Evaluation of the Potential Benefits of Trimetazidine in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Randomized Controlled Trial
Abstract
1. Introduction
2. Results
2.1. Baseline Characteristics and Homogeneity Between Groups
2.2. Treatment Outcomes After 24 Weeks
3. Discussion
4. Materials and Methods
4.1. Study Design and Ethical Considerations
4.2. Patient Selection
4.3. Clinical Assessment
4.4. Laboratory Investigations
4.5. Imaging Studies
4.6. Follow-Up Protocol
4.7. Sample Size Calculation
4.8. Statistical Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Pierantonelli, I.; Svegliati-Baroni, G. Nonalcoholic Fatty Liver Disease: Basic Pathogenetic Mechanisms in the Progression from NAFLD to NASH. Transplantation 2019, 103, E1–E13. [Google Scholar] [CrossRef]
- Méndez-Sánchez, N.; Cerda-Reyes, E.; Higuera-de-la-Tijera, F.; Salas-García, A.K.; Cabrera-Palma, S.; Cabrera-Álvarez, G.; Cortez-Hernández, C.; Pérez-Arredondo, L.A.; Purón-González, E.; Coronado-Alejandro, E.; et al. Dyslipidemia as a risk factor for liver fibrosis progression in a multicentric population with non-alcoholic steatohepatitis. F1000Research 2020, 9, 56. [Google Scholar] [CrossRef]
- Kuchay, M.S.; Choudhary, N.S.; Mishra, S.K. Pathophysiological mechanisms underlying MAFLD. Diabetes. Metab. Syndr. Clin. Res. Rev. 2020, 14, 1875–1887. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Paik, J.M.; Al Shabeeb, R.; Golabi, P.; Younossi, I.; Henry, L. Are there outcome differences between NAFLD and metabolic-associated fatty liver disease? Hepatology 2022, 76, 1423–1437. [Google Scholar] [CrossRef] [PubMed]
- Kurylowicz, A. The role of diet in the management of MAFLD—Why does a new disease require a novel, indi-vidualized approach? Hepatobiliary Surg. Nutr. 2022, 11, 419–421. [Google Scholar] [CrossRef] [PubMed]
- Pafili, K.; Roden, M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Mol. Metab. 2021, 50, 101122. [Google Scholar] [CrossRef]
- Kumar, R.; Porwal, Y.; Dev, N.; Kumar, P.; Chakravarthy, S.; Kumawat, A. Association of high-sensitivity C-reactive protein (hs-CRP) with non-alcoholic fatty liver disease (NAFLD) in Asian Indians: A cross-sectional study. J. Fam. Med. Prim. Care 2020, 9, 390. [Google Scholar]
- Zhu, C.; Huang, D.; Ma, H.; Qian, C.; You, H.; Bu, L.; Qu, S. High-Sensitive CRP Correlates With the Severity of Liver Steatosis and Fibrosis in Obese Patients With Metabolic Dysfunction Associated Fatty Liver Disease. Front. Endocrinol. 2022, 13, 848937. [Google Scholar] [CrossRef]
- Marzilli, M.; Vinereanu, D.; Lopaschuk, G.; Chen, Y.; Dalal, J.J.; Danchin, N.; Etriby, E.; Ferrari, R.; Gowdak, L.H.; Lopatin, Y.; et al. Trimetazidine in cardiovascular medicine. Int. J. Cardiol. 2019, 293, 39–44. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Li, X.; Wu, C.; Zhou, H.; Lu, S.; Liu, X. Trimetazidine improves hepatic lipogenesis and steatosis in non-alcoholic fatty liver disease via AMPK-ChREBP pathway. Mol. Med. Rep. 2020, 22, 2174–2182. [Google Scholar] [CrossRef]
- Shu, H.; Peng, Y.; Hang, W.; Zhou, N.; Wang, D.W. Trimetazidine in Heart Failure. Front Pharmacol. 2021, 11, 596132. [Google Scholar] [CrossRef]
- Vitale, C.; Marazzi, G.; Pelliccia, F.; Volterrani, M.; Cerquetani, E.; Spoletini, I.; Mercuro, G.; Bonassi, S.; Dall’Armi, V.; Fini, M.; et al. Trimetazidine improves exercise performance in patients with peripheral arterial disease. Pharmacol. Res. 2011, 63, 278–283. [Google Scholar] [CrossRef]
- Mosbah, I.B.; Casillas-Ramírez, A.; Xaus, C.; Serafín, A.; Roselló-Catafau, J.; Peralta, C. Trimetazidine: Is it a promising drug for use in steatotic grafts? World J. Gastroenterol. 2006, 12, 908–914. [Google Scholar] [CrossRef]
- Ayhan, S.B.; Noyan, T.; Işik, S.; Köktürk, S. Protective effects of trimetazidine against hepatic warm ischemia/reperfusion injury on rats. J. Exp. Clin. Med. 2021, 38, 66–71. [Google Scholar] [CrossRef]
- Ding, W.; Zhou, D.; Zhang, S.; Qian, J.; Yang, L.; Tang, L. Trimetazidine inhibits liver fibrosis and hepatic stellate cell proliferation and blocks transforming growth factor-β (TGFβ)/Smad signaling in vitro and in vivo. Bioengineered 2022, 13, 7147–7156. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Y. Effects of nicorandil combined with trimetazidine on endothelial cell microparticles, endothelial cell-specific molecule-1 and high-sensitivity C-reactive protein in patients with acute myocardial infarction after PCI. Int. J. Clin. Exp. Med. 2020, 13, 2339–2346. [Google Scholar]
- Rasool, S.; Al-amran, F.; Al-aubaidy, H.; Hadi, N.R. The impact of Trimetazidine on patients’ response in patients on EECP therapy. Int. Med. J. 2020, 25, 2995–3006. [Google Scholar]
- Martins, G.F.; Filho AGde, S.; Santos JBde, F.; Assunção, C.R.C.; Vieira, F.B.; Valência, A.; de Carvalho, K.G.; Jessen, B. Trimetazidine and inflammatory response in coronary artery bypass grafting. Arq. Bras. Cardiol. 2012, 99, 688–696. [Google Scholar] [CrossRef]
- Zhang, N.; Ren, Y.; Qin, D.; Yang, X.; Chen, Z.; Zhao, L. Effects of Trimetazidine Combined with Atorvastatin on Cardiac Function in Patients with Stable Angina Pectoris of Coronary Heart Disease. Int. J. Gen. Med. 2025, 18, 2173–2183. [Google Scholar] [CrossRef]
- Zheng, S.; Du, Y.; Peng, Q.; Fan, X.; Li, J.; Chen, M. Trimetazidine protects against atherosclerosis by changing energy charge and oxidative stress. Med. Sci. Monit. 2018, 24, 8459–8468. [Google Scholar] [CrossRef]
- Serag, H.; Wakeel LEl William, V.; Abdelsalam, M.; Abdelsalam, A.; Sayed, R. Effect of trimetazidine on left ventricular functions and cardiac biomarkers in diabetic patients with left ventricular diastolic dysfunction: A randomized controlled trial. Sci. Rep. 2025, 15, 2115. [Google Scholar] [CrossRef]
- Vakaliuk, I.P.; Alghzawi, I. Efficacy of Trimetazidine in Patients With Acute Coronary Syndromes and Co-Morbidities. Art Med. 2021, 1455, 20–25. [Google Scholar] [CrossRef]
- El-khodary, N.M.; Ghoneim, A.I.; El-tayaar, A.A.; El-touny, E.M. The Impact of Trimetazidine on Cardiac Fibrosis, Inflammation, and Function in Ischemic Cardiomyopathy Patients. Cardiovasc. Drugs Ther. 2023, 37, 955–964. [Google Scholar] [CrossRef]
- Yenicerioglu, A.; Cetinkaya, Z.; Girgin, M.; Ustundag, B.; Ozercan, I.; Ayten, R.; Kanat, B.H. Effects of trimetazidine in acute pancreatitis induced by L-arginine. Can. J. Surg. 2013, 56, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Onay-Besikci, A.; Özkan, S.A. Trimetazidine revisited: A comprehensive review of the pharmacological effects and analytical techniques for the determination of trimetazidine. Cardiovasc. Ther. 2008, 26, 147–165. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, D.; Liu, D.; Liu, J.; Zhou, G. Trimetazidine protects against LPS-induced acute lung injury through mTOR/SGK 1 pathway. Int. J. Clin. Exp. Med. 2016, 9, 13950–13957. [Google Scholar]
- Hall, R.L.; George, E.S.; Tierney, A.C.; Reddy, A.J. Effect of Dietary Intervention, with or without Cointerventions, on Inflammatory Markers in Patients with Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Adv. Nutr. 2023, 14, 475–499. [Google Scholar] [CrossRef]
- Fontes-Cal, T.C.M.; Mattos, R.T.; Medeiros, N.I.; Pinto, B.F.; Belchior-Bezerra, M.; Roque-Souza, B.; Dutra, W.O.; Ferrari, T.C.; Vidigal, P.V.T.; Faria, L.C.; et al. Crosstalk Between Plasma Cytokines, Inflammation, and Liver Damage as a New Strategy to Monitoring NAFLD Progression. Front. Immunol. 2021, 12, 708959. [Google Scholar] [CrossRef]
- Patel Chavez, C.; Cusi, K.; Kadiyala, S. The Emerging Role of Glucagon-like Peptide-1 Receptor Agonists for the Management of NAFLD. J. Clin. Endocrinol. Metab. 2022, 107, 29–38. [Google Scholar] [CrossRef]
- Hussain, M.; Babar, M.Z.M.; Tariq, S.; Ahmad, M.I.; Akhtar, L. Therapeutic outcome of dapagliflozin on various parameters in non-alcoholic fatty liver disease (NAFLD) patients. Int. J. Diabetes. Dev. Ctries. 2022, 42, 290–296. [Google Scholar] [CrossRef]
- Cusi, K.; Orsak, B.; Bril, F.; Lomonaco, R.; Hecht, J.; Ortiz-Lopez, C.; Tio, F.; Hardies, J.; Darland, C.; Musi, N.; et al. Long-term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: A randomized trial. Ann. Intern. Med. 2016, 165, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.H.; Xin, Y.N.; Dong, Q.J.; Wang, Q.; Jiang, X.J.; Zhan, S.H.; Sun, Y.; Xuan, S.-Y. Performance of the aspartate aminotransferase-to-platelet ratio index for the staging of hepatitis C-related fibrosis: An updated meta-analysis. Hepatology 2011, 53, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Vali, Y.; Boursier, J.; Spijker, R.; Anstee, Q.M.; Bossuyt, P.M.; Zafarmand, M.H. Prognostic accuracy of FIB-4, NAFLD fibrosis score and APRI for NAFLD-related events: A systematic review. Liver Int. 2021, 41, 261–270. [Google Scholar] [CrossRef]
- Treeprasertsuk, S.; Björnsson, E.; Enders, F.; Suwanwalaikorn, S.; Lindor, K.D. NAFLD fibrosis score: A prognostic predictor for mortality and liver complications among NAFLD patients. World J. Gastroenterol. 2013, 19, 1219–1229. [Google Scholar] [CrossRef]
- Zibaeenejad, F.; Mohammadi, S.S.; Sayadi, M.; Safari, F.; Zibaeenezhad, M.J. Ten-year atherosclerosis cardiovascular disease (ASCVD) risk score and its components among an Iranian population: A cohort-based cross-sectional study. BMC Cardiovasc. Disord. 2022, 22, 162. [Google Scholar] [CrossRef]
- Ravaioli, F.; Dajti, E.; Mantovani, A.; Newsome, P.N.; Targher, G.; Colecchia, A. Diagnostic accuracy of FibroScan-AST (FAST) score for the non-invasive identification of patients with fibrotic non-alcoholic steatohepatitis: A systematic review and meta-analysis. Gut 2023, 72, 1399–1409. [Google Scholar] [CrossRef]
- Ferraioli, G.; Monteiro, L.B.S. Ultrasound-based techniques for the diagnosis of liver steatosis. World J. Gastroenterol. 2019, 25, 6053–6062. [Google Scholar] [CrossRef]
- Shalimar Kumar, R.; Rout, G.; Kumar, R.; Yadav, R.; Das, P.; Aggarwal, S.; Gunjan, D.; Saraya, A.; Nayak, B. Body mass index–based controlled attenuation parameter cut-offs for assessment of hepatic steatosis in non-alcoholic fatty liver disease. Indian J. Gastroenterol. 2020, 39, 32–41. [Google Scholar] [CrossRef]
- Lin, Y.S. Ultrasound Evaluation of Liver Fibrosis. J. Med. Ultrasound 2017, 25, 127–129. [Google Scholar] [CrossRef]
- Askari, F.; Rashidkhani, B.; Hekmatdoost, A. Cinnamon may have therapeutic benefits on lipid profile, liver enzymes, insulin resistance, and high-sensitivity C-reactive protein in nonalcoholic fatty liver disease patients. Nutr. Res. 2014, 34, 143–148. [Google Scholar] [CrossRef] [PubMed]
Variable | Control (n = 30) | Trimetazidine (n = 30) | p Value |
---|---|---|---|
Age (years) a | 47.3 ± 7.6 | 49.8 ± 7.5 | 0.206 |
Sex # | |||
Male | 12 (40%) | 14 (46.7%) | 0.602 |
Female | 18 (60%) | 16 (53.3%) | |
Weight (kg) a | 96 ± 17.8 | 93.7 ± 14.4 | 0.595 |
height(cm) a | 160.8 ± 8.8 | 159 ± 12.3 | 0.517 |
BMI (kg/m2) a | 37.16 ± 6.53 | 37.33 ± 6.71 | 0.922 |
waist(cm) a | 115.6 ± 12.9 | 115.5 ± 11.4 | 0.975 |
HB(g/dL) a | 13.5 ± 1.8 | 13.4 ± 1.3 | 0.821 |
Platelets(×109/L) a | 276.2 ± 53.8 | 281.2 ± 68.4 | 0.754 |
WBCS (wbcs/mcl) a | 6.66 ± 1.79 | 6.67 ± 2.40 | 0.990 |
Albumin(g/dL) a | 3.9 ± 0.4 | 4.1 ± 0.4 | 0.296 |
Total Chol(mg/dL) b | 198 (119–276) | 191 (113–376) | 0.371 |
TG (mg/dL) b | 163.5(87–481) | 180.5 (96–403) | 0.706 |
HDL (mg/dL) b | 50.5 (31–63) | 44.5 (30–80) | 0.553 |
LDL (mg/dL) b | 102.90 (25–181.8) | 103.70 (18.20–378) | 0.813 |
GGT (mg/dL) b | 40(16–121) | 38 (14–445) | 0.824 |
AST (IU/L)b | 28 (20–66) | 35.5 (15–75) | 0.060 |
ALT (IU/L) b | 25.5 (17–64) | 31.5 (19–73) | 0.004 ** |
FBG (mg/dL) b | 103 (82–240) | 112 (67–372) | 0.214 |
HOMA-IR b | 1.95 (0.96–4) | 1.95 (0.90–5.80) | 0.491 |
CAP (dB/m) b | 328.5 (100–381) | 352.5 (207–400) | 0.184 |
FAST b | 0.25 (0.08–0.74) | 0.49 (0.06–0.74) | 0.020 * |
APRI b | 0.2 (0.1–0.9) | 0.3 (0.2–1.1) | 0.083 |
FIB4 b | 0.96 (0.49–2.77) | 1.05 (0.51–3.96) | 0.344 |
NAFLD score b | −1.19 (−3.42–1.79) | −1.36 (−3.86–2.15) | 0.673 |
ASCVD score b | 2 (0.40–35.30) | 2.70 (0.30–22.05) | 0.322 |
Fibrosis b | 5.8 (3.1–15.5) | 6.9 (2.9–21.1) | 0.399 |
IL6 (pg/L) b | 17.3 (0–28.5) | 17.6 (0–68.3) | 0.953 |
TNF alpha (pg/mL) b | 20.4 (0–68) | 67.9 (17.3–109.6) | <0.001 ** |
HsCRP (mg/dL) b | 11.3 (2.5–44.9) | 10.7 (1.2–43.5) | 0.438 |
Parameter | Placebo Group | p-Value | TMZ Group | p-Value | p-Value Between Two Groups After 6 Months |
---|---|---|---|---|---|
Total Chol (mg/dL) b | |||||
Baseline | 198 (119–276) | 0.271 | 191 (113–376) | 0.020 * | 0.004 ** |
After 6 months | 208.5 (104–286) | 165 (99–261) | |||
TG (mg/dL) b | |||||
Baseline | 163.5 (87–481) | 0.742 | 180.5 (96–403) | 0.176 | 0.132 |
After 6 months | 196.5 (90–403) | 152 (66–797) | |||
HDL (mg/dL) b | |||||
Baseline | 50.5 (31–63) | 0.657 | 44.5 (30–80) | 0.726 | 1000 |
After 6 months | 47 (35–85) | 48.5 (26–70) | |||
LDL (mg/dL) b | |||||
Baseline | 102.9 (25–181.8) | 0.192 | 103.7 (18.2–378) | 0.020 * | 0.004 ** |
After 6 months | 114.4 (41.2–200.6) | 86.6 (3.2–152.2) | |||
AST (IU/L) b | |||||
Baseline | 28 (20–66) | 0.206 | 35.5 (15–75) | <0.001 ** | 0.032 ** |
After 6 months | 34 (17–63) | 27 (18–57) | |||
ALT (IU/L) b | |||||
Baseline | 25.5 (17–64) | 0.194 | 31.5 (19–73) | 0.004 ** | 0.08 t |
After 6 months | 31.5 (19–64) | 26.5 (16–85) | |||
GGT (mg/dL) b | |||||
Baseline | 40 (16–121) | 0.666 | 38 (14–445) | 0.084 | 0.329 |
After 6 months | 39.5 (14–127) | 35.5 (18–228) | |||
FBG (mg/dL) b | |||||
Baseline | 103 (82–240) | 0.558 | 112 (67–372) | 0.072 | 0.662 |
After 6 months | 102 (78–334) | 106 (60–211) | |||
HOMA-IR b | |||||
Baseline | 1.95 (0.96–4) | 0.593 | 1.95 (0.90–5.8) | 0.758 | 0.420 |
After 6 months | 1.85 (0.86–6.40) | 2 (1.03–5.10) | |||
Albumin (g/L) a | |||||
Baseline | 3.9 ± 0.4 | 0.187 | 4.1 ± 0.39 | 0.500 | 0.299 |
After 6 months | 4 ± 0.3 | 4.07 ± 0.28 | |||
HB (g/L) a | |||||
Baseline | 13.5 ± 1.8 | 0.656 | 13.38 ± 1.33 | 0.389 | 0.743 |
After 6 months | 13.3 ± 1.5 | 13.13 ± 1.38 | |||
Platelets (×109/L) a | |||||
Baseline | 276.2 ± 53.8 | 0.395 | 281.23 ± 68.36 | 0.195 | 0.912 |
After 6 months | 265 ± 63.9 | 263.3 ± 51.32 | |||
WBCS (wbcs/mcl) a | |||||
Baseline | 6.7 ± 1.8 | 0.352 | 6.67 ± 2.40 | 0.209 | 0.916 |
After 6 months | 7.1 ± 2.2 | 7.20 ± 2.81 | |||
CAP (dB/m) b | |||||
Baseline | 328.5 (100–381) | 0.072 | 352.5 (207–400) | 0.008 ** | <0.001 ** |
After 6 months | 348 (270–400) | 302 (124–400) | |||
FAST b | |||||
Baseline | 0.25 (0.08–0.74) | 0.292 | 0.49 (0.06–0.74) | <0.001 ** | 0.0569 t |
After 6 months | 0.38 (0.06–0.71) | 0.25 (0.04–0.77) | |||
APRI b | |||||
Baseline | 0.2 (0.1–0.9) | 0.268 | 0.3 (0.2–1.1) | 0.204 | 0.065 |
After 6 months | 0.3 (0.2–0.7) | 0.3 (0.1–0.6) | |||
FIB4 b | |||||
Baseline | 0.96 (0.49–2.77) | 0.524 | 1.05 (0.51–3.96) | 0.120 | 0.261 |
After 6 months | 1.07 (0.47–2.14) | 0.84 (0.43–3.20) | |||
NAFLD Score b | |||||
Baseline | −1.19 (−3.42–1.79) | 0.558 | −1.36 (−3.86–2.15) | 0.144 | 0.595 |
After 6 months | −1 (−3.54–1.52) | −1.04 (−2.59–2.15) | |||
ASCVD Score b | |||||
Baseline | 2 (0.4–35.30) | 0.894 | 2.70 (0.30–22.05) | 0.336 | 0.762 |
After 6 months | 1.7 (0.7–20.5) | 2.2 (0.3–18.9) | |||
Fibrosis b | |||||
Baseline | 5.8 (3.1–15.5) | 0.746 | 6.9 (2.9–21.1) | 0.991 | 0.284 |
After 6 months | 5.1 (2.9–28) | 7.1 (2.1–18.8) | |||
IL6 (pg./L) b | |||||
Baseline | 17.3 (0–28.5) | 0.004 ** | 17.6 (0–68.3) | 0.004 ** | 0.784 |
After 6 months | 12.7 (0–21.6) | 12.8 (0–26.1) | |||
TNF alpha(pg./mL) b | |||||
Baseline | 20.4 (0–68) | 0.004 ** | 67.9 (17.3–109.6) | 0.096 | 0.001 ** t |
After 6 months | 17.6 (0–52.5) | 42.7 (8.3–103) | |||
HsCRP (mg/dL) b | |||||
Baseline | 11.3 (2.5–44.9) | <0.001 ** | 10.7 (1.2–43.5) | <0.001 ** | 0.336 |
After 6 months | 8.4 (1–35.1) | 5.7 (0.5–40.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssif, M.; Eid, R.A.; Rabea, H.; Madney, Y.M.; Khaled, A.; Orayj, K.; Attia, D.; Wahsh, E.A. Evaluation of the Potential Benefits of Trimetazidine in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Randomized Controlled Trial. Pharmaceuticals 2025, 18, 1279. https://doi.org/10.3390/ph18091279
Youssif M, Eid RA, Rabea H, Madney YM, Khaled A, Orayj K, Attia D, Wahsh EA. Evaluation of the Potential Benefits of Trimetazidine in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Randomized Controlled Trial. Pharmaceuticals. 2025; 18(9):1279. https://doi.org/10.3390/ph18091279
Chicago/Turabian StyleYoussif, Maha, Ragaey Ahmad Eid, Hoda Rabea, Yasmin M. Madney, Arwa Khaled, Khalid Orayj, Dina Attia, and Engy A. Wahsh. 2025. "Evaluation of the Potential Benefits of Trimetazidine in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Randomized Controlled Trial" Pharmaceuticals 18, no. 9: 1279. https://doi.org/10.3390/ph18091279
APA StyleYoussif, M., Eid, R. A., Rabea, H., Madney, Y. M., Khaled, A., Orayj, K., Attia, D., & Wahsh, E. A. (2025). Evaluation of the Potential Benefits of Trimetazidine in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Randomized Controlled Trial. Pharmaceuticals, 18(9), 1279. https://doi.org/10.3390/ph18091279