Multi-Omics and Molecular Docking Studies on Caffeine for Its Skin Rejuvenating Potentials
Abstract
1. Introduction
2. Results
2.1. Effects of CA on UV-Aged HaCaT Cells
2.2. Repairing Effect of CA on UV-Induced Aged Mice Skin
2.3. Regulating Ferroptosis in HaCaT Cells
2.4. Skin Transcriptome Analysis
2.5. Metabolic Analysis
2.6. Network Pharmacology Analysis
2.7. Molecular Docking for Predicting Ligand-Protein Interactions
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Cell Viability Testing
4.3. Effects of Caffeine on the Survival Rate of HaCaT Cells Induced by UVB Radiation
4.4. Cell Scratch Assay
4.5. β-Galactosidase Staining
4.6. ROS Detection
4.7. Mitochondrial Membrane Potential Level Detection
4.8. Immunofluorescence Analysis
4.9. Cytoskeleton Staining
4.10. Cellular Lipid Peroxide Detection
4.11. Intracellular Fe2+ Level Detection
4.12. Western Blot
4.13. Animals and Treatment
4.14. Hematoxylin–Eosin Staining
4.15. Toluidine Blue Staining
4.16. Masson Staining
4.17. Analysis of SOD, HYP, and MDA
4.18. Immunohistochemistry Analysis
4.19. Transcriptome Sequencing and Analysis
4.20. Metabolomics Analysis
4.21. Network Pharmacology Analysis
4.22. Molecular Docking
4.23. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, X.; Gao, X.; Xie, W. Research Progress in Skin Aging and Immunity. Int. J. Mol. Sci. 2024, 25, 4101. [Google Scholar] [CrossRef] [PubMed]
- Walker, M. Human skin through the ages. Int. J. Pharm. 2022, 622, 121850. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhu, S.; Yang, Y.; Qin, W.; Wang, Z.; Zhao, Z.; Liu, T.; Wang, X.; Duan, T.; Liu, Y.; et al. Oroxylin A ameliorates ultraviolet radiation-induced premature skin aging by regulating oxidative stress via the Sirt1 pathway. Biomed. Pharmacother. 2024, 171, 116110. [Google Scholar] [CrossRef] [PubMed]
- Sander, M.; Sander, M.; Burbidge, T.; Beecker, J. The efficacy and safety of sunscreen use for the prevention of skin cancer. Can. Med. Assoc. J. 2020, 192, E1802–E1808. [Google Scholar] [CrossRef]
- Mielko, Z.; Zhang, Y.; Sahay, H.; Liu, Y.; Schaich, M.A.; Schnable, B.; Morrison, A.M.; Burdinski, D.; Adar, S.; Pufall, M.; et al. UV irradiation remodels the specificity landscape of transcription factors. Proc. Natl. Acad. Sci. USA 2023, 120, e2217422120. [Google Scholar] [CrossRef]
- Krutmann, J.; Schalka, S.; Watson, R.E.B.; Wei, L.; Morita, A. Daily photoprotection to prevent photoaging. Photodermatol. Photoimmunol. Photomed. 2021, 37, 482–489. [Google Scholar] [CrossRef]
- Cheon, S.J.; Kim, J.Y.; Kim, G.W.; Lee, J.Y.; Kim, S.H. Lactic acid bacteria and their lysate ameliorate skin inflammation in a UVB irradiation-induced skin photoaging mouse model. Physiology 2023, 38, 5766749. [Google Scholar] [CrossRef]
- Ma, J.; Teng, Y.; Huang, Y.; Tao, X.; Fan, Y. Autophagy plays an essential role in ultraviolet radiation-driven skin photoaging. Front. Pharmacol. 2022, 13, 864331. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, J.; Peng, L.; Zhang, Y.; Zhang, J.; Zhao, W.; Ma, S.; Mao, C.; Zhang, S. UCNPs-based nanoreactors with ultraviolet radiation-induced effect for enhanced ferroptosis therapy of tumor. J. Colloid Interf. Sci. 2023, 651, 567–578. [Google Scholar] [CrossRef]
- Xu, H.; Wang, L.; Shi, B.; Hu, L.; Gan, C.; Wang, Y.; Xiang, Z.; Wang, X.; Sheng, J. Caffeine inhibits the anticancer activity of paclitaxel via down-regulation of α-tubulin acetylation. Biomed. Pharmacother. 2020, 129, 110441. [Google Scholar] [CrossRef]
- Liu, L.; Lian, N.; Shi, L.; Hao, Z.; Chen, K. Ferroptosis: Mechanism and connections with cutaneous diseases. Front. Cell Dev. Biol. 2023, 10, 1079548. [Google Scholar] [CrossRef]
- Conney, A.H.; Lu, Y.P.; Lou, Y.R.; Kawasumi, M.; Nghiem, P. Mechanisms of Caffeine-Induced Inhibition of UVB Carcinogenesis. Front. Oncol. 2013, 3, 144. [Google Scholar] [CrossRef]
- Li, Y.F.; Ouyang, S.H.; Tu, L.F.; Wang, X.; Yuan, W.L.; Wang, G.E.; Wu, Y.P.; Duan, W.J.; Yu, H.M.; Fang, Z.Z.; et al. Caffeine protects skin from oxidative stress-induced senescence through the activation of autophagy. Theranostics 2018, 8, 5713. [Google Scholar] [CrossRef]
- Kronschläger, M.; Ruiß, M.; Dechat, T.; Findl, O. Single high-dose peroral caffeine intake inhibits ultraviolet radiation-induced apoptosis in human lens epithelial cells in vitro. Acta Ophthalmol. 2021, 99, e587–e593. [Google Scholar] [CrossRef]
- Yan, Y.; Quan, H.; Guo, C.; Qin, Z.; Quan, T. Alterations of Matrisome Gene Expression in Naturally Aged and Photoaged Human Skin In Vivo. Biomolecules 2024, 14, 900. [Google Scholar] [CrossRef]
- Eun Lee, K.; Bharadwaj, S.; Yadava, U.; Gu Kang, S. Evaluation of caffeine as inhibitor against collagenase, elastase and tyrosinase using in silico and in vitro approach. J. Enzym. Inhib. Med. Chem. 2019, 34, 927–936. [Google Scholar] [CrossRef] [PubMed]
- Elsheikh, M.A.; Gaafar, P.M.; Khattab, M.A.; Helwah, M.K.A.; Noureldin, M.H.; Abbas, H. Dual-effects of caffeinated hyalurosomes as a nano-cosmeceutical gel counteracting UV-induced skin ageing. Int. J. Pharm. X 2023, 5, 100170. [Google Scholar] [CrossRef] [PubMed]
- Bobadilla, A.V.P.; Arévalo, J.; Sarró, E.; Byrne, H.M.; Maini, P.K.; Carraro, T.; Balocco, S.; Meseguer, A.; Alarcón, T. In vitro cell migration quantification method for scratch assays. J. R. Soc. Interface 2019, 16, 20180709. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Zamudio, R.I.; Dewald, H.K.; Vasilopoulos, T.; Gittens-Williams, L.; Fitzgerald-Bocarsly, P.; Herbig, U. Senescence-associated β-galactosidase reveals the abundance of senescent CD8+ T cells in aging humans. Aging Cell 2021, 20, e13344. [Google Scholar] [CrossRef]
- Nakamura, T.; Naguro, I.; Ichijo, H. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochim. Biophys. Acta BBA Gen. Subj. 2019, 1863, 1398–1409. [Google Scholar] [CrossRef]
- Zaib, S.; Hayyat, A.; Ali, N.; Gul, A.; Naveed, M.; Khan, I. Role of Mitochondrial Membrane Potential and Lactate Dehydrogenase A in Apoptosis. Anti-Cancer Agents Med. Chem. 2022, 22, 2048–2062. [Google Scholar] [CrossRef]
- Hu, L.; Huang, Z.; Weng, J.; Huang, C.; Zhang, L. Effect and Mechanism of Tricholoma matsutake Extract on UVA and UVB Radiation-Induced Skin Aging. J. Microbiol. Biotechnol. 2025, 35, e2411085. [Google Scholar] [CrossRef]
- Zhao, W.; Ma, L.; Cai, C.; Gong, X. Caffeine Inhibits NLRP3 Inflammasome Activation by Suppressing MAPK/NF-κB and A2aR Signaling in LPS-Induced THP-1 Macrophages. Int. J. Biol. Sci. 2019, 15, 1571–1581. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Carrera, M.; Wahli, W. PPARs as key mediators in the regulation of metabolism and inflammation. Int. J. Mol. Sci. 2022, 23, 5025. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R.; Hu, A.; Bollag, W.B. The Skin and Inflamm-Aging. Biology 2023, 12, 1396. [Google Scholar] [CrossRef] [PubMed]
- Diotallevi, F.; Offidani, A. Skin, Autoimmunity and Inflammation: A Comprehensive Exploration through Scientific Research. Int. J. Mol. Sci. 2023, 24, 15857. [Google Scholar] [CrossRef]
- Bieber, T. Disease modification in inflammatory skin disorders: Opportunities and challenges. Nat. Rev. Drug Discov. 2023, 22, 662–680. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, D.; Lu, Z.; Yang, L.; Chen, J.; Zhou, X.; Qiu, Z.; Jin, Y. Preparation and Evaluation of Liposomes and Niosomes Containing Total Ginsenosides for Anti-Photoaging Therapy. Front. Bioeng. Biotechnol. 2022, 10, 874827. [Google Scholar] [CrossRef]
- Odrzywołek, W.; Deda, A.; Zdrada-Nowak, J.; Błońska-Fajfrowska, B.; Wcisło-Dziadecka, D.; Wilczyński, S. Effect of Narrow-Band Ultraviolet B Therapy of Psoriasis Vulgaris on Skin Directional Reflectance, Skin Density and Epidermal Thickness. Appl. Sci. 2023, 13, 9311. [Google Scholar] [CrossRef]
- Ittycheri, A.; Lipsky, Z.W.; Hookway, T.A.; German, G.K. Ultraviolet light induces mechanical and structural changes in full thickness human skin. J. Mech. Behav. Biomed. 2023, 143, 105880. [Google Scholar] [CrossRef]
- Lee, T.A.; Huang, Y.T.; Hsiao, P.F.; Chiu, L.Y.; Chern, S.R.; Wu, N.L. Critical roles of irradiance in the regulation of UVB-induced inflammasome activation and skin inflammation in human skin keratinocytes. J. Photochem. Photobiol. B Biol. 2022, 226, 112373. [Google Scholar] [CrossRef]
- Bi, Y.; Xia, H.; Li, L.; Lee, R.J.; Xie, J.; Liu, Z.; Qiu, Z.; Teng, L. Liposomal Vitamin D3 as an Anti-aging Agent for the Skin. Pharmaceutics 2019, 11, 311. [Google Scholar] [CrossRef] [PubMed]
- Pradeau-Phélut, L.; Etienne-Manneville, S. Cytoskeletal crosstalk: A focus on intermediate filaments. Curr. Opin. Cell Biol. 2024, 87, 102325. [Google Scholar] [CrossRef] [PubMed]
- Amano, S. Characterization and mechanisms of photoageing-related changes in skin. Damages of basement membrane and dermal structures. Exp. Dermatol. 2016, 25, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.J.; Kim, D.; Kim, T.; Pak, C.J.; Suh, H.P.; Hong, J.P. Rejuvenation of photoaged aged mouse skin using high-intensity focused ultrasound. J. Plast. Reconstr. Aesthet. Surg. 2022, 75, 3859–3868. [Google Scholar] [CrossRef]
- Lyons, J.J.; Yi, T. Mast cell tryptases in allergic inflammation and immediate hypersensitivity. Curr. Opin. Immunol. 2021, 72, 94–106. [Google Scholar] [CrossRef]
- Bang, E.; Kim, D.H.; Chung, H.Y. Protease-activated receptor 2 induces ROS-mediated inflammation through Akt-mediated NF-κB and FoxO6 modulation during skin photoaging. Redox. Biol. 2021, 44, 102022. [Google Scholar] [CrossRef]
- Stockert, J.C.; Horobin, R.W.; Colombo, L.L.; Blázquez-Castro, A. Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem. 2018, 120, 159–167. [Google Scholar] [CrossRef]
- Salminen, A.; Kaarniranta, K.; Kauppinen, A. Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm. Res. 2022, 71, 817–831. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, Q.; Ren, Y.; Guo, C.; Ge, X.; Wang, L.; Cheng, Q.; Luo, P.; Zhang, Y.; Han, X. Immunosenescence: Molecular mechanisms and diseases. Signal Transduct. Target. Ther. 2023, 8, 200. [Google Scholar] [CrossRef]
- Ma, L.; Huang, M.; Sun, G.; Lin, Y.; Lu, D.; Wu, B. Puerariae lobatae radix protects against UVB-induced skin aging via antagonism of REV-ERBα in mice. Front. Pharmacol. 2022, 13, 1088294. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, W.; Zhou, L.; Huang, J. Probing Lipid Peroxidation in Ferroptosis: Emphasizing the Utilization of C11-BODIPY-Based Protocols. Methods Mol. Biol. 2023, 2712, 61–72. [Google Scholar]
- Kusio, J.; Sitkowska, K.; Konopko, A.; Litwinienko, G. Hydroxycinnamyl Derived BODIPY as a Lipophilic Fluorescence Probe for Peroxyl Radicals. Antioxidants 2020, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Ju, Y.; Dai, X.; Ni, N.; Liu, Y.; Zhang, D.; Gao, H.; Sun, H.; Zhang, J.; Gu, P. HO-1-mediated ferroptosis as a target for protection against retinal pigment epithelium degeneration. Redox Biol. 2021, 43, 101971. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhu, T.; Wang, X.; Xiong, F.; Hu, Z.; Qiao, X.; Yuan, X.; Wang, D. ACSL3 and ACSL4, Distinct Roles in Ferroptosis and Cancers. Cancers 2022, 14, 5896. [Google Scholar] [CrossRef] [PubMed]
- Gawargi, F.I.; Mishra, P.K. MMP9 drives ferroptosis by regulating GPX4 and iron signaling. iScience 2024, 27, 110622. [Google Scholar] [CrossRef]
- Yu, X.; Wang, S.; Wang, X.; Li, Y.; Dai, Z. Melatonin improves stroke by inhibiting autophagy-dependent ferroptosis mediated by NCOA4 binding to FTH1. Exp. Neurol. 2024, 379, 114868. [Google Scholar] [CrossRef]
- Yuan, Y.; Lin, J.Y.; Cui, H.J.; Zhao, W.; Zheng, H.L.; Jiang, Z.W.; Xiong, X.D.; Xu, S.; Liu, X.G. PCK1 Deficiency Shortens the Replicative Lifespan of Saccharomyces cerevisiae through Upregulation of PFK1. BioMed Res. Int. 2020, 2020, 3858465. [Google Scholar] [CrossRef]
- Suryadevara, V.; Hudgins, A.D.; Rajesh, A.; Pappalardo, A.; Karpova, A.; Dey, A.K.; Hertzel, A.; Agudelo, A.; Rocha, A.; Soygur, B.; et al. SenNet recommendations for detecting senescent cells in different tissues. Nat. Rev. Mol. Cell Biol. 2024, 25, 1001–1023. [Google Scholar] [CrossRef]
- Hu, T.; Yu, W.; Wang, X.; Wang, Z.Y.; Xu, Z.Q.; Hu, F.J.; Liu, J.; Yu, F.; Wang, L.J. Activation of PPAR-α attenuates myocardial ischemia/reperfusion injury by inhibiting ferroptosis and mitochondrial injury via upregulating 14-3-3η. Sci. Rep. 2024, 14, 15246. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, L.; Yan, J.; Hou, A.; Sui, W.; Sun, M. Curcumin induces ferroptosis in A549 CD133+ cells through the GSH-GPX4 and FSP1-CoQ10-NAPH pathways. Discov. Med. 2023, 35, 251–263. [Google Scholar] [CrossRef]
- Chen, K.; Xue, R.; Geng, Y.; Zhang, S. Galangin inhibited ferroptosis through activation of the PI3K/AKT pathway in vitro and in vivo. FASEB J. 2022, 36, e22569. [Google Scholar] [CrossRef]
- Wu, J.; Feng, Z.; Chen, L.; Li, Y.; Bian, H.; Geng, J.; Zheng, Z.H.; Fu, X.; Pei, Z.; Qin, Y.; et al. TNF antagonist sensitizes synovial fibroblasts to ferroptotic cell death in collagen-induced arthritis mouse models. Nat. Commun. 2022, 13, 676. [Google Scholar] [CrossRef]
- Zhou, L.; Zhong, Y.; Wang, F.; Guo, Y.; Mao, R.; Xie, H.; Zhang, Y.; Li, J. WTAP Mediated N6-methyladenosine RNA Modification of ELF3 Drives Cellular Senescence by Upregulating IRF8. Int. J. Biol. Sci. 2024, 20, 1763–1777. [Google Scholar] [CrossRef]
- Shaath, H.; Vishnubalaji, R.; Elango, R.; Velayutham, D.; Jithesh, P.V.; Alajez, N.M. Therapeutic targeting of the TPX2/TTK network in colorectal cancer. Cell Commun. Signal. 2023, 21, 265. [Google Scholar] [CrossRef]
- Wickert, A.; Schwantes, A.; Fuhrmann, D.C.; Brüne, B. Inflammation in a ferroptotic environment. Front. Pharmacol. 2024, 15, 1474285. [Google Scholar] [CrossRef]
- Vats, K.; Kruglov, O.; Mizes, A.; Samovich, S.N.; Amoscato, A.A.; Tyurin, V.A.; Kagan, V.E.; Bunimovich, Y.L. Keratinocyte death by ferroptosis initiates skin inflammation after UVB exposure. Redox Biol. 2021, 47, 102143. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Lee, D.H.; Choudry, H.A.; Bartlett, D.L.; Lee, Y.J. Ferroptosis-Induced Endoplasmic Reticulum Stress: Cross-talk between Ferroptosis and Apoptosis. Mol. Cancer Res. 2018, 16, 1073–1076. [Google Scholar] [CrossRef] [PubMed]
- Lou, S.; Liu, Y.X.; Xia, C.; Zhang, Q.; Deng, L.; Tang, J.J. Novel meroterpene-like compounds inhibit ferroptosis through Fe2+ chelation. Int. J. Beachem. Cell Biol. 2024, 173, 106610. [Google Scholar] [CrossRef] [PubMed]
- Park, M.H.; Park, J.Y.; Lee, H.J.; Kim, D.H.; Chung, K.W.; Park, D.; Jeong, H.O.; Kim, H.R.; Park, C.H.; Kim, S.R.; et al. The novel PPAR α/γ dual agonist MHY 966 modulates UVB–induced skin inflammation by inhibiting NF-κB activit]. PLoS ONE 2013, 8, e76820. [Google Scholar]
- Dias, I.R.S.B.; Costa, R.G.A.; Rodrigues, A.C.B.C.; Silva, S.L.R.; de S. Oliveira, M.; Soares, M.B.P.; Dias, R.B.; Valverde, L.F.; Gurgel Rocha, C.A.; Cairns, L.V.; et al. Bithionol eliminates acute myeloid leukaemia stem-like cells by suppressing NF-κB signalling and inducing oxidative stress, leading to apoptosis and ferroptosis. Cell Death Discovery 2024, 10, 390. [Google Scholar] [CrossRef]
Group | SOD/(U·Mgprot−1) | HYP/(μg·Mgprot−1) | MDA/(nmol·Mgprot−1) |
---|---|---|---|
Control | 223.87 | 8.22 | 2.16 |
UV | 56.88 | 11.38 | 6.90 |
CA-L | 88.05 | 10.66 | 6.10 |
CA-M | 100.46 | 9.82 | 5.04 |
CA-H | 122.43 | 8.53 | 4.62 |
Gene ID | Gene | Gene Description | p-Value | Regulatory Situation | ||
---|---|---|---|---|---|---|
CA-L | CA-M | CA-H | ||||
ENSMUSG00000009185 | Ccl8 | Chemokine (C-C motif) ligand 8 | 3.54 × 102 | 9.38 × 104 | - | Down |
ENSMUSG00000020427 | Igfbp3 | Insulin-like growth factor binding protein 3 | 4.53 × 102 | 2.46 × 102 | - | Up |
ENSMUSG00000034855 | Cxcl10 | Chemokine (C-X-C motif) ligand 10 | 1.95 × 104 | 3.40 × 103 | 2.24 × 103 | Down |
ENSMUSG00000035042 | Ccl5 | Chemokine (C-C motif) ligand 5 | 3.32 × 104 | 8.50 × 103 | 1.11 × 102 | Down |
ENSMUSG00000037225 | Fgf2 | Fibroblast growth factor 2 | 1.07 × 102 | 4.08 × 102 | 1.41 × 103 | Up |
ENSMUSG00000049723 | Mmp12 | Matrix metallopeptidase 12 | 4.31 × 103 | 1.07 × 106 | 1.23 × 103 | Down |
Pathway Description | p Value | Gene Name | First Category | Second Category |
---|---|---|---|---|
Circadian rhythm | 1.06 × 106 | Nr1d1, Nr1d2, Npas2, Dbp | Organismal systems | Environmental adaptation |
α-Linolenic acid metabolism | 1.51 × 103 | Pla2g4c, Pla2g2d | Metabolism | Lipid metabolism |
PPAR signaling pathway | 3.91 × 106 | Angptl4, Plin4, Plin5, Sorbs1, Pck1 | Organismal systems | Endocrine system |
Glycolysis/gluconeogenesis | 6.77 × 104 | Fbp2, Sorbs1, Pck1, Gck | Metabolism | Carbohydrate metabolism |
Insulin signaling pathway | 4.81 × 104 | Fbp2, Pck1, Gck | Organismal systems | Endocrine system |
Glucagon signaling pathway | 2.67 × 103 | Fbp2, Pck1, Gck | Organismal systems | Endocrine system |
Chemokine signaling pathway | 7.07 × 104 | Hck, Cxcl9, Ccl12 | Organismal systems | Immune system |
Viral protein interaction with cytokine and cytokine receptor | 3.45 × 103 | Cxcl9, Ccl12 | Environmental information processing | Signaling molecules and interaction |
Receptor | CDOCKER Energy (kcal/mol) | CDOCKER Interaction Energy (kcal/mol) |
---|---|---|
TNF-α (PDB: 2E7A) | −27.33 | −36.3 |
IL-1β (PDB: 2E7A) | −20.55 | −29.73 |
IL-6 (PDB: 1ALU) | −15.38 | −23.31 |
COL-I (PDB: 5N3K) | −17.21 | −25.95 |
NADPH (PDB: 5B1Y) | −19.16 | −27.39 |
PPAR-α (PDB: 1K7L) | −27.2 | −35.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, P.; Zhao, N.; Zhou, Q.; Wang, Y.; Zhang, L. Multi-Omics and Molecular Docking Studies on Caffeine for Its Skin Rejuvenating Potentials. Pharmaceuticals 2025, 18, 1239. https://doi.org/10.3390/ph18081239
Shu P, Zhao N, Zhou Q, Wang Y, Zhang L. Multi-Omics and Molecular Docking Studies on Caffeine for Its Skin Rejuvenating Potentials. Pharmaceuticals. 2025; 18(8):1239. https://doi.org/10.3390/ph18081239
Chicago/Turabian StyleShu, Peng, Nan Zhao, Qi Zhou, Yuan Wang, and Lanyue Zhang. 2025. "Multi-Omics and Molecular Docking Studies on Caffeine for Its Skin Rejuvenating Potentials" Pharmaceuticals 18, no. 8: 1239. https://doi.org/10.3390/ph18081239
APA StyleShu, P., Zhao, N., Zhou, Q., Wang, Y., & Zhang, L. (2025). Multi-Omics and Molecular Docking Studies on Caffeine for Its Skin Rejuvenating Potentials. Pharmaceuticals, 18(8), 1239. https://doi.org/10.3390/ph18081239