Targeting Trypanothione Synthetase and Trypanothione Reductase: Development of Common Inhibitors to Tackle Trypanosomatid Disease
Abstract
1. Introduction
2. Trypanosomatid Diseases
3. The Current Treatments for Infections Caused by Trypanosomatidae Parasites
Drug | Mechanism of Action | Pharmaceutical Dosage Form(s) | Route(s) of Administration | Main Therapeutic Indication(s) | Pathogen | Undesirable Effects | Contraindications/ Precautions | Limitations | References |
---|---|---|---|---|---|---|---|---|---|
Suramin | Thought to involve the inhibition of several cellular enzymes (e.g., glycerol-3-phosphate oxidase and dehydrogenase) | Injectable solution | Intravenous bolus | Human African Trypanosomiasis (1st stage of infection) | T. brucei rhodesiense | Nephrotoxicity, hypersensitivity reactions, dermatitis, anaemia, peripheral neuropathy, and bone marrow toxicity | Avoid use in renal or hepatic impairment | Complex treatment regimen and high toxicity | [80,81,82] |
Pentamidine | Inhibits DNA synthesis through formation of cross-links between two adenines. Interferes with RNA, phospholipids, and proteins essential to the parasite’s survival, including type II topoisomerase | Powder for injectable solution | Intravenous infusion and intramuscular injection | Human African Trypanosomiasis (1st stage of infection) | T. brucei gambiense | Hypoglycaemia, hypotension, abscess in the site of injection, nausea, vomiting, nephrotoxicity, acute pancreatitis, hyperglycaemia, hypoglycaemia, hypocalcaemia, allergic reactions, and cardiac arrhythmias | Concomitant use with nephrotoxic drugs or with other drugs that prolong QT interval, and during pregnancy and breastfeeding | Complex treatment regimen, and high toxicity | [83,84,85] |
Melarsoprol | It is proposed that, upon bioactivation into melarsen oxide, it can either inhibit pyruvate kinase or form a stable adduct with trypanothione that inhibits TryR | Injectable solution | Intravenous bolus | Human African Trypanosomiasis (2nd stage of infection) | T. brucei rhodesiense | Reactive encephalitis, agranulocytosis, peripheral neuropathy, cardiac arrhythmias, and hypertension | Individuals with glucose-6-phosphate dehydrogenase deficiency | Complex treatment regimen, high toxicity, and susceptibility to drug resistance | [86,87,88] |
Eflornithine | Irreversible inhibitor of ornithine decarboxylase | Injectable solution and tablets | Intravenous infusion and oral administration | Human African Trypanosomiasis (2nd stage of infection) | T. brucei gambiense | Temporary hearing loss, otitis media, pyrexia, pneumonia, diarrhoea, seizures, hepatotoxicity, and mild reversible bone marrow toxicity | Monitor potential foetal harm, monitor hearing before and during treatment, perform blood counts to avoid potential myelosuppression, and perform liver function tests due to the risk of hepatotoxicity | Complex treatment regimen and it is very costly | [89,90,91] |
Nifurtimox | Involves the production of nitro-anion radicals, which, in the presence of oxygen, prevent the parasite from detoxifying ROS | Tablets | Oral administration | Chagas Disease | T. cruzi | Anorexia, weight loss, irritability, sleepiness, depression, peripheral neuropathy, psychiatric symptoms, other nervous system manifestations, rash, pruritus, and drug-associated hepatitis | Alcohol consumption during treatment, presence of neurological disorders, presence of hepatic and renal failure conditions, and pregnancy | Low absorption rate when taken without food and high toxicity | [92,93,94] |
Benznidazole | Prodrug. Upon activation inhibits the synthesis of DNA and disrupts the parasite’s antioxidant system | Tablets | Oral administration | Chagas Disease | T. cruzi | Rash, pruritus, epigastralgia, nausea, vomiting, somnolence, headache, paraesthesia, neutropenia, and hypertransaminasemia | Patients who have taken disulfiram within the last 2 weeks, patients with Cockayne syndrome, alcoholic beverage consumption during and for at least 3 days after therapy, advanced cardiac progression, hepatic or renal complications, and pregnancy | High toxicity | [95,96,97] |
Amphotericin B | Binds to ergosterol, causing depolarisation and increased membrane permeability, leakage of cell contents, and cell death | Powder to be dispersed for infusion | Intravenous perfusion | Visceral Leishmaniasis | Leishmania spp. | Nausea, vomiting, rigors, fever, hypertension or hypotension, hypoxia, and nephrotoxicity | Concurrent use with other nephrotoxic medications may enhance potential for drug-induced renal toxicity (intensive monitoring of renal function is recommended in patients requiring any combination of nephrotoxic medications) | Complex treatment regimen, high toxicity, low therapeutic index, and it is very costly | [98,99,100] |
Miltefosine | Causes impairment of phospholipids biosynthesis, interferes with lipid-dependent signalling pathways, inhibits cytochrome C oxidase, induces apoptosis-like cell death, and disrupts the Ca2+ homeostasis inside the parasitic cell | Capsules | Oral administration | Visceral and Cutaneous Leishmaniasis | Leishmania spp. | Nausea, vomiting, loss of appetite, diarrhoea, increase serum creatinine, and elevated alanine aminotransferase and aspartate aminotransferase levels | Pregnancy and Sjögren-Larsson syndrome | Low absorption rate when taken without food, low efficacy, and teratogenic | [101,102,103] |
Pentavalent antimonials | Inhibit the reduction of trypanothione, causing oxidative stress. May obstruct major energy-driven metabolic pathways, inducing oxidative stress, causing DNA fragmentation, and inducing apoptotic cell death through inhibition of type I DNA topoisomerase | Injectable solution | Intravenous and intramuscular injection | All forms of leishmaniases | Leishmania spp. | Anorexia, nausea, vomiting, abdominal pain, metallic taste in mouth, arthralgias, myalgias, acute pancreatitis, hepatitis, arrhythmias, and QT-interval prolongation | Significant renal impairment, heart failure, hepatic failure, and patients older than 55 years (sodium stibogluconate) | Complex treatment regimen, susceptibility to drug resistance, and high toxicity | [104,105,106] |
Paromomycin | Inhibits protein synthesis, disrupts mitochondrial membranes and binds to the negatively charged leishmanial glycocalyx, primary lipophosphoglycan, interacting with the phosphate (–PO42−) moiety and acidic sugars (e.g., glucuronic acid) via carboxyl (–COO−) groups. | Injectable solution | Intramuscular injection | Visceral Leishmaniasis | Leishmania spp. | Gastrointestinal hypermotility, nausea, diarrhoea, abdominal cramps, headache, vertigo, vomiting, abdominal pain, skin rash, and nephrotoxicity | Patients with intestinal obstruction | Complex treatment regimen | [75,107,108] |
4. Trypanothione Synthetase vs. Trypanothione Reductase
5. Inhibitors of the TryR and TryS Enzymes
5.1. Trypanothione Synthetase Inhibitors
5.1.1. Substrate or Transition State Analogues
5.1.2. Other Compounds
5.2. Trypanothione Reductase Inhibitors
5.2.1. Trypanothione Inhibitors
5.2.2. Catalytic Inhibitors
5.2.3. NADPH Inhibitors
5.2.4. TryR Dimer Disruptors
5.2.5. Mixed Inhibitors
5.2.6. Turncoat Inhibitors (“Subversive” Substrates)
6. Critical Analysis and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forbes, K.; Basáñez, M.; Hollingsworth, T.; Anderson, R. Introduction to the special issue: Challenges and opportunities in the fight against neglected tropical diseases: A decade from the London Declaration on NTDs. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2023, 378, 20220272. [Google Scholar] [CrossRef]
- Mukherjee, S. The United States Food and Drug Administration (FDA) regulatory response to combat neglected tropical diseases (NTDs): A review. PLoS Negl. Trop. Dis. 2023, 17, e0011010. [Google Scholar] [CrossRef]
- Casulli, A.; Antinori, S.; Bartoloni, A.; D’Amelio, S.; Gabrielli, A.; Gazzoli, G.; Rinaldi, L.; Bruschi, F. Neglected Tropical Diseases in Italy: Introducing IN-NTD, the Italian network for NTDs. Parasitology 2023, 150, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, A.; Codeço, C.; Svenning, J.; Escobar, L.; de Vuurst, P.; Gonçalves-Souza, T. Neglected tropical diseases risk correlates with poverty and early ecosystem destruction. Infect Dis. Poverty 2023, 12, 32. [Google Scholar] [CrossRef] [PubMed]
- Hotez, P.; Aksoy, S.; Brindley, P.; Kamhawi, S. World neglected tropical diseases day. PLoS Negl. Trop. Dis. 2020, 14, 7999. [Google Scholar] [CrossRef]
- Battista, T.; Colotti, G.; Ilari, A.; Fiorillo, A. Targeting Trypanothione Reductase, a Key Enzyme in the Redox Trypanosomatid Metabolism, to Develop New Drugs against Leishmaniasis and Trypanosomiases. Molecules. 2020, 25, 1924. [Google Scholar] [CrossRef]
- Saeidi, Z.; Vatandoost, H.; Zaim, M.; Ahmadkhaniha, R.; Rassi, Y.; Zahraei-Ramazani, A.; Arandian, M.H.; Jafari, R.; Galani, Y.J.H.; Sanei-Dehkordi, A.; et al. Evaluation of Susceptibility Status of Phlebotomus papatasi, the Main Vector of Zoonotic Cutaneous Leishmaniasis, to Different WHO Recommended Insecticides in an Endemic Focus, Central Iran. J. Arthropod. Borne Dis. 2021, 15, 366–379. [Google Scholar] [CrossRef]
- Mann, S.; Frasca, K.; Scherrer, S.; Henao-Martínez, A.F.; Newman, S.; Ramanan, P.; Suarez, J.A. A Review of Leishmaniasis: Current Knowledge and Future Directions. Curr. Trop. Med. Rep. 2021, 8, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Akbari, M.; Oryan, A.; Hatam, G. Immunotherapy in treatment of leishmaniasis. Immunol. Lett. 2021, 233, 80–86. [Google Scholar] [CrossRef]
- Mannan, S.B.; Elhadad, H.; Loc, T.T.H.; Sadik, M.; Mohamed, M.Y.F.; Nam, N.H.; Thuong, N.D.; Hoang-Trong, B.L.; Duc, N.T.M.; Hoang, A.N.; et al. Prevalence and associated factors of asymptomatic leishmaniasis: A systematic review and meta-analysis. Parasitol. Int. 2021, 1, 102229. [Google Scholar] [CrossRef]
- de Vries, H.; Schallig, H. Cutaneous Leishmaniasis: A 2022 Updated Narrative Review into Diagnosis and Management Developments. Am. J. Clin. Dermatol. 2022, 23, 823–840. [Google Scholar] [CrossRef]
- Scarpini, S.; Dondi, A.; Totaro, C.; Biagi, C.; Melchionda, F.; Zama, D.; Pierantoni, L.; Gennari, M.; Campagna, C.; Prete, A.; et al. Visceral Leishmaniasis: Epidemiology, Diagnosis, and Treatment Regimens in Different Geographical Areas with a Focus on Pediatrics. Microorganisms 2022, 10, 1887. [Google Scholar] [CrossRef]
- Kimberlin, D.; Barnett, E.; Lynfield, R.; Sawyer, M. Red Book: 2021 Report of the Committee on Infectious Diseases, 32nd ed.; American Academy of Pedriatrics: Itasca, IL, USA, 2021. [Google Scholar]
- Fischer, T.; Fischer, M.; Schliemann, S.; Elsner, P. Treatment of mucocutaneous leishmaniasis-A systematic review. J. Dtsch. Dermatol. Ges. 2024, 22, 763–773. [Google Scholar] [CrossRef]
- Pigott, D.M.; Bhatt, S.; Golding, N.; Duda, K.A.; Battle, K.E.; Brady, O.J.; Messina, J.P.; Balard, Y.; Bastien, P.; Pratlong, F.; et al. Global distribution maps of the leishmaniases. Elife 2014, 3, e02851. [Google Scholar] [CrossRef]
- Semenza, J.; Rocklöv, J.; Ebi, K. Climate Change and Cascading Risks from Infectious Disease. Infect Dis. Ther. 2022, 11, 1371–1390. [Google Scholar] [CrossRef]
- Irish, A.; Whitman, J.; Clark, E.; Marcus, R.; Bern, C. Updated Estimates and Mapping for Prevalence of Chagas Disease among Adults, United States. Emerg. Infect. Dis. 2022, 28, 1313–1320. [Google Scholar] [CrossRef]
- Hochberg, N.; Montgomery, S. Chagas Disease. Ann. Intern. Med. 2023, 176, 17–32. [Google Scholar] [CrossRef]
- Durães-Oliveira, J.; Palma-Marques, J.; Moreno, C.; Rodrigues, A.; Monteiro, M.; Alexandre-Pires, G.; Pereira da Fonseca, I.; Santos-Gomes, G. Chagas Disease: A Silent Threat for Dogs and Humans. Int. J. Mol. Sci. 2024, 25, 3840. [Google Scholar] [CrossRef]
- Bern, C.; Messenger, L.; Whitman, J.; Maguire, J. Chagas Disease in the United States: A Public Health Aproach. Clin. Microbiol. Rev. 2019, 33, e00023-e19. [Google Scholar] [CrossRef]
- Echavarría, N.; Echeverría, L.; Stewart, M.; Gallego, C.; Saldarriaga, C. Chagas Disease: Chronic Chagas Cardiomyopathy. Curr. Probl. Cardiol. 2021, 46, 100507. [Google Scholar] [CrossRef]
- Ortiz - Martínez, Y.; Kouamé, M.; Bongomin, F.; Lakoh, S.; Henao - Martínez, A. Human African Trypanosomiasis (Sleeping Sickness)-Epidemiology, Clinical Manifestations, Diagnosis, Treatment, and Prevention. Curr Trop Med Rep. 2023, 10, 222–234. [Google Scholar] [CrossRef]
- Lutje, V.; Probyn, K.; Seixas, J.; Bergman, H.; Villanueva, G. Chemotherapy for second-stage human African trypanosomiasis: Drugs in use. Cochrane. Database. Syst. Rev. 2021, 12, CD015374. [Google Scholar]
- Yang, Z.; Shi, M.; Zhang, X.; Yao, D. Genome-Wide Screening for Pathogenic Proteins and microRNAs Associated with Parasite-Host Interactions in Trypanosoma brucei. Insects 2022, 13, 968. [Google Scholar] [CrossRef]
- Franco, J.R.; Cecchi, G.; Priotto, G.; Paone, M.; Ebeja, A.K.; Simarro, P.P.; Diarra, A.; Sankara, D.; Zhao, W.; Dagne, D.A. Human African trypanosomiasis cases diagnosed in non-endemic countries (2011–2020). PLoS Negl. Trop. Dis. 2022, 16, 10885. [Google Scholar] [CrossRef]
- Romero-Meza, G.; Mugnier, M. Trypanosoma brucei. Trends Parasitol. 2021, 36, 571–572. [Google Scholar] [CrossRef]
- Figarella, K. Neuropathogenesis caused by Trypanosoma brucei, still an enigma to be unveiled. Microb. Cell. 2021, 8, 73–76. [Google Scholar] [CrossRef]
- Albisetti, A.; Hälg, S.; Zoltner, M.; Mäser, P.; Wiedemar, N. Suramin action in African trypanosomes involves a RuvB-like DNA helicase. Int. J. Parasitol. Drugs Drug Resist. 2023, 23, 44–53. [Google Scholar] [CrossRef]
- Wiedemar, N.; Hauser, D.; Mäser, P. 100 Years of Suramin. Antimicrob. Agents. Chemother. 2020, 64, e01168-19. [Google Scholar] [CrossRef] [PubMed]
- Field, M.C.; Horn, D.; Fairlamb, A.H.; Ferguson, M.A.J.; Gray, D.W.; Read, K.D.; De Rycker, M.; Torrie, L.S.; Wyatt, P.G.; Wyllie, S.; et al. Antitrypanosomatid drug discovery: An ongoing challenge and a continuing need. Nat. Rev. Microbiol. 2017, 15, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Kasozi, K.; MacLeod, E.; Ntulume, I.; Welburn, S. An Update on African Trypanocide Pharmaceutics and Resistance. Front. Vet. Sci. 2022, 9, 828111. [Google Scholar] [CrossRef] [PubMed]
- Genderen, P.; Nouwen, J.; Melo, M.; Rijnders, B.; Hellemond, J. Single-dose pentamidine substantially reduces viability of trypanosomes in human East African trypanosomiasis. J. Travel. Med. 2021, 6, taab080. [Google Scholar] [CrossRef]
- Lejon, V.; Bentivoglio, M.; Franco, J. Human African trypanosomiasis. Handb. Clin. Neurol. 2013, 114, 169–181. [Google Scholar]
- Quinn, M.; Fannin, J.T.; Sciasci, J.; Bragg, A.; Campbell, P.K.; Carias, D.; Crews, K.R.; Gregornik, D.; Jeha, S.; Maron, G.; et al. Pentamidine for Prophylaxis against Pneumocystis jirovecii Pneumonia in Pediatric Oncology Patients Receiving Immunosuppressive Chemotherapy. Antimicrob. Agents Chemother. 2018, 62, e00173-e18. [Google Scholar] [CrossRef]
- Wendo, J.; Mbaria, J.; Nyariki, J.; Isaac, A. Ginkgo biloba attenuated detrimental inflammatory and oxidative events due to Trypanosoma brucei rhodesiense in mice treated with melarsoprol. PLoS Negl. Trop. Dis. 2024, 18, e0012103. [Google Scholar] [CrossRef]
- Larson, S.; Carter, M.; Hovel-Miner, G. Effects of trypanocidal drugs on DNA synthesis: New insights into melarsoprol growth inhibition. Parasitology 2021, 148, 1143–1150. [Google Scholar] [CrossRef]
- Garcia, L.; Ross, L.; Wittner, M.; Tanowitz, H. Trypanosomiasis. In Feigin and Cherry’s Textbook of Pediatric Infectious Diseases, 6th ed.; Saunders: Philadelphia, PA, USA, 2009; pp. 2930–2942. [Google Scholar]
- Lutje, V.; Seixas, J.; Kennedy, A. Chemotherapy for second-stage human African trypanosomiasis. Cochrane Database Syst. Rev. 2013, 2013, CD006201. [Google Scholar] [CrossRef] [PubMed]
- Kansiime, F.; Adibaku, S.; Wamboga, C.; Idi, F.; Kato, C.D.; Yamuah, L.; Vaillant, M.; Kioy, D.; Olliaro, P.; Matovu, E. A multicentre, randomised, non-inferiority clinical trial comparing a nifurtimox-eflornithine combination to standard eflornithine monotherapy for late stage Trypanosoma brucei gambiense human African trypanosomiasis in Uganda. Parasit. Vectors 2018, 11, 105. [Google Scholar] [CrossRef] [PubMed]
- Macedo, J.; Currier, R.; Wirdnam, C.; Horn, D.; Alsford, S.; Rentsch, D. Ornithine uptake and the modulation of drug sensitivity in Trypanosoma brucei. FASEB J. 2017, 31, 4649–4660. [Google Scholar] [CrossRef] [PubMed]
- Levin, V.; Ictech, S.; Hess, K. Clinical importance of eflornithine (α-difluoromethylornithine) for the treatment of malignant gliomas. CNS Oncol. 2018, 7, CNS16. [Google Scholar] [CrossRef]
- Duke, E.S.; Bradford, D.; Sinha, A.K.; Mishra-Kalyani, P.S.; Lerro, C.C.; Rivera, D.; Wearne, E.; Miller, C.P.; Leighton, J.; Sabit, H.; et al. FDA Approval Summary: Eflornithine for High-Risk Neuroblastoma Following Prior Multiagent, Multimodality Therapy. J. Clin. Oncol. 2024, 42, 3047–3057. [Google Scholar] [CrossRef]
- Kuemmerle, A.; Schmid, C.; Bernhard, S.; Kande, V.; Mutombo, W.; Ilunga, M.; Lumpungu, I.; Mutanda, S.; Nganzobo, P.; Tete, D.N.; et al. Effectiveness of Nifurtimox Eflornithine Combination Therapy (NECT) in T. b. gambiense second stage sleeping sickness patients in the Democratic Republic of Congo: Report from a field study. PLoS Negl. Trop. Dis. 2021, 15, e0009903. [Google Scholar] [CrossRef]
- Moroni, A.; Calvo, N.; Kaufman, T. Selected Aspects of the Analytical and Pharmaceutical Profiles of Nifurtimox. J. Pharm. Sci. 2023, 1121, 523–538. [Google Scholar] [CrossRef]
- Whalen, K.; Finkel, R.; Panavelil, T. Lippincott illustrated reviews: Pharmacology, 6th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2015. [Google Scholar]
- Boiani, M.; Piacenza, L.; Hernández, P.; Boiani, L.; Cerecetto, H.; González, M.; Denicola, A. Mode of action of nifurtimox and N-oxide-containing heterocycles against Trypanosoma cruzi: Is oxidative stress involved? Biochem. Pharmacol. 2010, 79, 1736–1745. [Google Scholar] [CrossRef]
- Berenstein, A.J.; Falk, N.; Moscatelli, G.; Moroni, S.; González, N.; Garcia-Bournissen, F.; Ballering, G.; Freilij, H.; Altcheh, J. Adverse Events Associated with Nifurtimox Treatment for Chagas Disease in Children and Adults. Antimicrob. Agents Chemother. 2021, 65, e01135-20. [Google Scholar] [CrossRef] [PubMed]
- Gomes, D.C.; Medeiros, T.S.; Pereira, E.L.A.; Silva, J.F.O.; Oliveira, J.W.F.; Fernandes-Pedrosa, M.F.; Silva, M.S.; Silva-Júnior, A.A. From Benznidazole to New Drugs: Nanotechnology Contribution in Chagas Disease. Int. J. Mol. Sci. 2023, 24, 13778. [Google Scholar] [CrossRef]
- Galván, I.; Alonso-Padilla, J.; Cortés-Serra, N.; Alonso-Vega, C.; Gascón, J.; Pinazo, M. Benznidazole for the treatment of Chagas disease. Expert Rev. Anti. Infect Ther. 2021, 19, 547–556. [Google Scholar] [CrossRef]
- Frade, V.; Simões, N.; Couto, N.; Sanches, C.; Oliveira, C. Ideal benznidazole dose regimen in chronic chagasic patients: A systematic review. Rev. Inst. Med. Trop. Sao. Paulo 2020, 62, e52. [Google Scholar] [CrossRef] [PubMed]
- Franco, L.A.M.; Moreira, C.H.V.; Buss, L.F.; Oliveira, L.C.; Martins, R.C.R.; Manuli, E.R.; Lindoso, J.A.L.; Busch, M.P.; Pereira, A.C.; Sabino, E.C. Pharmacogenomic Profile and Adverse Drug Reactions in a Prospective Therapeutic Cohort of Chagas Disease Patients Treated with Benznidazole. Int. J. Mol. Sci. 2021, 22, 1960. [Google Scholar] [CrossRef] [PubMed]
- Frézard, F.; Aguiar, M.M.G.; Ferreira, L.A.M.; Ramos, G.S.; Santos, T.T.; Borges, G.S.M.; Vallejos, V.M.R.; De Morais, H.L.O. Liposomal Amphotericin B for Treatment of Leishmaniasis: From the Identification of Critical Physicochemical Attributes to the Design of Effective Topical and Oral Formulations. Pharmaceutics 2023, 15, 99. [Google Scholar] [CrossRef]
- Stone, N.; Bicanic, T.; Salim, R.; Hope, W. Liposomal Amphotericin B (AmBisome®): A review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs 2017, 76, 485–500. [Google Scholar] [CrossRef]
- Berenguer, D.; Alcover, M.M.; Sessa, M.; Halbaut, L.; Guillén, C.; Boix-Montañés, A.; Fisa, R.; Calpena-Campmany, A.C.; Riera, C.; Sosa, L. Topical Amphotericin B Semisolid Dosage Form for Cutaneous Leishmaniasis: Physicochemical Characterization, Ex Vivo Skin Permeation and Biological Activity. Pharmaceutics 2020, 12, 149. [Google Scholar] [CrossRef]
- Kabra, R.; Singh, S. Evolutionary aspect of Miltefosine transporter proteins in Leishmania major. Adv. Protein Chem. Struct. Biol. 2022, 130, 399–418. [Google Scholar]
- Lira, R.; Contreras, L.; Rita, R.; Urbina, J. Mechanism of action of anti-proliferative lysophospholipid analogues against the protozoan parasite Trypanosoma cruzi: Potentiation of in vitro activity by the sterol biosynthesis inhibitor ketoconazole. J. Antimicrob. Chemother. 2001, 47, 537–546. [Google Scholar] [CrossRef]
- Luque-Ortega, J.; Rivas, L. Miltefosine (Hexadecylphosphocholine) Inhibits Cytochrome c Oxidase in Leishmania donovani Promastigotes. Antimicrob. Agents. Chemother. 2007, 51, 1327–1332. [Google Scholar] [CrossRef]
- Luque-Ortega, J.; Rivas, L. Possible Mechanism of Miltefosine-Mediated Death of Leishmania donovani. Antimicrob. Agents. Chemother. 2004, 48, 3010–3015. [Google Scholar]
- Pinto-Martinez, A.; Rodriguez-Durán, J.; Serrano-Martin, X.; Hernandez-Rodriguez, V.; Benaim, G. Mechanism of Action of Miltefosine on Leishmania donovani Involves the Impairment of Acidocalcisome Function and the Activation of the Sphingosine-Dependent Plasma Membrane Ca2+ Channel. Antimicrob. Agents Chemother. 2017, 62, e01614-17. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Martin, X.; Payares, G.; De Lucca, M.; Martinez, J.; Mendoza-León, A.; Benaim, G. Amiodarone and Miltefosine Act Synergistically against Leishmania mexicana and Can Induce Parasitological Cure in a Murine Model of Cutaneous Leishmaniasis. Antimicrob. Agents. Chemother. 2009, 53, 5108–5113. [Google Scholar] [CrossRef] [PubMed]
- Benaim, B.; Garcia, C. Targeting calcium homeostasis as the therapy of Chagas’ disease and leishmaniasis—A review. Trop. Biomed. 2011, 28, 471–481. [Google Scholar]
- Machado, P.R.; Ampuero, J.; Guimarães, L.H.; Villasboas, L.; Rocha, A.T.; Schriefer, A.; Sousa, R.S.; Talhari, A.; Penna, G.; Carvalho, E.M. Miltefosine in the Treatment of Cutaneous Leishmaniasis Caused by Leishmania braziliensis in Brazil: A Randomized and Controlled Trial. PLoS Negl. Trop. Dis. 2010, 4, e912. [Google Scholar] [CrossRef]
- Solomon, M.; Ollech, A.; Pavlotsky, F.; Barzilai, A.; Schwartz, E.; Baum, S.; Astman, N. Comparison of Intralesional Sodium Stibogluconate versus Intralesional Meglumine Antimoniate for the Treatment of Leishmania major Cutaneous Leishmaniasis. Acta Derm Venereol. 2024, 104, adv35089. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Garg, G.; Ali, V. Current Therapeutics, Their Problems and Thiol Metabolism as Potential Drug Targets in Leishmaniasis. Curr. Drug. Metab. 2016, 17, 897–919. [Google Scholar] [CrossRef]
- Frézard, F.; Demicheli, C.; Ribeiro, R. Pentavalent Antimonials: New Perspectives for Old Drugs. Molecules 2009, 14, 2317. [Google Scholar] [CrossRef]
- Roatt, B.; Cardoso, J.; De Brito, R.; Coura-Vital, W.; Aguiar-Soares, R.; Reis, A. Recent advances and new strategies on leishmaniasis treatment. Appl. Microbiol. Biotechnol. 2020, 104, 8965–8977. [Google Scholar] [CrossRef]
- No, J. Visceral leishmaniasis: Revisiting current treatments and approaches for future discoveries. Acta. Trop. 2015, 155, 113–123. [Google Scholar] [CrossRef]
- Ponte-Sucre, A.; Gamarro, F.; Dujardin, J.-C.; Barrett, M.P.; López-Vélez, R.; García-Hernández, R.; Pountain, A.W.; Mwenechanya, R.; Papadopoulou, B. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl. Trop. Dis. 2017, 11, e0006052. [Google Scholar] [CrossRef]
- França, M.; Guimarães, L.; Nascimento, M.; Rocha, P.; Carvalho, L. The Leishmania antigen-specific pro-inflammatory response in cutaneous leishmaniasis is linked to disease progression but not to the therapeutic failure of pentavalent antimonials. Microbes. Infect. 2021, 23, 104866. [Google Scholar] [CrossRef] [PubMed]
- Marques, S.; Merlotto, M.; Ramos, P.; Marques, M. American tegumentary leishmaniasis: Severe side effects of pentavalent antimonial in a patient with chronic renal failure. An. Bras. Dermatol. 2019, 94, 355–357. [Google Scholar] [CrossRef]
- Pokharel, P.; Ghimire, R.; Lamichhane, P. Efficacy and Safety of Paromomycin for Visceral Leishmaniasis: A Systematic Review. J. Trop. Med. 2021, 2021, 8629039. [Google Scholar] [CrossRef]
- Singh, N.; Kumar, M.; Singh, R. Leishmaniasis: Current status of available drugs and new potential drug targets. Asian Pac. J. Trop. Med. 2012, 5, 485–497. [Google Scholar] [CrossRef]
- Sundar, S.; Chakravarty, J. Paromomycin in the treatment of leishmaniasis. Expert. Opin. Investig. Drugs 2008, 17, 787–794. [Google Scholar] [CrossRef]
- de Souza, A.; Marins, D.S.S.; Mathias, S.L.; Monteiro, L.M.; Yukuyama, M.N.; Scarim, C.B.; Löbenberg, R.; Bou-Chacra, N.A. Promising nanotherapy in treating leishmaniasis. Int. J. Pharm. 2018, 547, 421–431. [Google Scholar] [CrossRef]
- Kapil, S.; Singh, P.; Silakari, O. An update on small molecule strategies targeting leishmaniasis. Eur. J. Med. Chem. 2018, 157, 339–367. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, L.; Fujimura, A.T.; Del Cistia, M.L.; Fonseca-Santos, B.; Imamura, K.B.; Michels, P.A.M.; Chorilli, M.; Graminha, M.A.S. Nanotechnological Strategies for Treatment of Leishmaniasis - A Review. J. Biomed. Nanotechnol. 2017, 13, 117–133. [Google Scholar] [CrossRef] [PubMed]
- Brugués, A.; Naveros, B.; Campmany, A.; Pastor, P.; Saladrigas, R.; Lizandra, C. Developing cutaneous applications of paromomycin entrapped in stimuli-sensitive block copolymer nanogel dispersions. Nanomedicine 2015, 10, 227–240. [Google Scholar] [CrossRef]
- Banerjee, A.; De, M.; Ali, N. Combination therapy with paromomycin-associated stearylamine-bearing liposomes cures experimental visceral leishmaniasis through Th1-biased immunomodulation. Antimicrob. Agents Chemother. 2011, 55, 1661–1670. [Google Scholar] [CrossRef]
- Kharaji, M.; Doroud, D.; Taheri, T.; Rafati, S. Drug Targeting to Macrophages With Solid Lipid Nanoparticles Harboring Paromomycin: An In Vitro Evaluation Against, L. major and L. tropica. AAPS PharmSciTech. 2016, 17, 1110–1119. [Google Scholar] [CrossRef]
- Burri, C.; Chappuis, F.; Brun, R. Human African Trypanosomiasis. In Manson’s Tropical Diseases; Farrar, J., Hotez, P., Junghanss, T., Kang, G., Lalloo, D., White, N., Eds.; Saunders Ltd.: Philadelphia, PA, USA, 2014; pp. 606–621. [Google Scholar]
- Brun, R.; Blum, J.; Chappuis, F.; Burri, C. Human African trypanosomiasis. Lancet 2010, 375, 148–159. [Google Scholar] [CrossRef]
- Kuhlmann, F.; Fleckenstein, J. Antiparasitic Agents. In Infectious Diseases; Cohen, J., Powderly, W., Opal, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1345–1372. [Google Scholar]
- Büscher, P.; Cecchi, G.; Jamonneau, V.; Priotto, G. Human African trypanosomiasis. Lancet 2017, 390, 2397–2409. [Google Scholar] [CrossRef]
- Ryan, E.; Gutman, J.; Chancey, R. Antiparasitic Agents. In Principles and Practice of Pedriatric Infectious Diseases, 6th ed.; Long, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1598–1617. [Google Scholar]
- WHO Interim Guidelines for the Treatment of Gambiense Human African Trypanosomiasis; World Health Organization: Geneva, Switzerland, 2019.
- Wetzel, D.; Phillips, M. Chemotherapy of protozoal infections: Amebiasis, Giardiasis, Trichomoniasis, Trypanosomiasis, Leishmaniasis, and Other Protozoal Infections. In Goodman and Gilman’s: The Pharmacological Basis of Therapeutics, 13th ed.; Brunton, L., Hilal-Dandan, R., Knollman, B., Eds.; McGraw Hill: Columbus, OJ, USA, 2017. [Google Scholar]
- Franco, J.; Scarone, L.; Comini, M. Drugs and Drug Resistance in African and American Trypanosomiasis. In Annual Reports in Medicinal Chemistry; Neidle, S., Huang, Z., Lackey, K., Tsukuda, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 97–133. [Google Scholar]
- Hidalgo, J.; Ortiz, J.F.; Fabara, S.P.; Eissa-Garcés, A.; Reddy, D.; Collins, K.D.; Tirupathi, R. Efficacy and Toxicity of Fexinidazole and Nifurtimox Plus Eflornithine in the Treatment of African Trypanosomiasis: A Systematic Review. Cureus 2021, 13, e16881. [Google Scholar] [CrossRef]
- De Koning, H. The Drugs of Sleeping Sickness: Their Mechanisms of Action and Resistance, and a Brief History. Trop. Med. Infect Dis. 2020, 5, 14. [Google Scholar] [CrossRef]
- Boberg, M.; Cal, M.; Kaiser, M.; Jansson-Löfmark, R.; Mäser, P.; Ashton, M. Enantiospecific antitrypanosomal in vitro activity of eflornithine. PLoS Negl. Trop. Dis. 2021, 15, e0009583. [Google Scholar] [CrossRef]
- Wilson, C.; Freedman, D. Antiparasitic Agents. In Principles and Practice of Pedriatric Infectious Disease IV, 3rd ed.; Long, S., Ed.; Saunders: Philadelphia, PA, USA, 2008; pp. 1488–1506. [Google Scholar]
- Corti, M.; Villafañe, M. AIDS and Chagas’ disease. In American Trypanosomiasis Chagas Disease, 2nd ed.; Telleria, J., Tibayrenc, M., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 731–749. [Google Scholar]
- Oliveira, M.; Cucunubá, Z.; Álvarez, C.; Nicholls, R. Safety Profile of Nifurtimox and Treatment Interruption for Chronic Chagas Disease in Colombian Adults. Am. J. Trop. Med. Hyg. 2015, 93, 1224–1230. [Google Scholar] [CrossRef]
- Zuma, N.; Aucamp, J.; N’Da, D. An update on derivatisation and repurposing of clinical nitrofuran drugs. Eur. J. Pharm. Sci. 2019, 140, 105092. [Google Scholar] [CrossRef]
- Molina, I.; Salvador, F.; Sánchez-Montalvá, A.; Treviño, B.; Serre, N.; Sao Avilés, A.; Almirante, B. Toxic Profile of Benznidazole in Patients with Chronic Chagas Disease: Risk Factors and Comparison of the Product from Two Different Manufacturers. Antimicrob. Agents. Chemother. 2015, 59, 6125–6131. [Google Scholar] [CrossRef] [PubMed]
- Hall, B.; Wilkinson, S. Activation of Benznidazole by Trypanosomal Type I Nitroreductases Results in Glyoxal Formation. Antimicrob Agents Chemother. 2012, 56, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, C.J.; Hernandez, S.; Olmedo, W.; Abuhamidah, A.; Traina, M.I.; Sanchez, D.R.; Soverow, J.S.; Meymandi, S.K. Safety Profile of Nifurtimox for Treatment of Chagas Disease in the United States. Clin. Infect Dis. 2016, 63, 1056–1062. [Google Scholar] [CrossRef]
- Taboada, J.; Grooters, A. Systemic antifungal therapy. In Small Animal Clinical Pharmacology, 2nd ed.; Maddison, J., Page, S., Church, D., Eds.; Saunders Ltd.: Philadelphia, PA, USA, 2008; pp. 186–197. [Google Scholar]
- Laniado-Laborín, R.; Cabrales-Vargas, M. Amphotericin B: Side effects and toxicity. Rev. Iberoam. Micol. 2009, 26, 223–227. [Google Scholar] [CrossRef]
- Kumari, S.; Kumar, V.; Tiwari, R.; Ravidas, V.; Pandey, K.; Kumar, A. Amphotericin B: A drug of choice for Visceral Leishmaniasis. Acta. Trop. 2022, 235, 106661. [Google Scholar] [CrossRef] [PubMed]
- Benaim, G.; Paniz-Mondolfi, A. Unmasking the Mechanism behind Miltefosine: Revealing the Disruption of Intracellular Ca2+ Homeostasis as a Rational Therapeutic Target in Leishmaniasis and Chagas Disease. Biomolecules 2024, 14, 406. [Google Scholar] [CrossRef]
- Pijpers, J.; den Boer, M.; Essink, D.; Ritmeijer, K. The safety and efficacy of miltefosine in the long-term treatment of post-kala-azar dermal leishmaniasis in South Asia—A review and meta-analysis. PLoS Negl. Trop. Dis. 2019, 13, e0007173. [Google Scholar] [CrossRef]
- Astman, N.; Arbel, C.; Katz, O.; Barzilai, A.; Solomon, M.; Schwartz, E. Tolerability and Safety of Miltefosine for the Treatment of Cutaneous Leishmaniasis. Trop. Med. Infect Dis. 2024, 9, 218. [Google Scholar] [CrossRef]
- Kumari, D.; Perveen, S.; Sharma, R.; Singh, K. Advancement in leishmaniasis diagnosis and therapeutics: An update. Eur. J. Pharmacol. 2021, 910, 174436. [Google Scholar] [CrossRef] [PubMed]
- Boelaert, M.; Alves, F.; Sundar, S. Leishmaniasis. In Manson’s Tropical Diseases, 24th ed.; Farrar, J., Garcia, P., Hotez, P., Junghanss, T., Kang, G., Lalloo, D., White, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 646–668. [Google Scholar]
- Eiras, D.; Kirkman, L.; Murray, H. Cutaneous Leishmaniasis: Current Treatment Practices in the USA for Returning Travelers. Curr. Treat. Options. Infect Dis. 2015, 7, 52–62. [Google Scholar] [CrossRef]
- Pund, S.; Joshi, A. Nanoarchitectures for Neglected Tropical Protozoal Diseases: Challenges and State of the Art. In Nano- and Microscale Drug Delivery Systems; Grumezescu, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 439–480. [Google Scholar]
- Scholar, E. Paromomycin. In xPharm: The Comprehensive Pharmacology Reference; Enna, S., Bylund, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 1–4. [Google Scholar]
- Kostygov, A.Y.; Karnkowska, A.; Votýpka, J.; Tashyreva, D.; Maciszewski, K.; Yurchenko, V.; Lukeš, J. Euglenozoa: Taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 2021, 11, 200407. [Google Scholar] [CrossRef]
- Bartholomeu, D.; Teixeira, S.; Cruz, A. Genomics and functional genomics in Leishmania and Trypanosoma cruzi: Statuses, challenges and perspectives. Mem. Inst. Oswaldo. Cruz. 2021, 116, e200634. [Google Scholar] [CrossRef]
- Elmahallawy, E.; Alkhaldi, A.; Saleh, A. Host immune response against leishmaniasis and parasite persistence strategies: A review and assessment of recent research. Biomed. Pharmacother. 2021, 139, 111671. [Google Scholar] [CrossRef]
- González-Montero, M.-C.; Andrés-Rodríguez, J.; García-Fernández, N.; Pérez-Pertejo, Y.; Reguera, R.M.; Balaña-Fouce, R.; García-Estrada, C. Targeting Trypanothione Metabolism in Trypanosomatids. Molecules 2024, 29, 2214. [Google Scholar] [CrossRef]
- Irigoín, F.; Cibils, L.; Comini, M.; Wilkinson, S.; Flohé, L.; Radi, R. Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification. Free Radic. Biol. Med. 2008, 45, 733–742. [Google Scholar] [CrossRef]
- Comini, M.; Flohé, L. Trypanothione-Based Redox Metabolism of Trypanosomatids. In Trypanosomatid Diseases: Molecular Routes to Drug Discovery; Jäger, T., Koch, O., Flohé, L., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; pp. 167–199. [Google Scholar]
- Santi, A.; Murta, S. Antioxidant defence system as a rational target for Chagas disease and Leishmaniasis chemotherapy. Mem. Inst. Oswaldo. Cruz. 2022, 117, 103094. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.B.; Aires, R.L.; Oliveira, L.S.; Fontes, J.V.; Miguel, D.C.; Abbehausen, C. A “Golden Age” for the discovery of new antileishmanial agents: Current status of leishmanicidal gold complexes and prospective targets beyond the trypanothione system. ChemMedChem 2021, 16, 1681–1695. [Google Scholar] [CrossRef] [PubMed]
- Ilari, A.; Fiorillo, A.; Genovese, I.; Colotti, G. Polyamine-trypanothione pathway: An update. Future Med. Chem. 2017, 9, 61–77. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, N.; Tanwar, N.; Munde, M. Molecular insights into trypanothione reductase-inhibitor interaction: A structure-based review. Arch. Pharm. 2018, 351, e1700373. [Google Scholar] [CrossRef] [PubMed]
- Matadamas-Martínez, F.; Hernández-Campos, A.; Téllez-Valencia, A.; Vázquez-Raygoza, A.; Comparán-Alarcón, S.; Yépez-Mulia, L.; Castillo, R. Leishmania mexicana Trypanothione Reductase Inhibitors: Computational and Biological Studies. Molecules 2019, 24, 3216. [Google Scholar] [CrossRef]
- Oza, S.; Shaw, M.; Wyllie, S.; Fairlamb, A. Trypanothione biosynthesis in Leishmania major. Mol. Biochem. Parasitol. 2005, 139, 107–116. [Google Scholar] [CrossRef]
- Alice, J.; Bellera, C.; Benítez, D.; Comini, M.; Duchowicz, P.; Talevi, A. Ensemble learning application to discover new trypanothione synthetase inhibitors. Mol. Divers. 2021, 25, 1361–1373. [Google Scholar] [CrossRef]
- Piñeyro, M.; Arias, D.; Parodi-Talice, A.; Guerrero, S.; Robello, C. Trypanothione Metabolism as Drug Target for Trypanosomatids. Curr. Pharm. Des. 2021, 27, 1834–1846. [Google Scholar] [CrossRef] [PubMed]
- Saccoliti, F.; Di Santo, R.; Costi, R. Recent Advancement in the Search of Innovative Antiprotozoal Agents Targeting Trypanothione Metabolism. ChemMedChem 2020, 15, 2420–2435. [Google Scholar] [CrossRef]
- Leroux, A.; Krauth-Siegel, R. Thiol redox biology of trypanosomatids and potential targets for chemotherapy. Mol. Biochem. Parasitol. 2016, 206, 67–74. [Google Scholar] [CrossRef]
- Koch, O.; Jäger, T.; Flohé, L.; Selzer, P. Inhibition of trypanothione synthetase as a therapeutic concept. In Trypanosomatid Diseases: Molecular Routes to Drug Discovery, 1st ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; pp. 429–443. [Google Scholar]
- Orban, O.C.F.; Korn, R.S.; Benítez, D.; Medeiros, A.; Preu, L.; Loaëc, N.; Meijer, L.; Koch, O.; Comini, M.A.; Kunick, C. 5-Substituted 3-chlorokenpaullone derivatives are potent inhibitors of Trypanosoma brucei bloodstream forms. Bioorg. Med. Chem. 2016, 24, 3790–3800. [Google Scholar] [CrossRef]
- Ihnatenko, I.; Müller, M.J.; Orban, O.C.F.; Lindhof, J.C.; Benítez, D.; Ortíz, C.; Dibello, E.; Seidl, L.L.; Comini, M.A.; Kunick, C. The indole motif is essential for the antitrypanosomal activity of N5-substituted paullones. PLoS ONE 2023, 18, e0292946. [Google Scholar] [CrossRef]
- Sousa, A.F.; Gomes-Alves, A.G.; Benítez, D.; Comini, M.A.; Flohé, L.; Jaeger, T.; Passos, J.; Stuhlmann, F.; Tomás, A.M.; Castro, H. Genetic and chemical analyses reveal that trypanothione synthetase but not glutathionylspermidine synthetase is essential for Leishmania infantum. Free Radic. Biol. Med. 2014, 73, 229–238. [Google Scholar] [CrossRef]
- Benítez, D.; Medeiros, A.; Fiestas, L.; Panozzo-Zenere, E.A.; Maiwald, F.; Prousis, K.C.; Roussaki, M.; Calogeropoulou, T.; Detsi, A.; Jaeger, T.; et al. Identification of Novel Chemical Scaffolds Inhibiting Trypanothione Synthetase from Pathogenic Trypanosomatids. PLoS Negl. Trop. Dis. 2016, 10, e0004617. [Google Scholar] [CrossRef]
- Maiwald, F.; Benítez, D.; Charquero, D.; Dar, M.A.; Erdmann, H.; Preu, L.; Koch, O.; Hölscher, C.; Loaëc, N.; Meijer, L.; et al. 9- and 11-Substituted 4-azapaullones are potent and selective inhibitors of African Trypanosoma. Eur. J. Med. Chem. 2014, 83, 274–283. [Google Scholar] [CrossRef]
- Medeiros, A.; Benítez, D.; Korn, R.S.; Ferreira, V.C.; Barrera, E.; Carrión, F.; Pritsch, O.; Pantano, S.; Kunick, C.; de Oliveira, C.I.; et al. Mechanistic and biological characterisation of novel N5-substituted paullones targeting the biosynthesis of trypanothione in Leishmania. J. Enzyme Inhib. Med. Chem. 2020, 35, 1345–1358. [Google Scholar] [CrossRef]
- Torrie, L.S.; Wyllie, S.; Spinks, D.; Oza, S.L.; Thompson, S.; Harrison, J.R.; Gilbert, I.H.; Wyatt, P.G.; Fairlamb, A.H.; Frearson, J.A. Chemical validation of trypanothione synthetase: A potential drug target for human trypanosomiasis. J. Biol. Chem. 2009, 284, 36137–36145. [Google Scholar] [CrossRef]
- Wyllie, S.; Oza, S.; Patterson, S.; Spinks, D.; Thompson, S.; Fairlamb, A. Dissecting the essentiality of the bifunctional trypanothione synthetase-amidase in Trypanosoma brucei using chemical and genetic methods. Mol. Microbiol. 2009, 4, 529–540. [Google Scholar] [CrossRef]
- Saudagar, P.; Saha, P.; Saikia, A.; Dubey, V. Molecular mechanism underlying antileishmanial effect of oxabicyclo [3.3.1]nonanones: Inhibition of key redox enzymes of the pathogen. Eur. J. Pharm. Biopharm. 2013, 85, 569–577. [Google Scholar] [CrossRef]
- Benítez, D.; Franco, J.; Sardi, F.; Leyva, A.; Durán, R.; Choi, G.; Yang, G.; Kim, T.; Kim, N.; Heo, J.; et al. Drug-like molecules with anti-trypanothione synthetase activity identified by high throughput screening. J. Enzyme. Inhib. Med. Chem. 2022, 37, 912–929. [Google Scholar] [CrossRef]
- Phan, T.; Park, K.; Benítez, D.; Comini, M.; Shum, D.; No, J. Discovery of novel Leishmania major trypanothione synthetase inhibitors by high-throughput screening. Biochem. Biophys. Res. Commun. 2022, 637, 308–313. [Google Scholar] [CrossRef]
- Alcón-Calderón, M.; de Lucio, H.; García-Soriano, J.C.; Revuelto, A.; de Castro, S.; López-Gutiérrez, C.; San-Félix, A.; Quesada, E.; Gago, F.; Camarasa, M.-J.; et al. Identification of L. infantum trypanothione synthetase inhibitors with leishmanicidal activity from a (non-biased) in-house chemical library. Eur. J. Med. Chem. 2022, 243, 114675. [Google Scholar] [CrossRef]
- Shaslinah, N.; Sangavi, P.; Sangeetha, R.; Gowthamkumar, S.; Sindhu, V.; Langeswaran, K. Screening and identification of potential inhibitor for visceral leishmaniasis (VL) through computational analysis. J. Genet. Eng. Biotechnol. 2022, 20, 35. [Google Scholar] [CrossRef]
- Vemula, D.; Mohanty, S.; Bhandari, V. Repurposing of Food and Drug Admnistration (FDA) approved library to identify a potential inhibitor of trypanothione synthetase for developing an antileishmanial agent. Heliyon 2024, 10, e27602. [Google Scholar] [CrossRef]
- Ali, V.; Behera, S.; Nawaz, A.; Equbal, A.; Pandey, K. Unique thiol metabolism in trypanosomatids: Redox homeostasis and drug resistance. Adv. Parasitol. 2022, 117, 75–155. [Google Scholar]
- Exertier, C.; Salerno, A.; Antonelli, L.; Fiorillo, A.; Ocello, R.; Seghetti, F.; Caciolla, J.; Uliassi, E.; Masetti, M.; Fiorentino, E.; et al. Fragment Merging, Growing, and Linking Identify New Trypanothione Reductase Inhibitors for Leishmaniasis. J. Med. Chem. 2024, 67, 402–419. [Google Scholar] [CrossRef]
- Bonse, S.; Santelli-Rouvier, C.; Barbe, J.; Krauth-Siegel, R. Inhibition of Trypanosoma cruzi trypanothione reductase by acridines: Kinetic studies and structure-activity relationships. J. Med. Chem. 1999, 42, 5448–5454. [Google Scholar] [CrossRef]
- Beig, M.; Oellien, F.; Garoff, L.; Noack, S.; Krauth-Siegel, R.; Selzer, P. Trypanothione Reductase: A Target Protein for a Combined In Vitro and In Silico Screening Approach. PLoS Negl. Trop. Dis. 2015, 9, e0003773. [Google Scholar] [CrossRef]
- Saccoliti, F.; Angiulli, G.; Pupo, G.; Pescatori, L.; Madia, V.N.; Messore, A.; Colotti, G.; Fiorillo, A.; Scipione, L.; Gramiccia, M.; et al. Inhibition of Leishmania infantum trypanothione reductase by diaryl sulfide derivatives. J. Enzyme Inhib. Med. Chem. 2017, 32, 304–310. [Google Scholar] [CrossRef]
- Colotti, G.; Saccoliti, F.; Gramiccia, M.; Di Muccio, T.; Prakash, J.; Yadav, S.; Dubey, V.K.; Vistoli, G.; Battista, T.; Mocci, S.; et al. Structure-guided approach to identify a novel class of anti-leishmaniasis diaryl sulfide compounds targeting the trypanothione metabolism. Amino. Acids. 2020, 52, 247–259. [Google Scholar] [CrossRef]
- Patterson, S.; Jones, D.C.; Shanks, E.J.; Frearson, J.A.; Gilbert, I.H.; Wyatt, P.G.; Fairlamb, A.H. Synthesis and Evaluation of 1-(1-(Benzo[b]thiophen-2-yl)cyclohexyl)piperidine (BTCP) Analogues as Inhibitors of Trypanothione Reductase. ChemMedChem 2009, 4, 1341–1353. [Google Scholar] [CrossRef]
- De Gasparo, R.; Brodbeck-Persch, E.; Bryson, S.; Hentzen, N.B.; Kaiser, M.; Pai, E.F.; Krauth-Siegel, R.L.; Diederich, F. Biological Evaluation and X-ray Co-crystal Structures of Cyclohexylpyrrolidine Ligands for Trypanothione Reductase, an Enzyme from the Redox Metabolism of Trypanosoma. ChemMedChem 2018, 13, 957–967. [Google Scholar] [CrossRef]
- De Gasparo, R.; Halgas, O.; Harangozo, D.; Kaiser, M.; Pai, E.F.; Krauth-Siegel, R.L.; Diederich, F. Targeting a Large Active Site: Structure-Based Design of Nanomolar Inhibitors of Trypanosoma brucei Trypanothione Reductase. Chemistry 2019, 25, 11416–11421. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.; Alphey, M.S.; Jones, D.C.; Shanks, E.J.; Street, I.P.; Frearson, J.A.; Wyatt, P.G.; Gilbert, I.H.; Fairlamb, A.H. Dihydroquinazolines as a Novel Class of Trypanosoma brucei Trypanothione Reductase Inhibitors: Discovery, Synthesis, and Characterization of their Binding Mode by Protein Crystallography. J. Med. Chem. 2011, 54, 6514–6530. [Google Scholar] [CrossRef]
- Turcano, L.; Battista, T.; Torrente De Haro, E.; Missineo, A.; Alli, C.; Paonessa, G.; Colotti, G.; Harper, S.; Fiorillo, A.; Ilari, A. Spiro-containing derivatives show antiparasitic activity against Trypanosoma brucei through inhibition of the trypanothione reductase enzyme. PLoS Negl. Trop. Dis. 2020, 14, e0008339. [Google Scholar] [CrossRef]
- Battista, T.; Federico, S.; Brogi, S.; Pozzetti, L.; Khan, T.; Butini, S.; Ramunno, A.; Fiorentino, E.; Orsini, S.; Di Muccio, T.; et al. Optimization of Potent and Specific Trypanothione Reductase Inhibitors: A Structure-Based Drug Discovery Approach. ACS Infect. Dis. 2022, 8, 1687–1699. [Google Scholar] [CrossRef]
- Murray, C.; Rees, D. The rise of fragment-based drug discovery. Nat. Chem. 2009, 1, 187–192. [Google Scholar] [CrossRef]
- Erlanson, D. Introduction to fragment-based drug discovery. Top. Curr. Chem. 2012, 317, 1–32. [Google Scholar] [PubMed]
- Beltrán-Hortelano, I.; Pérez-Silanes, S.; Galiano, S. Trypanothione Reductase and Superoxide Dismutase as Current Drug Targets for Trypanosoma cruzi: An Overview of Compounds with Activity against Chagas Disease. Curr. Med. Chem. 2017, 24, 1066–1138. [Google Scholar] [CrossRef]
- Baiocco, P.; Colotti, G.; Franceschini, S.; Ilari, A. Molecular basis of antimony treatment in leishmaniasis. J. Med. Chem. 2009, 52, 2603–2612. [Google Scholar] [CrossRef]
- Baiocco, P.; Ilari, A.; Ceci, P.; Orsini, S.; Gramiccia, M.; Di Muccio, T.; Colotti, G. Inhibitory Effect of Silver Nanoparticles on Trypanothione Reductase Activity and Leishmania infantum Proliferation. ACS Med. Chem. Lett. 2010, 2, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Ilari, A.; Baiocco, P.; Messori, L.; Fiorillo, A.; Boffi, A.; Gramiccia, M.; Di Muccio, T.; Colotti, G. A gold-containing drug against parasitic polyamine metabolism: The X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition. Amino. Acids 2012, 42, 803–811. [Google Scholar] [CrossRef]
- Tunes, L.G.; Morato, R.E.; Garcia, A.; Schmitz, V.; Steindel, M.; Corrêa-Junior, J.D.; Dos Santos, H.F.; Frézard, F.; de Almeida, M.V.; Silva, H.; et al. Preclinical Gold Complexes as Oral Drug Candidates to Treat Leishmaniasis Are Potent Trypanothione Reductase Inhibitors. ACS Infect. Dis. 2020, 6, 1121–1139. [Google Scholar] [CrossRef]
- Vishwakarma, P.; Parmar, N.; Chandrakar, P.; Sharma, T.; Kathuria, M.; Agnihotri, P.K.; Siddiqi, M.I.; Mitra, K.; Kar, S. Ammonium trichloro [1,2-ethanediolato-O,O’]-tellurate cures experimental visceral leishmaniasis by redox modulation of Leishmania donovani trypanothione reductase and inhibiting host integrin linked PI3K/Akt pathway. Cell. Mol. Life Sci. 2018, 75, 563–588. [Google Scholar] [CrossRef]
- Olmo, F.; Cussó, O.; Marín, C.; Rosales, M.J.; Urbanová, K.; Krauth-Siegel, R.L.; Costas, M.; Ribas, X.; Sánchez-Moreno, M. In vitro and in vivo identification of tetradentated polyamine complexes as highly efficient metallodrugs against Trypanosoma cruzi. Exp. Parasitol. 2016, 164, 20–30. [Google Scholar] [CrossRef]
- Madia, V.N.; Ialongo, D.; Patacchini, E.; Exertier, C.; Antonelli, L.; Colotti, G.; Messore, A.; Tudino, V.; Saccoliti, F.; Scipione, L.; et al. Inhibition of Leishmania infantum Trypanothione Reductase by New Aminopropanone Derivatives Interacting with the NADPH Binding Site. Molecules 2023, 28, 338. [Google Scholar] [CrossRef] [PubMed]
- Turcano, L.; Torrente, E.; Missineo, A.; Andreini, M.; Gramiccia, M.; Di Muccio, T.; Genovese, I.; Fiorillo, A.; Harper, S.; Bresciani, A.; et al. Identification and binding mode of a novel Leishmania Trypanothione reductase inhibitor from high throughtput screening. PLoS Negl. Trop. Dis. 2018, 12, e0006969. [Google Scholar] [CrossRef] [PubMed]
- Toro, M.A.; Sánchez-Murcia, P.A.; Moreno, D.; Ruiz-Santaquiteria, M.; Alzate, J.F.; Negri, A.; Camarasa, M.-J.; Gago, F.; Velázquez, S.; Jiménez-Ruiz, A. Probing the dimerization interface of Leishmania infantum trypanothione reductase with site-directed mutagenesis and short peptides. Chembiochem 2013, 14, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- de Lucio, H.; Toro, M.; Camarasa, M.; Velázquez, S.; Gago, F.; Jiménez-Ruiz, A. Pseudoirreversible slow-binding inhibition of trypanothione reductase by a protein-protein interaction disruptor. Br. J. Pharmacol. 2020, 177, 5163–5176. [Google Scholar] [CrossRef]
- Revuelto, A.; Ruiz-Santaquiteria, M.; de Lucio, H.; Gamo, A.; Carriles, A.A.; Gutiérrez, K.J.; Sánchez-Murcia, P.A.; Hermoso, J.A.; Gago, F.; Camarasa, M.-J.; et al. Pyrrolopyrimidine vs Imidazole-Phenyl-Thiazole Scaffolds in Nonpeptidic Dimerization Inhibitors of Leishmania infantum Trypanothione Reductase. ACS. Infect. Dis. 2019, 5, 873–891. [Google Scholar] [CrossRef]
- Revuelto, A.; de Lucio, H.; García-Soriano, J.C.; Sánchez-Murcia, P.A.; Gago, F.; Jiménez-Ruiz, A.; Camarasa, M.-J.; Velázquez, S. Efficient Dimerization Disruption of Leishmania infantum Trypanothione Reductase by Triazole-phenyl-thiazoles. J. Med. Chem. 2021, 64, 6137–6160. [Google Scholar] [CrossRef]
- de Lucio, H.; Revuelto, A.; Carriles, A.A.; de Castro, S.; García-González, S.; García-Soriano, J.C.; Alcón-Calderón, M.; Sánchez-Murcia, P.A.; Hermoso, J.A.; Gago, F.; et al. Identification of 1,2,3-triazolium salt-based inhibitors of Leishmania infantum trypanothione disulfide reductase with enhanced antileishmanial potency in cellulo and increased selectivity. Eur. J. Med.Chem. 2022, 244, 114878. [Google Scholar] [CrossRef]
- Vázquez, C.; Mejia-Tlachi, M.; González-Chávez, Z.; Silva, A.; Rodríguez-Zavala, J.S.; Moreno-Sánchez, R.; Saavedra, E. Buthionine sulfoximine is a multitarget inhibitor of trypanothione synthesis in Trypanosoma cruzi. FEBS Lett. 2017, 591, 3881–3894. [Google Scholar] [CrossRef]
- González-González, A.; Sánchez-Sánchez, O.; Krauth-Siegel, R.L.; Bolognesi, M.L.; Gómez-Escobedo, R.; Nogueda-Torres, B.; Vázquez-Jiménez, L.K.; Saavedra, E.; Encalada, R.; Espinoza-Hicks, J.C.; et al. In Vitro and In Silico Analysis of New n-Butyl and Isobutyl Quinoxaline-7-carboxylate 1,4-di-N-oxide Derivatives against Trypanosoma cruzi as Trypanothione Reductase Inhibitors. Int. J. Mol. Sci. 2022, 23, 13315. [Google Scholar] [CrossRef]
- Espinosa-Bustos, C.; Ortiz Pérez, M.; Gonzalez-Gonzalez, A.; Zarate, A.M.; Rivera, G.; Belmont-Díaz, J.A.; Saavedra, E.; Cuellar, M.A.; Vázquez, K.; Salas, C.O. New Amino Naphthoquinone Derivatives as Anti-Trypanosoma cruzi Agents Targeting Trypanothione Reductase. Pharmaceutics 2022, 4, 1121. [Google Scholar] [CrossRef] [PubMed]
- de Lucio, H.; García-Marín, J.; Sánchez-Alonso, P.; García-Soriano, J.C.; Toro, M.Á.; Vaquero, J.J.; Gago, F.; Alajarín, R.; Jiménez-Ruiz, A. Pyridazino-pyrrolo-quinoxalinium salts as highly potent and selective leishmanicidal agents targeting trypanothione reductase. Eur. J. Med. Chem. 2022, 227, 113915. [Google Scholar] [CrossRef]
- Najafpour, G. Growth Kinetics. In Biochemical Engineering and Biotechnology; Najafpour, G., Ed.; Elsevier Science: Amsterdam, The Netherlands, 2007; pp. 81–141. [Google Scholar]
- Chaplin, M.; Bucke, C. Enzyme Technology; Cambridge University Press: Cambridge, UK, 1990; Available online: https://www.scirp.org/reference/referencespapers?referenceid=271999 (accessed on 3 July 2025).
- Krauth-Siegel, R.; Inhoff, O. Parasite-specific trypanothione reductase as a drug target molecule. Parasitol. Res. 2003, 90, S77–S85. [Google Scholar] [CrossRef] [PubMed]
- Morin, C.; Besset, T.; Moutet, J.-C.; Fayolle, M.; Brückner, M.; Limosin, D.; Becker, K.; Davioud-Charvet, E. The aza-analogues of 1,4-naphthoquinones are potent substrates and inhibitors of plasmodial thioredoxin and glutathione reductases and of human erythrocyte glutathione reductase. Org. Biomol. Chem. 2008, 6, 2731–2742. [Google Scholar] [CrossRef] [PubMed]
- Salmon-Chemin, L.; Buisine, E.; Yardley, V.; Kohler, S.; Debreu, M.A.; Landry, V.; Sergheraert, C.; Croft, S.L.; Krauth-Siegel, R.L.; Davioud-Charvet, E. 2- and 3-substituted 1,4-naphthoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Trypanosoma cruzi: Synthesis and correlation between redox cycling activities and in vitro cytotoxicity. J. Med. Chem. 2001, 44, 548–565. [Google Scholar] [CrossRef]
- Henderson, G.B.; Ulrich, P.; Fairlamb, A.H.; Rosenberg, I.; Pereira, M.; Sela, M.; Cerami, A. “Subversive” substrates for the enzyme trypanothione disulfide reductase: Alternative approach to chemotherapy of Chagas disease. Proc. Natl. Acad. Sci. USA 1988, 85, 5374–5378. [Google Scholar] [CrossRef]
- Arias, D.G.; Herrera, F.E.; Garay, A.S.; Rodrigues, D.; Forastieri, P.S.; Luna, L.E.; Bürgi, M.D.L.M.; Prieto, C.; Iglesias, A.A.; Cravero, R.M.; et al. Rational design of nitrofuran derivatives: Synthesis and valuation as inhibitors of Trypanosoma cruzi trypanothione reductase. J. Med. Chem. 2017, 125, 1088–1097. [Google Scholar] [CrossRef]
- Domínguez-Asenjo, B.; Gutiérrez-Corbo, C.; Álvarez-Bardón, M.; Pérez-Pertejo, Y.; Balaña-Fouce, R.; Reguera, R. Ex Vivo Phenotypic Screening of Two Small Repurposing Drug Collections Identifies Nifuratel as a Potential New Treatment against Visceral and Cutaneous Leishmaniasis. ACS Infect Dis. 2021, 7, 2390–2401. [Google Scholar] [CrossRef]
- Melcon-Fernandez, E.; Galli, G.; Garcia-Estrada, C.; Balaña-Fouce, R.; Reguera, R.; Pérez-Pertejo, Y. Miltefosine and Nifuratel Combination: A Promising Therapy for the Treatment of Leishmania donovani Visceral Leishmaniasis. Int. J. Mol. Sci. 2023, 24, 1635. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Augusto, A.; Costa, I.; Conceição, J.; Cristiano, M.L.S. Targeting Trypanothione Synthetase and Trypanothione Reductase: Development of Common Inhibitors to Tackle Trypanosomatid Disease. Pharmaceuticals 2025, 18, 1182. https://doi.org/10.3390/ph18081182
Augusto A, Costa I, Conceição J, Cristiano MLS. Targeting Trypanothione Synthetase and Trypanothione Reductase: Development of Common Inhibitors to Tackle Trypanosomatid Disease. Pharmaceuticals. 2025; 18(8):1182. https://doi.org/10.3390/ph18081182
Chicago/Turabian StyleAugusto, André, Inês Costa, Jaime Conceição, and Maria L. S. Cristiano. 2025. "Targeting Trypanothione Synthetase and Trypanothione Reductase: Development of Common Inhibitors to Tackle Trypanosomatid Disease" Pharmaceuticals 18, no. 8: 1182. https://doi.org/10.3390/ph18081182
APA StyleAugusto, A., Costa, I., Conceição, J., & Cristiano, M. L. S. (2025). Targeting Trypanothione Synthetase and Trypanothione Reductase: Development of Common Inhibitors to Tackle Trypanosomatid Disease. Pharmaceuticals, 18(8), 1182. https://doi.org/10.3390/ph18081182