; McLeod, M.P.; Aber, C.; Izakovic, J.; Schachner, L.A. Trends and Antibiotic Susceptibility Patterns of Methicillin-Resistant and Methicillin-Sensitive Staphylococcus aureus in an Outpatient Dermatology Facility. JAMA Dermatol. 2013, 149, 427–432. [Google Scholar] [CrossRef][Green Version]
- Zhanel, G.G.; Adam, H.J.; Baxter, M.; Lagace-Wiens, P.R.S.; Karlowsky, J.A. In Vitro Activity and Resistance Rates of Topical Antimicrobials Fusidic Acid, Mupirocin and Ozenoxacin against Skin and Soft Tissue Infection Pathogens Obtained across Canada (CANWARD 2007–2018). J. Antimicrob. Chemother. 2021, 76, 1808–1814. [Google Scholar] [CrossRef]
- Jazideh, F.; Tarkhnishvili, E.; Hashemi Feyzabadi, S.E. Effects of Olea europaea L. Extract on Inflammatory Gene Expressions in Infected Wound Healing Process in Mice Model. GMJ Med. 2023, 2, 63–67. [Google Scholar]
- Martínez-Beamonte, R.; Barranquero, C.; Gascón, S.; Mariño, J.; Arnal, C.; Estopañán, G.; Rodriguez-Yoldi, M.J.; Surra, J.C.; Martín-Belloso, O.; Odriozola-Serrano, I.; et al. Effect of Virgin Olive Oil as Spreadable Preparation on Atherosclerosis Compared to Dairy Butter in Apoe-Deficient Mice. J. Physiol. Biochem. 2024, 80, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Test; Approved Standards—Twelfth Edition; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015; ISBN 978-1-56238-985-7. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Ninth Edition; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; ISBN 978-1-56238-783-9. [Google Scholar]
- Eucast. S, I and R Definitions. Available online: https://www.eucast.org/newsiandr (accessed on 23 September 2024).
- MIC EUCAST. Available online: https://mic.eucast.org/search/ (accessed on 27 March 2025).
- The Jamovi Project. 2022. Available online: https://www.jamovi.org/ (accessed on 1 December 2024).
MSSA N (%) | MRSA N (%) | Overall Samples N (%) | Age (Median (P25–P75)) | Quantity of Antibiotic Resistances (Median (P25–P75)) | |
---|---|---|---|---|---|
103 (81.7) | 23 (18.3) | 126 | 56.0 (27.5–73.8) | 3.0 (2.0–5.0) | |
Gender | |||||
Men | 63 (61.2) | 11 (47.8) | 74 (58.7) | 59.5 (25.3–72.8) | 3.5 (2.0–5.0) |
Women | 40 (38.8) | 12 (52.2) | 52 (41.3) | 50.0 (28.5–74.8) | 3.0 (2.0–5.0) |
Age (years) | |||||
0–18 | 22 (21.4) | 4 (17.4) | 26 (20.6) | 8.0 (5.0–12.8) | 3.5 (2.0–4.0) |
19–65 | 44 (42.7) | 10 (43.5) | 54 (42.9) | 50.0 (36.3–58.8) | 3.5 (2.0–5.0) |
>65 | 37 (35.9) | 9 (39.1) | 46 (36.5) | 78.5 (72.3–85.3) | 2.0 (2.0–4.75) |
Number of antibiotic resistances | |||||
0–5 | 97 (94.2) | 4 (17.4) | 101 (80.2) | 56.0 (20.0–72.0) | 2.0 (2.0–4.0) |
6–10 | 6 (5.8) | 5 (21.7) | 11 (8.7) | 45.0 (35.0–59.0) | 7.0 (6.0–8.5) |
11–15 | 0 (0) | 14 (60.9) | 14 (11.1) | 71.5 (50.3–84.3) | 12.5 (11.0–13.8) |
Type of sample | |||||
Abscess | 10 (9.7) | 2 (8.7) | 12 (9.5) | 58.5 (27.8–74.3) | 2.0 (2.0–5.25) |
Pressure ulcer | 2 (1.9) | 4 (17.4) | 6 (4.8) | 60.5 (53.3–73.0) | 12.0 (7.25–13.8) |
Other Ulcers | 18 (17.5) | 4 (17.4) | 22 (17.5) | 73.0 (64.5–86.8) | 4.0 (2.0–6.0) |
Surgical wound | 27 (26.2) | 5 (21.7) | 32 (25.4) | 62.0 (47.8–72.5) | 2.0 (2.0–4.25) |
Skin lesion | 46 (44.7) | 8 (34.8) | 54 (42.9) | 31.0 (12.3–54.5) | 3.0 (2.0–4.0) |
Location | |||||
Generalised (all body) | 2 (1.9) | 0 (0) | 2 (1.6) | 3.5 (3.25–3.75) | 4.5 (4.25–4.75) |
Arm | 8 (7.8) | 2 (8.7) | 10 (7.9) | 59.0 (40.3–69.5) | 3.50 (2.0–5.0) |
Hand | 3 (2.9) | 2 (8.7 | 5 (4.0) | 50.0 (22.0–68.0) | 5.0 (4.0–5.0) |
Head | 21 (20.4) | 3 (13.0) | 24 (19.0) | 50.5 (18.8–73.3) | 4.0 (2.0–4.0) |
Trunk | 21 (20.4) | 7 (30.4) | 28 (22.2) | 58.0 (30.0–68.0) | 2.5 (2.0–6.25) |
Leg | 26 (25.2) | 3 (13.0) | 29 (23.0) | 64.0 (24.0–82.0) | 2.0 (2.0–4.0) |
Foot | 20 (19.4) | 4 (17.4) | 24 (19.0) | 62.5 (50.0–80.5) | 3.0 (2.0–6.0) |
Toenail | 2 (1.9) | 2 (8.7) | 4 (3.2) | 34.0 (28.0–39.5) | 2.0 (1.5–3.25) |
Associated pathology | |||||
Diabetic foot | 7 (6.8) | 2 (8.7) | 9 (7.1) | 62.0 (56.0–66.0) | 4.0 (2.0–6.0) |
Immunosuppression | 4 (3.9) | 2 (8.7) | 6 (4.8) | 76.5 (73.5–78.8) | 3.5 (2.25–9.25) |
Immobilisation (pressure ulcer) | 2 (1.9) | 3 (13.0) | 5 (4.0) | 60.0 (51.0–61.0) | 11 (6.0–13.0) |
Skin infection w/o dermatological factors | 31 (30.1) | 8 (34.8) | 39 (31.0) | 47.0 (26.5–65.5) | 2.0 (2.0–4.0) |
Skin infection with dermatological disease | 22 (21.4) | 1 (4.3) | 23 (18.3) | 12.0 (6.50–18.0) | 4.0 (2.0–4.0) |
Surgical procedure | 25 (24.3) | 3 (13.0) | 28 (22.2) | 65.0 (47.8–74.0) | 2.0 (2.0–4.0) |
Vascular disease | 12 (11.7) | 4 (17.4) | 16 (12.7) | 79.0 (68.8–86.5) | 4 (2.75–6.5) |
MSSA | MRSA | |||
---|---|---|---|---|
Control | OLE | Control | OLE | |
0 (hours) | 5.95 ± 0.11 | 5.95 ± 0.11 | 5.76 ± 0.25 | 5.76 ± 0.25 |
2 (hours) | 6.60 ± 0.18 | 0.22 ± 0.53 | 6.17 ± 0.26 | 0.00 ± 0.00 |
4 (hours) | 7.42 ± 0.33 | 0.17 ± 0.41 | 6.83 ± 0.33 | 0.00 ± 0.00 |
8 (hours) | 8.49 ± 0.10 | 0.00 ± 0.00 | 8.12 ± 0.20 | 0.00 ± 0.00 |
24 (hours) | 9.37 ± 0.13 | 0.00 ± 0.00 | 9.14 ± 0.22 | 0.00 ± 0.00 |
Antibiotic Class | Antibiotic | Overall N | Resistant N (%) | MSSA N (%) | MRSA N (%) | p Value |
---|---|---|---|---|---|---|
Fucidane | Fusidic acid | 28 | 10 (35.7) | 4 (22.2) | 6 (60.0) | |
Aminoglycosides | 126 | 31 (24.6) | 17 (16.5) | 14 (60.9) | <0.001 | |
Amikacin | 119 | 16 (13.4) | 3 (3.0) | 13 (68.4) | <0.001 | |
Gentamicin | 126 | 13 (10.3) | 5 (4.9) | 8 (34.8) | <0.001 | |
Tobramycin | 119 | 29 (24.4) | 17 (17.0) | 12 (63.2) | <0.001 | |
Penicillins | 126 | 101 (80.2) | 78 (75.7) | 23 (100.0) | 0.008 | |
Cephalosporins | Ceftaroline * | 119 | 0 (0.0) | 0 (0) | 0 (0.0) | |
Fluoroquinolones | 126 | 29 (23.0) | 12 (11.7) | 17 (73.9) | <0.001 | |
Ciprofloxacin | 126 | 28 (22.2) | 11 (10.7) | 17 (73.9) | <0.001 | |
Levofloxacin | 119 | 24 (20.2) | 9 (9.0) | 15 (78.9) | <0.001 | |
Moxifloxacin | 22 | 22 (100.0) | 7 (100) | 15 (100) | ||
Lincosamides | Clindamycin | 126 | 39 (31.0) | 28 (27.2) | 11 (47.8) | |
Macrolides | Erythromycin | 125 | 47 (37.6) | 31 (30.1) | 16 (72.7) | <0.001 |
Streptogramins | Quinupristin–dalfopristin | 119 | 1 (0.8) | 0 (0.0) | 1 (5.3) | 0.021 |
Oxazolidinones | Linezolid * | 126 | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Tetracyclines | 126 | 10 (7.9) | 6 (5.8) | 4 (17.4) | ||
Minocycline | 118 | 1 (0.8) | 0 (0.0) | 1 (5.3) | 0.022 | |
Tetracycline | 126 | 10 (7.9) | 6 (5.8) | 4 (17.4) | ||
Phenicols | Chloramphenicol | 119 | 2 (1.7) | 1 (1.0) | 1 (5.3) | |
Lipopeptides | Daptomycin * | 119 | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Phosphonic acids | Fosfomycin | 118 | 1 (0.8) | 0 (0.0) | 1 (5.3) | 0.022 |
Mupirocin | 126 | 22 (17.5) | 13 (12.6) | 9 (39.1) | 0.002 | |
Pristinamycin * | 119 | 0 (0.0) | 0 (0.0) | 0 (0.0) | ||
Ansamycins | Rifampicin | 126 | 1 (0.8) | 0 (0.0) | 1 (4.3) | 0.034 |
Folate pathway inhibitors | Trimethoprim–sulfamethoxazole * | 126 | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Glycopeptides and lipoglycopeptides | Teicoplanin * | 119 | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Vancomycin * | 119 | 0 (0.0) | 0 (0.0) | 0 (0.0) | ||
Olive leaf extract | OLE 25% * | 126 | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
OLE 12.5% * | 126 | 0 (0.0) | 0 (0.0) | 0 (0.0) | ||
OLE 6.25% * | 126 | 0 (0.0) | 0 (0.0) | 0 (0.0) | ||
OLE 3.125% | 126 | 119 (94.5) | 99 (96.1) | 20 (87.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clusa, L.; Latorre-Millán, M.; Milagro, A.M.; Tristancho-Baró, A.; López-Calleja, A.I.; García-Lechuz, J.M.; Fortuño, B.; del Villar, N.; Asensio, M.; Martín-Belloso, O.; et al. Antimicrobial Activity and Potential of Olive Leaf Extract as a Topical Agent to Combat Staphylococcus aureus and MRSA Strains: An In Vitro Evaluation. Pharmaceuticals 2025, 18, 1358. https://doi.org/10.3390/ph18091358
Clusa L, Latorre-Millán M, Milagro AM, Tristancho-Baró A, López-Calleja AI, García-Lechuz JM, Fortuño B, del Villar N, Asensio M, Martín-Belloso O, et al. Antimicrobial Activity and Potential of Olive Leaf Extract as a Topical Agent to Combat Staphylococcus aureus and MRSA Strains: An In Vitro Evaluation. Pharmaceuticals. 2025; 18(9):1358. https://doi.org/10.3390/ph18091358
Chicago/Turabian StyleClusa, Laura, Miriam Latorre-Millán, Ana María Milagro, Alexander Tristancho-Baró, Ana Isabel López-Calleja, Juan Manuel García-Lechuz, Blanca Fortuño, Nuno del Villar, Mario Asensio, Olga Martín-Belloso, and et al. 2025. "Antimicrobial Activity and Potential of Olive Leaf Extract as a Topical Agent to Combat Staphylococcus aureus and MRSA Strains: An In Vitro Evaluation" Pharmaceuticals 18, no. 9: 1358. https://doi.org/10.3390/ph18091358
APA StyleClusa, L., Latorre-Millán, M., Milagro, A. M., Tristancho-Baró, A., López-Calleja, A. I., García-Lechuz, J. M., Fortuño, B., del Villar, N., Asensio, M., Martín-Belloso, O., Odriozola-Serrano, I., Martínez-Beamonte, R., Osada, J., Rezusta, A., & Gilaberte, Y. (2025). Antimicrobial Activity and Potential of Olive Leaf Extract as a Topical Agent to Combat Staphylococcus aureus and MRSA Strains: An In Vitro Evaluation. Pharmaceuticals, 18(9), 1358. https://doi.org/10.3390/ph18091358