Exploring Experimental and In Silico Approaches for Antibody–Drug Conjugates in Oncology Therapies
Abstract
1. Introduction
2. Mechanism of Action of ADCs in Cancer
Antibody Selection in Extracellular Matrix (ECM)-Targeted ADCs
3. Monoclonal Antibodies in ADCs
Antibody Structure Modeling
4. Linkers in ADCs
5. Payloads in ADCs
5.1. Tubulin Inhibitors
5.2. DNA-Damaging Agents
5.3. Emerging Agents
6. Quantitative Framework for Optimizing Antibody–Drug Conjugates
7. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABC | ATP-binding cassette |
ADCC | Antibody-dependent cell-mediated cytotoxicity |
ADC | Antibody-drug conjugate |
ADMET | Absorption, Distribution, Metabolism, Excretion, and Toxicity |
AML | Acute myeloid leukemia |
AOC | Antibody oligonucleotide conjugate |
cBu | Cyclobutane-1,1-dicarboxamide |
CDR | Complementarity-determining region |
CEA | Carcinoembryonic antigen |
CH | Heavy chain constant domain |
CL | Light chain constant domain |
CPP-scFv | Cell-penetrating peptide single-chain variable fragment |
DAR | Drug-Antibody ratio |
DM1 | Mertansine |
DXd | Deruxtecan |
ECM | Extracellular matrix |
EGFR | Epidermal growth factor receptor |
Fab | Antigen-binding fragment |
Fc | Crystallizable fragment |
FcRn | Neonatal Fc receptor |
Fv | Variable fragment of antibody |
GCC | Guanylyl cyclase C |
GSH | Glutathione |
HCs | Heavy chains |
HER2 | Human Epidermal Growth Factor Receptor 2 |
H3-OPT | CDR-H3 optimization toolkit |
HR | Homologous recombination |
IC50 | Half-maximal inhibitory concentration |
IgG | Immunoglobulin G |
LC | Light chain |
Lys-MCC-DM1 | Lysine-linked maytansinoid metabolite |
mAb | Monoclonal antibody |
MDR1 | Multidrug resistance protein 1 |
MD | Molecular dynamics |
MMAE | Monomethyl auristatin E |
MSA | Multiple Sequence Alignment |
NAMPT | Nicotinamide phosphoribosyltransferase |
NHEJ | Non-homologous end joining |
PABC | Para-aminobenzyl carbamate |
PBD | Pyrrolobenzodiazepine |
PEG | Polyethylene glycol |
pLDDT | Predicted Local Distance Difference Test |
PROTAC | Proteolysis Targeting Chimera |
RAbD | RosettaAntibodyDesign |
scFv | Single-chain variable fragment |
SMCC | Succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate |
STING | Stimulator of Interferon Genes |
TAP | Therapeutic Antibody Profiler |
T-DM1 | Trastuzumab emtansine |
TME | Tumor microenvironment |
VH | Variable heavy chain domain |
VL | Variable light chain domain |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Wang, Q.; Shao, X.; Zhang, Y.; Zhu, M.; Wang, F.X.C.; Mu, J.; Li, J.; Yao, H.; Chen, K. Role of Tumor Microenvironment in Cancer Progression and Therapeutic Strategy. Cancer Med. 2023, 12, 11149–11165. [Google Scholar] [CrossRef]
- Fu, Z.; Li, S.; Han, S.; Shi, C.; Zhang, Y. Antibody Drug Conjugate: The “Biological Missile” for Targeted Cancer Therapy. Sig. Transduct. Target. Ther. 2022, 7, 93. [Google Scholar] [CrossRef]
- Metrangolo, V.; Engelholm, L.H. Antibody–Drug Conjugates: The Dynamic Evolution from Conventional to Next-Generation Constructs. Cancers 2024, 16, 447. [Google Scholar] [CrossRef] [PubMed]
- Conilh, L.; Sadilkova, L.; Viricel, W.; Dumontet, C. Payload Diversification: A Key Step in the Development of Antibody–Drug Conjugates. J. Hematol. Oncol. 2023, 16, 3. [Google Scholar] [CrossRef] [PubMed]
- Kesireddy, M.; Kothapalli, S.R.; Gundepalli, S.G.; Asif, S. A Review of the Current FDA-Approved Antibody-Drug Conjugates: Landmark Clinical Trials and Indications. Pharm. Med. 2024, 38, 39–54. [Google Scholar] [CrossRef]
- Dumontet, C.; Reichert, J.M.; Senter, P.D.; Lambert, J.M.; Beck, A. Antibody–Drug Conjugates Come of Age in Oncology. Nat. Rev. Drug Discov. 2023, 22, 641–661. [Google Scholar] [CrossRef]
- Theocharopoulos, C.; Lialios, P.-P.; Samarkos, M.; Gogas, H.; Ziogas, D.C. Antibody-Drug Conjugates: Functional Principles and Applications in Oncology and Beyond. Vaccines 2021, 9, 1111. [Google Scholar] [CrossRef]
- Ashman, N.; Bargh, J.D.; Spring, D.R. Non-Internalising Antibody–Drug Conjugates. Chem. Soc. Rev. 2022, 51, 9182–9202. [Google Scholar] [CrossRef] [PubMed]
- Staudacher, A.H.; Brown, M.P. Antibody Drug Conjugates and Bystander Killing: Is Antigen-Dependent Internalisation Required? Br. J. Cancer 2017, 117, 1736–1742. [Google Scholar] [CrossRef]
- Dal Corso, A.; Gébleux, R.; Murer, P.; Soltermann, A.; Neri, D. A Non-Internalizing Antibody-Drug Conjugate Based on an Anthracycline Payload Displays Potent Therapeutic Activity in Vivo. J. Control. Release 2017, 264, 211–218. [Google Scholar] [CrossRef]
- Hammood, M.; Craig, A.; Leyton, J. Impact of Endocytosis Mechanisms for the Receptors Targeted by the Currently Approved Antibody-Drug Conjugates (ADCs)—A Necessity for Future ADC Research and Development. Pharmaceuticals 2021, 14, 674. [Google Scholar] [CrossRef]
- Gébleux, R.; Stringhini, M.; Casanova, R.; Soltermann, A.; Neri, D. Non-internalizing Antibody–Drug Conjugates Display Potent Anti-cancer Activity upon Proteolytic Release of Monomethyl Auristatin E in the Subendothelial Extracellular Matrix. Intl. J. Cancer 2017, 140, 1670–1679. [Google Scholar] [CrossRef] [PubMed]
- Love, E.A.; Sattikar, A.; Cook, H.; Gillen, K.; Large, J.M.; Patel, S.; Matthews, D.; Merritt, A. Developing an Antibody–Drug Conjugate Approach to Selective Inhibition of an Extracellular Protein. ChemBioChem 2019, 20, 754–758. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.-Y.; Diéras, V.; Guardino, E.; et al. Trastuzumab Emtansine for HER2-Positive Advanced Breast Cancer. N. Engl. J. Med. 2012, 367, 1783–1791. [Google Scholar] [CrossRef]
- Schultz, C. Targeting the Extracellular Matrix for Delivery of Bioactive Molecules to Sites of Arthritis. Br. J. Pharmacol. 2019, 176, 26–37. [Google Scholar] [CrossRef]
- Young, P.A.; Morrison, S.L.; Timmerman, J.M. Antibody-Cytokine Fusion Proteins for Treatment of Cancer: Engineering Cytokines for Improved Efficacy and Safety. Semin. Oncol. 2014, 41, 623–636. [Google Scholar] [CrossRef]
- Riccardi, F.; Dal Bo, M.; Macor, P.; Toffoli, G. A Comprehensive Overview on Antibody-Drug Conjugates: From the Conceptualization to Cancer Therapy. Front. Pharmacol. 2023, 14, 1274088. [Google Scholar] [CrossRef] [PubMed]
- Long, R.; Zuo, H.; Tang, G.; Zhang, C.; Yue, X.; Yang, J.; Luo, X.; Deng, Y.; Qiu, J.; Li, J.; et al. Antibody-Drug Conjugates in Cancer Therapy: Applications and Future Advances. Front. Immunol. 2025, 16, 1516419. [Google Scholar] [CrossRef]
- Vasalou, C.; Helmlinger, G.; Gomes, B. A Mechanistic Tumor Penetration Model to Guide Antibody Drug Conjugate Design. PLoS ONE 2015, 10, e0118977. [Google Scholar] [CrossRef]
- Nessler, I.; Rubahamya, B.; Kopp, A.; Hofsess, S.; Cardillo, T.M.; Sathyanarayan, N.; Donnell, J.; Govindan, S.V.; Thurber, G.M. Improving Intracellular Delivery of an Antibody–Drug Conjugate Targeting Carcinoembryonic Antigen Increases Efficacy at Clinically Relevant Doses In Vivo. Mol. Cancer Ther. 2024, 23, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Khera, E.; Cilliers, C.; Smith, M.D.; Ganno, M.L.; Lai, K.C.; Keating, T.A.; Kopp, A.; Nessler, I.; Abu-Yousif, A.O.; Thurber, G.M. Quantifying ADC Bystander Payload Penetration with Cellular Resolution Using Pharmacodynamic Mapping. Neoplasia 2021, 23, 210–221. [Google Scholar] [CrossRef]
- Ascione, L.; Guidi, L.; Prakash, A.; Trapani, D.; LoRusso, P.; Lou, E.; Curigliano, G. Unlocking the Potential: Biomarkers of Response to Antibody-Drug Conjugates. Am. Soc. Clin. Oncol. Educ. Book 2024, 44, e431766. [Google Scholar] [CrossRef] [PubMed]
- Kinder, M.; Greenplate, A.R.; Strohl, W.R.; Jordan, R.E.; Brezski, R.J. An Fc Engineering Approach That Modulates Antibody-Dependent Cytokine Release without Altering Cell-Killing Functions. mAbs 2015, 7, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Cilliers, C.; Guo, H.; Liao, J.; Christodolu, N.; Thurber, G.M. Multiscale Modeling of Antibody-Drug Conjugates: Connecting Tissue and Cellular Distribution to Whole Animal Pharmacokinetics and Potential Implications for Efficacy. AAPS J. 2016, 18, 1117–1130. [Google Scholar] [CrossRef]
- Khera, E.; Cilliers, C.; Bhatnagar, S.; Thurber, G.M. Computational Transport Analysis of Antibody-Drug Conjugate Bystander Effects and Payload Tumoral Distribution: Implications for Therapy. Mol. Syst. Des. Eng. 2018, 3, 73–88. [Google Scholar] [CrossRef]
- Weddell, J.; Chiney, M.S.; Bhatnagar, S.; Gibbs, J.P.; Shebley, M. Mechanistic Modeling of Intra-Tumor Spatial Distribution of Antibody-Drug Conjugates: Insights into Dosing Strategies in Oncology. Clin. Transl. Sci. 2021, 14, 395–404. [Google Scholar] [CrossRef]
- Kopp, A.; Hofsess, S.; Cardillo, T.M.; Govindan, S.V.; Donnell, J.; Thurber, G.M. Antibody–Drug Conjugate Sacituzumab Govitecan Drives Efficient Tissue Penetration and Rapid Intracellular Drug Release. Mol. Cancer Ther. 2023, 22, 102–111. [Google Scholar] [CrossRef]
- D’Arienzo, A.; Verrazzo, A.; Pagliuca, M.; Napolitano, F.; Parola, S.; Viggiani, M.; Caputo, R.; Puglisi, F.; Giuliano, M.; Del Mastro, L.; et al. Toxicity Profile of Antibody-Drug Conjugates in Breast Cancer: Practical Considerations. eClinicalMedicine 2023, 62, 102113. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Bordeau, B.M.; Balthasar, J.P. Mechanisms of ADC Toxicity and Strategies to Increase ADC Tolerability. Cancers 2023, 15, 713. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.F.U.H.; Wang, R.; Ling, S.; Wang, S. Antibody Engineering for Pursuing a Healthier Future. Front. Microbiol. 2017, 8, 256891. [Google Scholar] [CrossRef] [PubMed]
- Chiu, M.L.; Goulet, D.R.; Teplyakov, A.; Gilliland, G.L. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies 2019, 8, 55. [Google Scholar] [CrossRef]
- Sela-Culang, I.; Kunik, V.; Ofran, Y. The Structural Basis of Antibody-Antigen Recognition. Front. Immunol. 2013, 4, 302. [Google Scholar] [CrossRef]
- Peng, H.-P.; Hsu, H.-J.; Yu, C.-M.; Hung, F.-H.; Tung, C.-P.; Huang, Y.-C.; Chen, C.-Y.; Tsai, P.-H.; Yang, A.-S. Antibody CDR Amino Acids Underlying the Functionality of Antibody Repertoires in Recognizing Diverse Protein Antigens. Sci. Rep. 2022, 12, 12555. [Google Scholar] [CrossRef]
- Klyukin, K.; Alexandrov, V. Kinetics of pH-dependent Interactions between PD-1 and PD-L1 Immune Checkpoint Proteins from Molecular Dynamics. Proteins 2020, 88, 1162–1168. [Google Scholar] [CrossRef]
- Mejias-Gomez, O.; Madsen, A.V.; Skovgaard, K.; Pedersen, L.E.; Morth, J.P.; Jenkins, T.P.; Kristensen, P.; Goletz, S. A Window into the Human Immune System: Comprehensive Characterization of the Complexity of Antibody Complementary-Determining Regions in Functional Antibodies. mAbs 2023, 15, 2268255. [Google Scholar] [CrossRef]
- Myung, Y.; Pires, D.E.V.; Ascher, D.B. Understanding the Complementarity and Plasticity of Antibody–Antigen Interfaces. Bioinformatics 2023, 39, btad392. [Google Scholar] [CrossRef]
- Xenaki, K.T.; Oliveira, S.; Van Bergen En Henegouwen, P.M.P. Antibody or Antibody Fragments: Implications for Molecular Imaging and Targeted Therapy of Solid Tumors. Front. Immunol. 2017, 8, 1287. [Google Scholar] [CrossRef]
- Lu, G.; Nishio, N.; Van Den Berg, N.S.; Martin, B.A.; Fakurnejad, S.; Van Keulen, S.; Colevas, A.D.; Thurber, G.M.; Rosenthal, E.L. Co-Administered Antibody Improves Penetration of Antibody–Dye Conjugate into Human Cancers with Implications for Antibody–Drug Conjugates. Nat. Commun. 2020, 11, 5667. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Ding, Z.; Yang, X.; Zhao, X.; Zhao, M.; Gao, L.; Chen, Q.; Xie, S.; Liu, A.; Yin, S.; et al. Nanobody: A Small Antibody with Big Implications for Tumor Therapeutic Strategy. Int. J. Nanomed. 2021, 16, 2337–2356. [Google Scholar] [CrossRef]
- Ma, X.; Wang, M.; Ying, T.; Wu, Y. Reforming Solid Tumor Treatment: The Emerging Potential of Smaller Format Antibody-Drug Conjugate. Antib. Ther. 2024, 7, 114–122. [Google Scholar] [CrossRef]
- Debie, P.; Lafont, C.; Defrise, M.; Hansen, I.; Van Willigen, D.M.; Van Leeuwen, F.W.B.; Gijsbers, R.; D’Huyvetter, M.; Devoogdt, N.; Lahoutte, T.; et al. Size and Affinity Kinetics of Nanobodies Influence Targeting and Penetration of Solid Tumours. J. Control. Release 2020, 317, 34–42. [Google Scholar] [CrossRef]
- Bates, A.; Power, C.A. David vs. Goliath: The Structure, Function, and Clinical Prospects of Antibody Fragments. Antibodies 2019, 8, 28. [Google Scholar] [CrossRef]
- Abdolvahab, M.H.; Karimi, P.; Mohajeri, N.; Abedini, M.; Zare, H. Targeted Drug Delivery Using Nanobodies to Deliver Effective Molecules to Breast Cancer Cells: The Most Attractive Application of Nanobodies. Cancer Cell Int. 2024, 24, 67. [Google Scholar] [CrossRef]
- Bae, J.; Song, Y. Engineering a Cell-Penetrating Hyperstable Antibody scFv(Ras)—An Extraordinary Approach to Cancer Therapeutics. Synth. Syst. Biotechnol. 2021, 6, 343–350. [Google Scholar] [CrossRef]
- Alfaleh, M.A.; Alsaab, H.O.; Mahmoud, A.B.; Alkayyal, A.A.; Jones, M.L.; Mahler, S.M.; Hashem, A.M. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front. Immunol. 2020, 11, 1986. [Google Scholar] [CrossRef] [PubMed]
- Istomina, P.V.; Gorchakov, A.A.; Paoin, C.; Yamabhai, M. Phage Display for Discovery of Anticancer Antibodies. New Biotechnol. 2024, 83, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Yu, D.; Tian, X.; Li, H.; Zhou, X.; Kong, Y.; Zhang, W.; Zhang, L.; Lei, C.; Yang, Z.; et al. A Novel and Effective Approach to Generate Germline-like Monoclonal Antibodies by Integration of Phage and Mammalian Cell Display Platforms. Acta Pharmacol. Sin. 2022, 43, 954–962. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Yuan, K. Phage Display Technology, Phage Display System, Antibody Library, Prospects and Challenges. Adv. Microbiol. 2021, 11, 181–189. [Google Scholar] [CrossRef]
- Sircar, A.; Kim, E.T.; Gray, J.J. RosettaAntibody: Antibody Variable Region Homology Modeling Server. Nucleic Acids Res. 2009, 37, W474–W479. [Google Scholar] [CrossRef]
- Eastman, P.; Galvelis, R.; Peláez, R.P.; Abreu, C.R.A.; Farr, S.E.; Gallicchio, E.; Gorenko, A.; Henry, M.M.; Hu, F.; Huang, J.; et al. OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials. J. Phys. Chem. B 2024, 128, 109–116. [Google Scholar] [CrossRef]
- Ozvoldik, K.; Stockner, T.; Krieger, E. YASARA Model–Interactive Molecular Modeling from Two Dimensions to Virtual Realities. J. Chem. Inf. Model. 2023, 63, 6177–6182. [Google Scholar] [CrossRef]
- Kenlay, H.; Dreyer, F.A.; Cutting, D.; Nissley, D.; Deane, C.M. ABodyBuilder3: Improved and Scalable Antibody Structure Predictions. Bioinformatics 2024, 40, btae576. [Google Scholar] [CrossRef]
- Gaudreault, F.; Corbeil, C.R.; Sulea, T. Enhanced Antibody-Antigen Structure Prediction from Molecular Docking Using AlphaFold2. Sci. Rep. 2023, 13, 15107. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Pierce, B.G. Evaluation of AlphaFold Antibody–Antigen Modeling with Implications for Improving Predictive Accuracy. Protein Sci. 2024, 33, e4865. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gong, X.; Li, S.; Yang, B.; Sun, Y.; Shi, C.; Wang, Y.; Yang, C.; Li, H.; Song, L. xTrimoABFold: De Novo Antibody Structure Prediction without MSA. arXiv 2023, arXiv:2212.00735. [Google Scholar]
- Ruffolo, J.A.; Chu, L.-S.; Mahajan, S.P.; Gray, J.J. Fast, Accurate Antibody Structure Prediction from Deep Learning on Massive Set of Natural Antibodies. Nat. Commun. 2023, 14, 2389. [Google Scholar] [CrossRef]
- Li, L.; Gupta, E.; Spaeth, J.; Shing, L.; Jaimes, R.; Engelhart, E.; Lopez, R.; Caceres, R.S.; Bepler, T.; Walsh, M.E. Machine Learning Optimization of Candidate Antibody Yields Highly Diverse Sub-Nanomolar Affinity Antibody Libraries. Nat. Commun. 2023, 14, 3454. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; McFee, M.; Fang, Q.; Abdin, O.; Kim, P.M. Computational and Artificial Intelligence-Based Methods for Antibody Development. Trends Pharmacol. Sci. 2023, 44, 175–189. [Google Scholar] [CrossRef]
- Hummer, A.M.; Abanades, B.; Deane, C.M. Advances in Computational Structure-Based Antibody Design. Curr. Opin. Struct. Biol. 2022, 74, 102379. [Google Scholar] [CrossRef]
- Chen, H.; Fan, X.; Zhu, S.; Pei, Y.; Zhang, X.; Zhang, X.; Liu, L.; Qian, F.; Tian, B. Accurate Prediction of CDR-H3 Loop Structures of Antibodies with Deep Learning. eLife 2024, 12, RP91512. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, F.A.; Cutting, D.; Schneider, C.; Kenlay, H.; Deane, C.M. Inverse Folding for Antibody Sequence Design Using Deep Learning. arXiv 2023, arXiv:2310.19513. [Google Scholar] [CrossRef]
- Guarra, F.; Colombo, G. Computational Methods in Immunology and Vaccinology: Design and Development of Antibodies and Immunogens. J. Chem. Theory Comput. 2023, 19, 5315–5333. [Google Scholar] [CrossRef]
- Meng, F.; Zhou, N.; Hu, G.; Liu, R.; Zhang, Y.; Jing, M.; Hou, Q. A Comprehensive Overview of Recent Advances in Generative Models for Antibodies. Comput. Struct. Biotechnol. J. 2024, 23, 2648–2660. [Google Scholar] [CrossRef]
- Joubbi, S.; Micheli, A.; Milazzo, P.; Maccari, G.; Ciano, G.; Cardamone, D.; Medini, D. Antibody Design Using Deep Learning: From Sequence and Structure Design to Affinity Maturation. Brief. Bioinform. 2024, 25, bbae307. [Google Scholar] [CrossRef]
- Gu, M.; Yang, W.; Liu, M. Prediction of Antibody-Antigen Interaction Based on Backbone Aware with Invariant Point Attention. BMC Bioinform. 2024, 25, 348. [Google Scholar] [CrossRef]
- Poosarla, V.G.; Li, T.; Goh, B.C.; Schulten, K.; Wood, T.K.; Maranas, C.D. Computational de Novo Design of Antibodies Binding to a Peptide with High Affinity. Biotech. Bioeng. 2017, 114, 1331–1342. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, S.; Schmitz, E.A.; Crowe, J.E.; Meiler, J. The Human Antibody Sequence Space and Structural Design of the V, J Regions, and CDRH3 with Rosetta. mAbs 2022, 14, 2068212. [Google Scholar] [CrossRef]
- Raybould, M.I.J.; Marks, C.; Krawczyk, K.; Taddese, B.; Nowak, J.; Lewis, A.P.; Bujotzek, A.; Shi, J.; Deane, C.M. Five Computational Developability Guidelines for Therapeutic Antibody Profiling. Proc. Natl. Acad. Sci. USA 2019, 116, 4025–4030. [Google Scholar] [CrossRef] [PubMed]
- Prihoda, D.; Maamary, J.; Waight, A.; Juan, V.; Fayadat-Dilman, L.; Svozil, D.; Bitton, D.A. BioPhi: A Platform for Antibody Design, Humanization, and Humanness Evaluation Based on Natural Antibody Repertoires and Deep Learning. mAbs 2022, 14, 2020203. [Google Scholar] [CrossRef]
- Shen, L.; Sun, X.; Chen, Z.; Guo, Y.; Shen, Z.; Song, Y.; Xin, W.; Ding, H.; Ma, X.; Xu, W.; et al. ADCdb: The Database of Antibody–Drug Conjugates. Nucleic Acids Res. 2024, 52, D1097–D1109. [Google Scholar] [CrossRef]
- Ritchie, M.; Tchistiakova, L.; Scott, N. Implications of Receptor-Mediated Endocytosis and Intracellular Trafficking Dynamics in the Development of Antibody Drug Conjugates. mAbs 2013, 5, 13–21. [Google Scholar] [CrossRef]
- Zhao, J.; Nussinov, R.; Ma, B. Antigen Binding Allosterically Promotes Fc Receptor Recognition. mAbs 2019, 11, 58–74. [Google Scholar] [CrossRef]
- Kralj, S.; Hodošček, M.; Podobnik, B.; Kunej, T.; Bren, U.; Janežič, D.; Konc, J. Molecular Dynamics Simulations Reveal Interactions of an IgG1 Antibody with Selected Fc Receptors. Front. Chem. 2021, 9, 705931. [Google Scholar] [CrossRef]
- Li, C.; Chong, G.; Zong, G.; Knorr, D.A.; Bournazos, S.; Aytenfisu, A.H.; Henry, G.K.; Ravetch, J.V.; MacKerell, A.D.; Wang, L.-X. Site-Selective Chemoenzymatic Modification on the Core Fucose of an Antibody Enhances Its Fcγ Receptor Affinity and ADCC Activity. J. Am. Chem. Soc. 2021, 143, 7828–7838. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, J.; Kang, G.; Hu, M.; Yuan, B.; Zhang, Y.; Huang, H. Homology Modeling-Based in Silico Affinity Maturation Improves the Affinity of a Nanobody. Int. J. Mol. Sci. 2019, 20, 4187. [Google Scholar] [CrossRef]
- Vatsa, S. In Silico Prediction of Post-Translational Modifications in Therapeutic Antibodies. mAbs 2022, 14, 2023938. [Google Scholar] [CrossRef]
- Sheyi, R.; De La Torre, B.G.; Albericio, F. Linkers: An Assurance for Controlled Delivery of Antibody-Drug Conjugate. Pharmaceutics 2022, 14, 396. [Google Scholar] [CrossRef]
- Zhang, Z.; Van Der Kant, R.; Marković, I.; Vizarraga, D.; Garcia, T.; Maragkou, K.; Delgado Blanco, J.; Cianferoni, D.; Orlando, G.; Cia, G.; et al. In Silico Design of Stable Single-Domain Antibodies with High Affinity. 2024. Available online: https://www.biorxiv.org/content/10.1101/2024.04.22.589762v2 (accessed on 8 June 2025).
- Chen, H.; Lin, Z.; Arnst, K.; Miller, D.; Li, W. Tubulin Inhibitor-Based Antibody-Drug Conjugates for Cancer Therapy. Molecules 2017, 22, 1281. [Google Scholar] [CrossRef]
- Song, C.H.; Jeong, M.; In, H.; Kim, J.H.; Lin, C.-W.; Han, K.H. Trends in the Development of Antibody-Drug Conjugates for Cancer Therapy. Antibodies 2023, 12, 72. [Google Scholar] [CrossRef]
- Gogia, P.; Ashraf, H.; Bhasin, S.; Xu, Y. Antibody–Drug Conjugates: A Review of Approved Drugs and Their Clinical Level of Evidence. Cancers 2023, 15, 3886. [Google Scholar] [CrossRef]
- Tsuchikama, K.; An, Z. Antibody-Drug Conjugates: Recent Advances in Conjugation and Linker Chemistries. Protein Cell 2018, 9, 33–46. [Google Scholar] [CrossRef]
- Bargh, J.D.; Isidro-Llobet, A.; Parker, J.S.; Spring, D.R. Cleavable Linkers in Antibody–Drug Conjugates. Chem. Soc. Rev. 2019, 48, 4361–4374. [Google Scholar] [CrossRef]
- Miller, J.T.; Vitro, C.N.; Fang, S.; Benjamin, S.R.; Tumey, L.N. Enzyme-Agnostic Lysosomal Screen Identifies New Legumain-Cleavable ADC Linkers. Bioconjug. Chem. 2021, 32, 842–858. [Google Scholar] [CrossRef]
- Su, Z.; Xiao, D.; Xie, F.; Liu, L.; Wang, Y.; Fan, S.; Zhou, X.; Li, S. Antibody–Drug Conjugates: Recent Advances in Linker Chemistry. Acta Pharm. Sin. B 2021, 11, 3889–3907. [Google Scholar] [CrossRef]
- Beck, A.; Goetsch, L.; Dumontet, C.; Corvaïa, N. Strategies and Challenges for the next Generation of Antibody–Drug Conjugates. Nat. Rev. Drug Discov. 2017, 16, 315–337. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, Y.; Li, W.; Jeanty, C.; Xiang, G.; Dong, Y. Recent Advances of Antibody Drug Conjugates for Clinical Applications. Acta Pharm. Sin. B 2020, 10, 1589–1600. [Google Scholar] [CrossRef]
- Kostova, V.; Désos, P.; Starck, J.-B.; Kotschy, A. The Chemistry Behind ADCs. Pharmaceuticals 2021, 14, 442. [Google Scholar] [CrossRef]
- Joubert, N.; Beck, A.; Dumontet, C.; Denevault-Sabourin, C. Antibody–Drug Conjugates: The Last Decade. Pharmaceuticals 2020, 13, 245. [Google Scholar] [CrossRef]
- Junttila, T.T.; Li, G.; Parsons, K.; Phillips, G.L.; Sliwkowski, M.X. Trastuzumab-DM1 (T-DM1) Retains All the Mechanisms of Action of Trastuzumab and Efficiently Inhibits Growth of Lapatinib Insensitive Breast Cancer. Breast Cancer Res. Treat. 2011, 128, 347–356. [Google Scholar] [CrossRef]
- Abelman, R.O.; Wu, B.; Spring, L.M.; Ellisen, L.W.; Bardia, A. Mechanisms of Resistance to Antibody–Drug Conjugates. Cancers 2023, 15, 1278. [Google Scholar] [CrossRef]
- Girish, S.; Gupta, M.; Wang, B.; Lu, D.; Krop, I.E.; Vogel, C.L.; Burris Iii, H.A.; LoRusso, P.M.; Yi, J.-H.; Saad, O.; et al. Clinical Pharmacology of Trastuzumab Emtansine (T-DM1): An Antibody–Drug Conjugate in Development for the Treatment of HER2-Positive Cancer. Cancer Chemother. Pharmacol. 2012, 69, 1229–1240. [Google Scholar] [CrossRef]
- Aoyama, M.; Tada, M.; Yokoo, H.; Ito, T.; Misawa, T.; Demizu, Y.; Ishii-Watabe, A. Linker and Conjugation Site Synergy in Antibody–Drug Conjugates: Impacts on Biological Activity. Bioconjug. Chem. 2024, 35, 1568–1576. [Google Scholar] [CrossRef]
- Maecker, H.; Jonnalagadda, V.; Bhakta, S.; Jammalamadaka, V.; Junutula, J.R. Exploration of the Antibody–Drug Conjugate Clinical Landscape. mAbs 2023, 15, 2229101. [Google Scholar] [CrossRef] [PubMed]
- Roberts, L.; Reish, M.E.; Yang, J.; Zhang, W.; Derasp, J.S.; Hein, J.E. Automating Stochastic Antibody–Drug Conjugation: A Self-Driving Lab Approach for Enhanced Therapeutic Development. Digit. Discov. 2025, 4, 979–986. [Google Scholar] [CrossRef]
- Kern, J.C.; Cancilla, M.; Dooney, D.; Kwasnjuk, K.; Zhang, R.; Beaumont, M.; Figueroa, I.; Hsieh, S.; Liang, L.; Tomazela, D.; et al. Discovery of Pyrophosphate Diesters as Tunable, Soluble, and Bioorthogonal Linkers for Site-Specific Antibody–Drug Conjugates. J. Am. Chem. Soc. 2016, 138, 1430–1445. [Google Scholar] [CrossRef]
- Watanabe, T.; Arashida, N.; Fujii, T.; Shikida, N.; Ito, K.; Shimbo, K.; Seki, T.; Iwai, Y.; Hirama, R.; Hatada, N.; et al. Exo-Cleavable Linkers: Enhanced Stability and Therapeutic Efficacy in Antibody–Drug Conjugates. J. Med. Chem. 2024, 67, 18124–18138. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Fujii, T.; Matsuda, Y. Exo-Linker: Positional Reconfiguration Driving Significant Advances in ADC Stability and Efficacy. 2024. Available online: https://chemrxiv.org/engage/chemrxiv/article-details/674b9ec07be152b1d0861525 (accessed on 8 June 2025).
- Chuprakov, S.; Ogunkoya, A.O.; Barfield, R.M.; Bauzon, M.; Hickle, C.; Kim, Y.C.; Yeo, D.; Zhang, F.; Rabuka, D.; Drake, P.M. Tandem-Cleavage Linkers Improve the In Vivo Stability and Tolerability of Antibody–Drug Conjugates. Bioconjug. Chem. 2021, 32, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Flygare, J.A.; Pillow, T.H.; Aristoff, P. Antibody-Drug Conjugates for the Treatment of Cancer. Chem. Biol. Drug Des. 2013, 81, 113–121. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, Y.; Qi, D.; Tang, C.; Zhang, W. Trop2-Targeted Therapy in Breast Cancer. Biomark. Res. 2024, 12, 82. [Google Scholar] [CrossRef]
- Su, A.; Luo, Y.; Zhang, C.; Duan, H. Linker-GPT: Design of Antibody-Drug Conjugates Linkers with Molecular Generators and Reinforcement Learning. Sci. Rep. 2025, 15, 20525. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Gou, L.; Li, W.; Wang, Y. Antibody–Drug Conjugates: Recent Advances in Payloads. Acta Pharm. Sin. B 2023, 13, 4025–4059. [Google Scholar] [CrossRef] [PubMed]
- Waight, A.B.; Bargsten, K.; Doronina, S.; Steinmetz, M.O.; Sussman, D.; Prota, A.E. Structural Basis of Microtubule Destabilization by Potent Auristatin Anti-Mitotics. PLoS ONE 2016, 11, e0160890. [Google Scholar] [CrossRef] [PubMed]
- Schönberger, S.; Van Beekum, C.; Götz, B.; Nettersheim, D.; Schorle, H.; Schneider, D.T.; Casati, A.; Craveiro, R.B.; Calaminus, G.; Dilloo, D. Brentuximab Vedotin Exerts Profound Antiproliferative and Pro-apoptotic Efficacy in CD30-positive as Well as Cocultured CD30-negative Germ Cell Tumour Cell Lines. J. Cell. Mol. Medi. 2018, 22, 568–575. [Google Scholar] [CrossRef]
- Lopus, M. Antibody-DM1 Conjugates as Cancer Therapeutics. Cancer Lett. 2011, 307, 113–118. [Google Scholar] [CrossRef]
- Balasubramanian, R.; Raghavan, B.; Begaye, A.; Sackett, D.L.; Fecik, R.A. Total Synthesis and Biological Evaluation of Tubulysin U, Tubulysin V, and Their Analogues. J. Med. Chem. 2009, 52, 238–240. [Google Scholar] [CrossRef]
- Alqarni, A.; Elnakady, Y.A.; Alsadhan, L.; Abbas, M.; Richter, W.; Aldahmash, B.A.; Almansour, M.I.; Almutairi, L.M.; Rady, A. Prospective Mechanism of Action of the Tubulysin Synthetic Derivative (TAM 1344) in HCT116 Colon Cancer Cell Line. J. King Saud Univ.-Sci. 2023, 35, 102824. [Google Scholar] [CrossRef]
- Fu, Y.; Ho, M. DNA Damaging Agent-Based Antibody-Drug Conjugates for Cancer Therapy. Antib. Ther. 2018, 1, 43–53. [Google Scholar] [CrossRef]
- Hawash, M. Recent Advances of Tubulin Inhibitors Targeting the Colchicine Binding Site for Cancer Therapy. Biomolecules 2022, 12, 1843. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.-S.; Koh, C.-G.; Li, H.-Y. Mitosis-Targeted Anti-Cancer Therapies: Where They Stand. Cell Death Dis. 2012, 3, e411. [Google Scholar] [CrossRef]
- Baron, J.; Wang, E.S. Gemtuzumab Ozogamicin for the Treatment of Acute Myeloid Leukemia. Expert Rev. Clin. Pharmacol. 2018, 11, 549–559. [Google Scholar] [CrossRef]
- Tsao, L.-C.; Wang, J.S.; Ma, X.; Sodhi, S.; Ragusa, J.V.; Liu, B.; McBane, J.; Wang, T.; Wei, J.; Liu, C.-X.; et al. Effective Extracellular Payload Release and Immunomodulatory Interactions Govern the Therapeutic Effect of Trastuzumab Deruxtecan (T-DXd). Nat. Commun. 2025, 16, 3167. [Google Scholar] [CrossRef]
- Hartley, J.A.; Flynn, M.J.; Bingham, J.P.; Corbett, S.; Reinert, H.; Tiberghien, A.; Masterson, L.A.; Antonow, D.; Adams, L.; Chowdhury, S.; et al. Pre-Clinical Pharmacology and Mechanism of Action of SG3199, the Pyrrolobenzodiazepine (PBD) Dimer Warhead Component of Antibody-Drug Conjugate (ADC) Payload Tesirine. Sci. Rep. 2018, 8, 10479. [Google Scholar] [CrossRef]
- Ciruelos, E.; García-Sáenz, J.Á.; Gavilá, J.; Martín, M.; Rodríguez, C.A.; Rodríguez-Lescure, Á. Safety Profile of Trastuzumab Deruxtecan in Advanced Breast Cancer: Expert Opinion on Adverse Event Management. Clin. Transl. Oncol. 2024, 26, 1539–1548. [Google Scholar] [CrossRef]
- Klein, H.L. The Consequences of Rad51 Overexpression for Normal and Tumor Cells. DNA Repair 2008, 7, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Qian, W.; Zhang, Y.; Hu, L.; Chen, S.; Xia, Y. A New Wave of Innovations within the DNA Damage Response. Sig. Transduct. Target. Ther. 2023, 8, 338. [Google Scholar] [CrossRef] [PubMed]
- Liu-Kreyche, P.; Shen, H.; Marino, A.M.; Iyer, R.A.; Humphreys, W.G.; Lai, Y. Lysosomal P-Gp-MDR1 Confers Drug Resistance of Brentuximab Vedotin and Its Cytotoxic Payload Monomethyl Auristatin E in Tumor Cells. Front. Pharmacol. 2019, 10, 749. [Google Scholar] [CrossRef]
- Tian, Y.; Lei, Y.; Wang, Y.; Lai, J.; Wang, J.; Xia, F. Mechanism of Multidrug Resistance to Chemotherapy Mediated by P-glycoprotein (Review). Int. J. Oncol. 2023, 63, 119. [Google Scholar] [CrossRef]
- Li, H.; Liu, Z.-Y.; Wu, N.; Chen, Y.-C.; Cheng, Q.; Wang, J. PARP Inhibitor Resistance: The Underlying Mechanisms and Clinical Implications. Mol. Cancer 2020, 19, 107. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, A.D. Mechanisms of PARP Inhibitor Sensitivity and Resistance. DNA Repair 2018, 71, 172–176. [Google Scholar] [CrossRef]
- Levengood, M.R.; Zhang, X.; Hunter, J.H.; Emmerton, K.K.; Miyamoto, J.B.; Lewis, T.S.; Senter, P.D. Orthogonal Cysteine Protection Enables Homogeneous Multi-Drug Antibody–Drug Conjugates. Angew. Chem. Int. Ed. 2017, 56, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Gu, Y.; Zhou, W.; Wang, Y. Dual-Payload Antibody–Drug Conjugates: Taking a Dual Shot. Eur. J. Med. Chem. 2025, 281, 116995. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, C.M.; Yamaguchi, A.; Anami, Y.; Xiong, W.; Otani, Y.; Lee, J.; Ueno, N.T.; Zhang, N.; An, Z.; Tsuchikama, K. Antibody-Drug Conjugates with Dual Payloads for Combating Breast Tumor Heterogeneity and Drug Resistance. Nat. Commun. 2021, 12, 3528. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ren, P.; Guan, M.; Tang, J.; Qi, L.; Fan, X.; Yin, S.; Lei, G.; Ke, X. Abstract 1586: KH815, a Novel Dual-Payload TROP2-Directed Antibody-Drug Conjugate, Shows Potent Antitumor Efficacy in Pre-Clinical Tumor Model. Cancer Res. 2025, 85, 1586. [Google Scholar] [CrossRef]
- Maneiro, M.; Forte, N.; Shchepinova, M.M.; Kounde, C.S.; Chudasama, V.; Baker, J.R.; Tate, E.W. Antibody–PROTAC Conjugates Enable HER2-Dependent Targeted Protein Degradation of BRD4. ACS Chem. Biol. 2020, 15, 1306–1312. [Google Scholar] [CrossRef]
- Tolosa, E.J.; Yang, L.; Ayers-Ringler, J.; Suzuki, S.; Mallareddy, J.R.; Schaefer-Klein, J.; Borad, M.; Kosari, F.; Natarajan, A.; Mansfield, A.S. Proteolysis Targeting Chimera (PROTAC)-Driven Antibody Internalization of Oncogenic Cell Surface Receptors. Commun. Biol. 2024, 7, 1719. [Google Scholar] [CrossRef]
- Wang, L.; Ke, Y.; He, Q.; Paerhati, P.; Zhuang, W.; Yue, Y.; Liu, J.; Zhang, J.; Huang, L.; Yin, Q.; et al. A Novel ROR1-Targeting Antibody-PROTAC Conjugate Promotes BRD4 Degradation for Solid Tumor Treatment. Theranostics 2025, 15, 1238–1254. [Google Scholar] [CrossRef]
- Malecova, B.; Burke, R.S.; Cochran, M.; Hood, M.D.; Johns, R.; Kovach, P.R.; Doppalapudi, V.R.; Erdogan, G.; Arias, J.D.; Darimont, B.; et al. Targeted Tissue Delivery of RNA Therapeutics Using Antibody–Oligonucleotide Conjugates (AOCs). Nucleic Acids Res. 2023, 51, 5901–5910. [Google Scholar] [CrossRef]
- Cochran, M.; Marks, I.; Albin, T.; Arias, D.; Kovach, P.; Darimont, B.; Huang, H.; Etxaniz, U.; Kwon, H.W.; Shi, Y.; et al. Structure–Activity Relationship of Antibody–Oligonucleotide Conjugates: Evaluating Bioconjugation Strategies for Antibody–Phosphorodiamidate Morpholino Oligomer Conjugates for Drug Development. J. Med. Chem. 2024, 67, 14868–14884. [Google Scholar] [CrossRef]
- Zhou, L.; Bi, J.; Chang, S.; Bai, Z.; Yu, J.; Wang, R.; Li, Z.; Zhang, X.; Chou, J.J.; Pan, L. Self-Assembled Antibody-Oligonucleotide Conjugates for Targeted Delivery of Complementary Antisense Oligonucleotides. Angew. Chem. Int. Ed. 2025, 64, e202415272. [Google Scholar] [CrossRef]
- Böhnke, N.; Berger, M.; Griebenow, N.; Rottmann, A.; Erkelenz, M.; Hammer, S.; Berndt, S.; Günther, J.; Wengner, A.M.; Stelte-Ludwig, B.; et al. A Novel NAMPT Inhibitor-Based Antibody–Drug Conjugate Payload Class for Cancer Therapy. Bioconjug. Chem. 2022, 33, 1210–1221. [Google Scholar] [CrossRef]
- Karpov, A.S.; Abrams, T.; Clark, S.; Raikar, A.; D’Alessio, J.A.; Dillon, M.P.; Gesner, T.G.; Jones, D.; Lacaud, M.; Mallet, W.; et al. Nicotinamide Phosphoribosyltransferase Inhibitor as a Novel Payload for Antibody–Drug Conjugates. ACS Med. Chem. Lett. 2018, 9, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Neumann, C.S.; Olivas, K.C.; Anderson, M.E.; Cochran, J.H.; Jin, S.; Li, F.; Loftus, L.V.; Meyer, D.W.; Neale, J.; Nix, J.C.; et al. Targeted Delivery of Cytotoxic NAMPT Inhibitors Using Antibody–Drug Conjugates. Mol. Cancer Ther. 2018, 17, 2633–2642. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Fang, Y.; Wei, Q.; Shi, H.; Tan, H.; Deng, Y.; Zeng, Z.; Qiu, J.; Chen, C.; Sun, L.; et al. Tumor-Targeted Delivery of a STING Agonist Improves Cancer Immunotherapy. Proc. Natl. Acad. Sci. USA 2022, 119, e2214278119. [Google Scholar] [CrossRef] [PubMed]
- Duvall, J.R.; Thomas, J.D.; Bukhalid, R.A.; Catcott, K.C.; Bentley, K.W.; Collins, S.D.; Eitas, T.; Jones, B.D.; Kelleher, E.W.; Lancaster, K.; et al. Discovery and Optimization of a STING Agonist Platform for Application in Antibody Drug Conjugates. J. Med. Chem. 2023, 66, 10715–10733. [Google Scholar] [CrossRef]
- Malli Cetinbas, N.; Monnell, T.; Soomer-James, J.; Shaw, P.; Lancaster, K.; Catcott, K.C.; Dolan, M.; Mosher, R.; Routhier, C.; Chin, C.-N.; et al. Tumor Cell-Directed STING Agonist Antibody-Drug Conjugates Induce Type III Interferons and Anti-Tumor Innate Immune Responses. Nat. Commun. 2024, 15, 5842. [Google Scholar] [CrossRef]
- Khera, E.; Dong, S.; Huang, H.; De Bever, L.; Van Delft, F.L.; Thurber, G.M. Cellular-Resolution Imaging of Bystander Payload Tissue Penetration from Antibody-Drug Conjugates. Mol. Cancer Ther. 2022, 21, 310–321. [Google Scholar] [CrossRef]
- Guo, Y.; Shen, Z.; Zhao, W.; Lu, J.; Song, Y.; Shen, L.; Lu, Y.; Wu, M.; Shi, Q.; Zhuang, W.; et al. Rational Identification of Novel Antibody-Drug Conjugate with High Bystander Killing Effect against Heterogeneous Tumors. Adv. Sci. 2024, 11, 2306309. [Google Scholar] [CrossRef]
- Jain, S.; Griffith, J.I.; Porath, K.A.; Rathi, S.; Le, J.; Pasa, T.I.; Decker, P.A.; Gupta, S.K.; Hu, Z.; Carlson, B.L.; et al. Bystander Effects, Pharmacokinetics, and Linker-Payload Stability of EGFR-Targeting Antibody-Drug Conjugates Losatuxizumab Vedotin and Depatux-M in Glioblastoma Models. Clin. Cancer Res. 2024, 30, 3287–3297. [Google Scholar] [CrossRef]
- Sharma, S.; Li, Z.; Bussing, D.; Shah, D.K. Evaluation of Quantitative Relationship Between Target Expression and Antibody-Drug Conjugate Exposure Inside Cancer Cells. Drug Metab. Dispos. 2020, 48, 368–377. [Google Scholar] [CrossRef]
- Nessler, I.; Khera, E.; Vance, S.; Kopp, A.; Qiu, Q.; Keating, T.A.; Abu-Yousif, A.O.; Sandal, T.; Legg, J.; Thompson, L.; et al. Increased Tumor Penetration of Single-Domain Antibody–Drug Conjugates Improves In Vivo Efficacy in Prostate Cancer Models. Cancer Res. 2020, 80, 1268–1278. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Ponte, J.F.; Yoder, N.C.; Laleau, R.; Coccia, J.; Lanieri, L.; Qiu, Q.; Wu, R.; Hong, E.; Bogalhas, M.; et al. Effects of Drug–Antibody Ratio on Pharmacokinetics, Biodistribution, Efficacy, and Tolerability of Antibody–Maytansinoid Conjugates. Bioconjug. Chem. 2017, 28, 1371–1381. [Google Scholar] [CrossRef]
- Walsh, S.J.; Bargh, J.D.; Dannheim, F.M.; Hanby, A.R.; Seki, H.; Counsell, A.J.; Ou, X.; Fowler, E.; Ashman, N.; Takada, Y.; et al. Site-Selective Modification Strategies in Antibody–Drug Conjugates. Chem. Soc. Rev. 2021, 50, 1305–1353. [Google Scholar] [CrossRef]
- Deonarain, M.; Yahioglu, G.; Stamati, I.; Pomowski, A.; Clarke, J.; Edwards, B.; Diez-Posada, S.; Stewart, A. Small-Format Drug Conjugates: A Viable Alternative to ADCs for Solid Tumours? Antibodies 2018, 7, 16. [Google Scholar] [CrossRef]
- Cannon, D.A.; Shan, L.; Du, Q.; Shirinian, L.; Rickert, K.W.; Rosenthal, K.L.; Korade, M.; Van Vlerken-Ysla, L.E.; Buchanan, A.; Vaughan, T.J.; et al. Experimentally Guided Computational Antibody Affinity Maturation with de Novo Docking, Modelling and Rational Design. PLoS Comput. Biol. 2019, 15, e1006980. [Google Scholar] [CrossRef] [PubMed]
- Bai, G.; Sun, C.; Guo, Z.; Wang, Y.; Zeng, X.; Su, Y.; Zhao, Q.; Ma, B. Accelerating Antibody Discovery and Design with Artificial Intelligence: Recent Advances and Prospects. Semin. Cancer Biol. 2023, 95, 13–24. [Google Scholar] [CrossRef]
- Cheng, J.; Liang, T.; Xie, X.-Q.; Feng, Z.; Meng, L. A New Era of Antibody Discovery: An in-Depth Review of AI-Driven Approaches. Drug Discov. Today 2024, 29, 103984. [Google Scholar] [CrossRef]
- Shanehsazzadeh, A.; McPartlon, M.; Kasun, G.; Steiger, A.K.; Sutton, J.M.; Yassine, E.; McCloskey, C.; Haile, R.; Shuai, R.; Alverio, J.; et al. Unlocking de Novo Antibody Design with Generative Artificial Intelligence. 2023. Available online: https://www.biorxiv.org/content/10.1101/2023.01.08.523187v4 (accessed on 8 June 2025).
- Clark, T.; Subramanian, V.; Jayaraman, A.; Fitzpatrick, E.; Gopal, R.; Pentakota, N.; Rurak, T.; Anand, S.; Viglione, A.; Raman, R.; et al. Machine Learning-Guided Antibody Engineering That Leverages Domain Knowledge To Overcome The Small Data Problem. 2023. Available online: https://www.biorxiv.org/content/10.1101/2023.06.02.543458v1 (accessed on 8 June 2025).
- Evers, A.; Malhotra, S.; Sood, V.D. In Silico Approaches to Deliver Better Antibodies by Design—The Past, the Present and the Future. arXiv 2023. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Almeida, V.M.; Soares, M.B.P.; Santos-Filho, O.A. Exploring Experimental and In Silico Approaches for Antibody–Drug Conjugates in Oncology Therapies. Pharmaceuticals 2025, 18, 1198. https://doi.org/10.3390/ph18081198
de Almeida VM, Soares MBP, Santos-Filho OA. Exploring Experimental and In Silico Approaches for Antibody–Drug Conjugates in Oncology Therapies. Pharmaceuticals. 2025; 18(8):1198. https://doi.org/10.3390/ph18081198
Chicago/Turabian Stylede Almeida, Vitor Martins, Milena Botelho Pereira Soares, and Osvaldo Andrade Santos-Filho. 2025. "Exploring Experimental and In Silico Approaches for Antibody–Drug Conjugates in Oncology Therapies" Pharmaceuticals 18, no. 8: 1198. https://doi.org/10.3390/ph18081198
APA Stylede Almeida, V. M., Soares, M. B. P., & Santos-Filho, O. A. (2025). Exploring Experimental and In Silico Approaches for Antibody–Drug Conjugates in Oncology Therapies. Pharmaceuticals, 18(8), 1198. https://doi.org/10.3390/ph18081198