Large-Scale Transcriptome Profiling and Network Pharmacology Analysis Reveal the Multi-Target Inhibitory Mechanism of Modified Guizhi Fuling Decoction in Prostate Cancer Cells
Abstract
1. Introduction
2. Results
2.1. MGFD Inhibits the Proliferation, Migration, and Invasion of PCa Cells
2.2. Construction of 270 Gene Expression Profiles from MGFD-Perturbed Prostate Cancer Cells Through HTS2 Assay
2.3. Buguzhi and Guizhi Show More DEGs than Those of Other Herbs in MGFD
2.4. Investigation of Effect of Each Herb in MGFD on Gene Sets
2.5. The Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Network Enrichment Analysis Identified Three Hub Pathways
2.6. Active Component-Target Network Construction and Its Enrichment Analysis Through Network Pharmacology
2.7. Genetic Alterations and Survival Analysis of These Therapeutic Targets in PCa Patients
2.8. Disease-Free Survival Analysis of These Four Key Targets in PCa Patients
2.9. Disclosing Bioactive Components of MGFD Against Key Targets
3. Discussion
4. Materials and Methods
4.1. Preparation of MGFD and UPLC-MS/MS Analysis
4.2. Cell Culture
4.3. Cell Counting Kit-8 Assay
4.4. Wound Healing Assay
4.5. Transwell Migration and Invasion Assay
4.6. HTS2 Assay and Data Processing
4.7. GO and KEGG Enrichment Analysis
4.8. Protein-Protein Interaction Analysis
4.9. Gene Set Enrichment Analysis
4.10. Acquisition of Active Components and Targets of MGFD
4.11. Acquisition of PCa Targets and Construction of the Network
4.12. Genetic Alteration Analysis
4.13. Disease-Free Survival Analysis
4.14. Molecular Docking for Targets Verification
4.15. Statistical Analysis
4.16. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA. Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Wong, M.C.S.; Goggins, W.B.; Wang, H.H.X.; Fung, F.D.H.; Leung, C.; Wong, S.Y.S.; Ng, C.F.; Sung, J.J.Y. Global Incidence and Mortality for Prostate Cancer: Analysis of Temporal Patterns and Trends in 36 Countries. Eur. Urol. 2016, 70, 862–874. [Google Scholar] [CrossRef]
- Rebello, R.J.; Oing, C.; Knudsen, K.E.; Loeb, S.; Johnson, D.C.; Reiter, R.E.; Gillessen, S.; Van Der Kwast, T.; Bristow, R.G. Prostate Cancer. Nat. Rev. Dis. Primers 2021, 7, 9. [Google Scholar] [CrossRef]
- Teo, M.Y.; Rathkopf, D.E.; Kantoff, P. Treatment of Advanced Prostate Cancer. Annu. Rev. Med. 2019, 70, 479–499. [Google Scholar] [CrossRef] [PubMed]
- So, T.H.; Chan, S.K.; Lee, V.H.F.; Chen, B.Z.; Kong, F.M.; Lao, L.X. Chinese Medicine in Cancer Treatment—How Is It Practised in the East and the West? Clin. Oncol. 2019, 31, 578–588. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, G.; Hu, C.; Huang, L.; Wang, D.; Chen, Z.; Wang, Y. The Role of Natural Products from Herbal Medicine in TLR4 Signaling for Colorectal Cancer Treatment. Molecules 2024, 29, 2727. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Li, N.; Cao, L.; Wang, T.; Zhang, C.; Ding, G.; Wang, Z.; Xiao, W. Main progress on studies of pharmacological activities and clinical applications of Guizhi Fuling capsule. China J. Chin. Mater. Medica 2015, 40, 989–992. [Google Scholar]
- Liu, X.; Chen, L.; Sun, P.; Zhan, Z.; Wang, J. Guizhi Fuling Formulation: A Review on Chemical Constituents, Quality Control, Pharmacokinetic Studies, Pharmacologi-cal Properties, Adverse Reactions and Clinical Applications. J. Ethnopharmacol. 2024, 319, 117277. [Google Scholar] [CrossRef]
- Lai, G.; Xiang, T.; Wang, F.; Wen, L.; Zhou, F.; Cap, J. Analysis on the Law of Syndrome and Treatment of Bone Metastasis Cancer Pain Treated by Oral Prescriptions of Traditional Chinese Medicine Based on Data Mining. J. Hunan Univ. Chin. Med. 2021, 41, 582–596. [Google Scholar]
- Ren, Y.; Song, X.; Tan, L.; Guo, C.; Wang, M.; Liu, H.; Cao, Z.; Li, Y.; Peng, C. A Review of the Pharmacological Properties of Psoralen. Front. Pharmacol. 2020, 11, 571535. [Google Scholar] [CrossRef]
- Huang, L.; Yi, X.; Yu, X.; Wang, Y.; Zhang, C.; Qin, L.; Guo, D.; Zhou, S.; Zhang, G.; Deng, Y.; et al. High-Throughput Strategies for the Discovery of Anticancer Drugs by Targeting Transcriptional Reprogramming. Front. Oncol. 2021, 11, 762023. [Google Scholar] [CrossRef]
- Li, H.; Zhou, H.; Wang, D.; Qiu, J.; Zhou, Y.; Li, X.; Rosenfeld, M.G.; Ding, S.; Fu, X.D. Versatile Pathway-Centric Approach Based on High-Throughput Sequencing to Anticancer Drug Discovery. Proc. Natl. Acad. Sci. USA 2012, 109, 4609–4614. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Li, S.; Li, L.; Lin, K.; Liu, X.; Wang, H.; Wang, H.; Wang, D. Chemical Genomics Reveals Inhibition of Breast Cancer Lung Metastasis by Ponatinib via C-Jun. Protein Cell 2019, 10, 161–177. [Google Scholar] [CrossRef] [PubMed]
- Gui, Y.; Dai, Y.; Wang, Y.; Li, S.; Xiang, L.; Tang, Y.; Tan, X.; Pei, T.; Bao, X.; Wang, D. Taohong Siwu Decoction Exerts Anticancer Effects on Breast Cancer via Regulating MYC, BIRC5, EGF and PIK3R1 Revealed by HTS2 Technology. Comput. Struct. Biotechnol. J. 2022, 20, 3461–3472. [Google Scholar] [CrossRef]
- Pei, T.; Dai, Y.; Tan, X.; Geng, A.; Li, S.; Gui, Y.; Hu, C.; An, J.; Yu, X.; Bao, X.; et al. Yupingfeng San Exhibits Anticancer Effect in Hepatocellular Carcinoma Cells via the MAPK Pathway Revealed by HTS2 Technology. J. Ethnopharmacol. 2023, 306, 116134. [Google Scholar] [CrossRef]
- Bayat, A. Science, Medicine, and the Future: Bioinformatics. BMJ 2002, 324, 1018–1022. [Google Scholar] [CrossRef]
- Zhang, W.; Huai, Y.; Miao, Z.; Qian, A.; Wang, Y. Systems Pharmacology for Investigation of the Mechanisms of Action of Traditional Chinese Medicine in Drug Discovery. Front. Pharmacol. 2019, 10, 743. [Google Scholar] [CrossRef]
- Abida, W.; Cyrta, J.; Heller, G.; Prandi, D.; Armenia, J.; Coleman, I.; Cieslik, M.; Benelli, M.; Robinson, D.; Van Allen, E.M.; et al. Genomic Correlates of Clinical Outcome in Advanced Prostate Cancer. Proc. Natl. Acad. Sci. USA 2019, 116, 11428–11436. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.; Van Allen, E.M.; Wu, Y.-M.; Schultz, N.; Lonigro, R.J.; Mosquera, J.-M.; Montgomery, B.; Taplin, M.-E.; Pritchard, C.C.; Attard, G.; et al. Integrative Clinical Genomics of Advanced Prostate Cancer. Cell 2015, 161, 1215–1228. [Google Scholar] [CrossRef]
- Grasso, C.S.; Wu, Y.-M.; Robinson, D.R.; Cao, X.; Dhanasekaran, S.M.; Khan, A.P.; Quist, M.J.; Jing, X.; Lonigro, R.J.; Brenner, J.C.; et al. The Mutational Landscape of Lethal Castration-Resistant Prostate Cancer. Nature 2012, 487, 239–243. [Google Scholar] [CrossRef]
- Chakraborty, G.; Nandakumar, S.; Hirani, R.; Nguyen, B.; Stopsack, K.H.; Kreitzer, C.; Rajanala, S.H.; Ghale, R.; Mazzu, Y.Z.; Pillarsetty, N.V.K.; et al. The Impact of PIK3R1 Mutations and Insulin-PI3K-Glycolytic Pathway Regulation in Prostate Cancer. Clin. Cancer Res. 2022, 28, 3603–3617. [Google Scholar] [CrossRef]
- Nguyen, B.; Mota, J.M.; Nandakumar, S.; Stopsack, K.H.; Weg, E.; Rathkopf, D.; Morris, M.J.; Scher, H.I.; Kantoff, P.W.; Gopalan, A.; et al. Pan-Cancer Analysis of CDK12 Alterations Identifies a Subset of Prostate Cancers with Distinct Genomic and Clinical Characteristics. Eur. Urol. 2020, 78, 671–679. [Google Scholar] [CrossRef]
- Baca, S.C.; Prandi, D.; Lawrence, M.S.; Mosquera, J.M.; Romanel, A.; Drier, Y.; Park, K.; Kitabayashi, N.; MacDonald, T.Y.; Ghandi, M.; et al. Punctuated Evolution of Prostate Cancer Genomes. Cell 2013, 153, 666–677. [Google Scholar] [CrossRef]
- Sartor, O.; de Bono, J.S. Metastatic Prostate Cancer. N. Engl. J. Med. 2018, 378, 645–657. [Google Scholar] [CrossRef]
- Yao, Z.; Shulan, Z. Inhibition Effect of Guizhi-Fuling-Decoction on the Invasion of Human Cervical Cancer. J. Ethnopharmacol. 2008, 120, 25–35. [Google Scholar] [CrossRef]
- Dai, Y.; Qiang, W.; Yu, X.; Cai, S.; Lin, K.; Xie, L.; Lan, X.; Wang, D. Gui-zhi Fuling Decoction Inhibiting the PI3K and MAPK Pathways in Breast Cancer Cells Revealed by HTS2 Technology and Systems Pharmacology. Comput. Struct. Biotechnol. J. 2020, 18, 1121–1136. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Pan, Y.; Wei, J.; Huang, L.; Huang, X.; Li, K. The Effects of Rhizoma Drynariae on Interleukin-2 and T-Lymphocyte Levels in Rats after Severe Head Inju-ry. J. Ethnopharmacol. 2012, 142, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Hornsveld, M.; Dansen, T.B.; Derksen, P.W.; Burgering, B.M.T. Re-Evaluating the Role of FOXOs in Cancer. Semin. Cancer Biol. 2018, 50, 90–100. [Google Scholar] [CrossRef]
- Li, Q.; Huang, H.; He, Z.; Sun, Y.; Tang, Y.; Shang, X.; Wang, C. Regulatory Effects of Antitumor Agent Matrine on FOXO and PI3K-AKT Pathway in Castration-Resistant Prostate Cancer Cells. Sci. China Life Sci. 2018, 61, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yin, J.; Wang, H.; Jiang, G.; Deng, M.; Zhang, G.; Bu, X.; Cai, S.; Du, J.; He, Z. FOXO3a Modulates WNT/β-Catenin Signaling and Suppresses Epithelial-to-Mesenchymal Transition in Prostate Cancer Cells. Cell. Signal. 2015, 27, 510–518. [Google Scholar] [CrossRef]
- Muñoz-Espín, D.; Serrano, M. Cellular Senescence: From Physiology to Pathology. Nat. Rev. Mol. Cell Biol. 2014, 15, 482–496. [Google Scholar] [CrossRef]
- Schmitt, C.A.; Wang, B.; Demaria, M. Senescence and Cancer—Role and Therapeutic Opportunities. Nat. Rev. Clin. Oncol. 2022, 19, 619–636. [Google Scholar] [CrossRef]
- Wang, L.; Lankhorst, L.; Bernards, R. Exploiting Senescence for the Treatment of Cancer. Nat. Rev. Cancer 2022, 22, 340–355. [Google Scholar] [CrossRef]
- von Karstedt, S.; Montinaro, A.; Walczak, H. Exploring the TRAILs Less Travelled: TRAIL in Cancer Biology and Therapy. Nat. Rev. Cancer 2017, 17, 352–366. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhou, B.P. TNF-Alpha/NF-kappaB/Snail Pathway in Cancer Cell Migration and Invasion. Br. J. Cancer 2010, 102, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, R.W.; Frew, A.J.; Smyth, M.J. The TRAIL Apoptotic Pathway in Cancer Onset, Progression and Therapy. Nat. Rev. Cancer 2008, 8, 782–798. [Google Scholar] [CrossRef]
- Burgering, B.M.T.; Kops, G.J.P.L. Cell Cycle and Death Control: Long Live Forkheads. Trends Biochem. Sci. 2002, 27, 352–360. [Google Scholar] [CrossRef]
- Gao, F.; Artham, S.; Sabbineni, H.; Al-Azayzih, A.; Peng, X.-D.; Hay, N.; Adams, R.H.; Byzova, T.V.; Somanath, P.R. Akt1 Promotes Stimuli-Induced Endothelial-Barrier Protection through FoxO-Mediated Tight-Junction Protein Turnover. Cell. Mol. Life Sci. CMLS 2016, 73, 3917–3933. [Google Scholar] [CrossRef]
- Ericson, K.; Gan, C.; Cheong, I.; Rago, C.; Samuels, Y.; Velculescu, V.E.; Kinzler, K.W.; Huso, D.L.; Vogelstein, B.; Papadopoulos, N. Genetic Inactivation of AKT1, AKT2, and PDPK1 in Human Colorectal Cancer Cells Clarifies Their Roles in Tumor Growth Regulation. Proc. Natl. Acad. Sci. USA 2010, 107, 2598–2603. [Google Scholar] [CrossRef] [PubMed]
- Anees, M.; Horak, P.; El-Gazzar, A.; Susani, M.; Heinze, G.; Perco, P.; Loda, M.; Lis, R.; Krainer, M.; Oh, W.K. Recurrence-Free Survival in Prostate Cancer Is Related to Increased Stromal TRAIL Expression. Cancer 2011, 117, 1172–1182. [Google Scholar] [CrossRef]
- Rooney, M.S.; Shukla, S.A.; Wu, C.J.; Getz, G.; Hacohen, N. Molecular and Genetic Properties of Tumors Associated with Local Immune Cytolytic Activity. Cell 2015, 160, 48–61. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, J.; Wang, L.; Liu, H.; Wang, J.; Liu, J.; Liu, Z.; Zhu, Y.; Xu, Y.; Yang, W.; et al. Non-Apoptotic Function of Caspase-8 Confers Prostate Cancer Enzalu-tamide Resistance via NF-κB Activation. Cell Death Dis. 2021, 12, 833. [Google Scholar] [CrossRef]
- Asghar, U.; Witkiewicz, A.K.; Turner, N.C.; Knudsen, E.S. The History and Future of Targeting Cyclin-Dependent Kinases in Cancer Therapy. Nat. Rev. Drug Discov. 2015, 14, 130–146. [Google Scholar] [CrossRef]
- Link, W.; Fernandez-Marcos, P.J. FOXO Transcription Factors at the Inter-face of Metabolism and Cancer. Int. J. Cancer 2017, 141, 2379–2391. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Y.; Yu, S.; Fan, Z.; Li, X.; Li, J.; Yin, H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021, 22, 12824. [Google Scholar] [CrossRef]
- Fodor, P.; Király, J.; Szabó, Z.; Goda, K.; Zsebik, B.; Halmos, G. Low-Dose Quercetin Dephosphorylates AKT and Suppresses Proteins Related to Migration in Human Metastatic Uveal Melanoma Cells. Life 2025, 15, 979. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Guo, J.; Qian, Y.; Yu, L.; Ma, J.; Gu, B.; Tang, W.; Li, Y.; Li, H.; Wu, W. Quercetin Induces Apoptosis Through Downregulating P4HA2 and Inhibiting the PI3K/Akt/mTOR Axis in Hepatocellular Carcinoma Cells: An In Vitro Study. Cancer Rep. 2025, 8, e70220. [Google Scholar] [CrossRef]
- Mou, J.; Qiu, S.; Chen, D.; Deng, Y.; Tekleab, T. Design, Synthesis, and Primary Activity Assays of Baicalein Derivatives as Cyclin-Dependent Kinase 1 Inhibitors. Chem. Biol. Drug Des. 2021, 98, 639–654. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhan, G.; Jin, M.; Zhang, H.; Dang, J.; Zhang, Y.; Guo, Z.; Ito, Y. Botany, Traditional Use, Phytochemistry, Pharmacology, Quality Control, and Authentication of Radix Gentianae Macrophyllae-A Traditional Medicine: A Review. Phytomedicine 2018, 46, 142–163. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Dang, J.; Wu, M. Drug Target Investigation of N-p-Coumaroyl-N′-Caffeoylputrescine, a Naturally-Occurring Alkaloid Derived from Saxifraga tangutica. Antioxidants 2024, 14, 12. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Qiang, W.; Gui, Y.; Tan, X.; Pei, T.; Lin, K.; Cai, S.; Sun, L.; Ning, G.; Wang, J.; et al. A Large-Scale Transcriptional Study Reveals Inhibition of COVID-19 Related Cytokine Storm by Traditional Chinese Medicines. Sci. Bull. 2021, 66, 884–888. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. clusterProfiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data. Innov. Camb. Mass 2021, 2, 100141. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING Database in 2021: Customizable Protein-Protein Networks, and Functional Characterization of User-Uploaded Gene/Measurement Sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; et al. TCMSP: A Database of Systems Pharmacology for Drug Discovery from Herbal Medicines. J. Cheminform. 2014, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Fang, Z.; Zhang, M.; Yi, Z.; Wen, C.; Shi, T. TCMID: Traditional Chinese Medicine Integrative Database for Herb Molecular Mechanism Analysis. Nucleic Acids Res. 2013, 41, D1089–D1095. [Google Scholar] [CrossRef]
- Xu, T.; Chen, W.; Zhou, J.; Dai, J.; Li, Y.; Zhao, Y. NPBS Database: A Chemical Data Resource with Relational Data between Natural Products and Biological Sources. Database 2020, 2020, baaa102. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 Update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated Data and New Features for Efficient Prediction of Protein Targets of Small Molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef]
- Piñero, J.; Saüch, J.; Sanz, F.; Furlong, L.I. The DisGeNET Cytoscape App: Exploring and Visualizing Disease Genomics Data. Comput. Struct. Biotechnol. J. 2021, 19, 2960–2967. [Google Scholar] [CrossRef]
- Otasek, D.; Morris, J.H.; Bouças, J.; Pico, A.R.; Demchak, B. Cytoscape Automation: Empowering Workflow-Based Network Analysis. Genome Biol. 2019, 20, 185. [Google Scholar] [CrossRef]
- de Bruijn, I.; Kundra, R.; Mastrogiacomo, B.; Tran, T.N.; Sikina, L.; Mazor, T.; Li, X.; Ochoa, A.; Zhao, G.; Lai, B.; et al. Analysis and Visualization of Longitudinal Genomic and Clinical Data from the AACR Project GENIE Biopharma Collaborative in cBioPortal. Cancer Res. 2023, 83, 3861–3867. [Google Scholar] [CrossRef]
- Tang, Z.; Kang, B.; Li, C.; Chen, T.; Zhang, Z. GEPIA2: An Enhanced Web Server for Large-Scale Expression Profiling and Interactive Analysis. Nucleic Acids Res. 2019, 47, W556–W560. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
PubChem CID | Chemical Name | Glide Gscore |
---|---|---|
AKT1(PDB ID: 3MV5) | ||
5280343 | Quercetin | −8.61 |
5281855 | Ellagic acid | −8.36 |
440735 | Eriodictyol | −6.76 |
6476086 | Bakuchalcone | −6.63 |
5280445 | Luteolin | −5.94 |
5468522 | Bakuchiol | −5.75 |
5280863 | Kaempferol | −5.68 |
373261 | Eriodyctiol (flavanone) | −5.17 |
5318608 | Isoneobavachalcone | −5.09 |
10181133 | Cerevisterol | −4.26 |
CASP8(PDB ID: 4PRZ) | ||
2177166 | 5-[[5-(4-methoxyphenyl)-2-furyl] methylene] barbituric acid | −7.12 |
73981645 | Lactiflorin | −6.49 |
CDK1(PDB ID: 4Y72) | ||
5281605 | Baicalein | −10.95 |
5280343 | Quercetin | −10.82 |
5280445 | Luteolin | −10.81 |
5281220 | Aureusidin | −10.06 |
5280863 | Kaempferol | −7.87 |
5320053 | Neobavaisoflavone | −7.34 |
5321790 | Bavachromanol | −5.05 |
14236566 | Corylifolin | −4.72 |
10337211 | Bavachinin | −4.65 |
Accepted Scientific Name | Chinese Name | Part(s) Used | Amount (g) |
---|---|---|---|
Cullen corylifolium (L.) Medik. | Buguzhi | Dried mature fruit | 10 |
Drynaria roosii Nakaike | Gusuibu | Dried root | 10 |
Neolitsea cassia (L.) Kosterm. | Guizhi | Dried branch | 10 |
Poria Cocos (Schw.) Wolf. | Fuling | Dried sclerotium | 10 |
Paeonia lactiflora Pall. | Chishao | Dried root | 10 |
Prunus persica (L.) Batsch | Taoren | Dried seed | 10 |
Paeonia × suffruticosa Andrews | Mudanpi | Dried root | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Xiang, L.; Li, Q.; Wei, M.; Yu, X.; Luo, Y.; Chen, J.; Bao, X.; Wang, D.; Zhou, S. Large-Scale Transcriptome Profiling and Network Pharmacology Analysis Reveal the Multi-Target Inhibitory Mechanism of Modified Guizhi Fuling Decoction in Prostate Cancer Cells. Pharmaceuticals 2025, 18, 1275. https://doi.org/10.3390/ph18091275
Zhang G, Xiang L, Li Q, Wei M, Yu X, Luo Y, Chen J, Bao X, Wang D, Zhou S. Large-Scale Transcriptome Profiling and Network Pharmacology Analysis Reveal the Multi-Target Inhibitory Mechanism of Modified Guizhi Fuling Decoction in Prostate Cancer Cells. Pharmaceuticals. 2025; 18(9):1275. https://doi.org/10.3390/ph18091275
Chicago/Turabian StyleZhang, Guochen, Lei Xiang, Qingzhou Li, Mingming Wei, Xiankuo Yu, Yan Luo, Jianping Chen, Xilinqiqige Bao, Dong Wang, and Shiyi Zhou. 2025. "Large-Scale Transcriptome Profiling and Network Pharmacology Analysis Reveal the Multi-Target Inhibitory Mechanism of Modified Guizhi Fuling Decoction in Prostate Cancer Cells" Pharmaceuticals 18, no. 9: 1275. https://doi.org/10.3390/ph18091275
APA StyleZhang, G., Xiang, L., Li, Q., Wei, M., Yu, X., Luo, Y., Chen, J., Bao, X., Wang, D., & Zhou, S. (2025). Large-Scale Transcriptome Profiling and Network Pharmacology Analysis Reveal the Multi-Target Inhibitory Mechanism of Modified Guizhi Fuling Decoction in Prostate Cancer Cells. Pharmaceuticals, 18(9), 1275. https://doi.org/10.3390/ph18091275