Antihypertensive Effects of Lotus Seed (Nelumbo nucifera Gaertn.) Extract via eNOS Upregulation and Oxidative Stress Reduction in L-NAME-Induced Hypertensive Rats
Abstract
1. Introduction
2. Results
2.1. Chemical Composition of LSE by LC-MS
2.2. Effect of LSE on Systolic Blood Pressure and Hemodynamic Parameters in L-NAME Rats
2.3. Effect of the LSE on Body Weight and Organ Weights in L-NAME Rats
2.4. Effect of LSE on Left Ventricular (LV) Morphometry in L-NAME Rats
2.5. Effect of LSE on Abdominal Aortic Wall Thickness in L-NAME Rats
2.6. Effect of LSE on SOD Activity in the Aorta and Serum in L-NAME Rats
2.7. Effects of LSE on Aortic eNOS Protein Expression and Plasma NO Concentration in L-NAME Rats
2.8. Effects of LSE on AT1R Protein Expressions, Plasma Ang II, and ACE Activity in L-NAME Rats
2.9. Effects of LSE on Aortic and Serum MDA and Aortic gp91phox Protein Expressions
3. Discussion
4. Materials and Methods
4.1. Drugs and Chemicals
4.2. Plant Material and Preparation of Extract
4.3. HPLC-ESI-QTOF-MS/MS Analysis
4.4. Animals and Experimental Protocols
4.5. Blood Pressure Measurement
4.6. Blood and Tissue Sample Collection
4.7. Histological and Morphometric Examination
4.8. Assay of Oxidative Stress and Antioxidant Defense System
4.9. Assays of Plasma Angiotensin-Converting Enzyme (ACE) Activity
4.10. Assay of Plasma Angiotensin II Concentration
4.11. Assay of Plasma NO Level
4.12. Expression of AT1R, gp91phox, and eNOS Proteins by Western Blotting Analysis
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE | Angiotensin converting enzyme |
Ang II | Angiotensin II |
BP | Blood pressure |
Cap | Captopril |
DBP | Diastolic blood pressure |
eNOS | Endothelial nitric oxide synthase |
HR | Heart rate |
HandE | Hematoxylin and eosin |
L-NAME | Nω-nitro-L-arginine methyl ester |
LV | Left ventricular |
LSE | Lotus seed extract |
MAP | Mean arterial pressure |
MDA | Malondialdehyde |
NO | Nitric oxide |
NOS | Nitric oxide synthase |
O2− | Superoxide anion |
RAS | Renin-angiotensin system |
ROS | Reactive oxygen species |
SBP | Systolic blood pressures |
References
- Fuchs, F.D.; Fuchs, S.C.; Berwanger, O.; Whelton, P.K. Clinical Trials in Hypertension: A Mathematical Endorsement for Diagnosis and Treatment. Hypertension 2025, 82, 411–418. [Google Scholar] [CrossRef]
- Amiya, E.; Watanabe, M.; Komuro, I. The Relationship between Vascular Function and the Autonomic Nervous System. Ann. Vasc. Dis. 2014, 7, 109–119. [Google Scholar] [CrossRef]
- Alderton, W.K.; Cooper, C.E.; Knowles, R.G. Nitric Oxide Synthases: Structure, Function and Inhibition. Biochem. J. 2001, 357, 593–615. [Google Scholar] [CrossRef]
- Maneesai, P.; Iampanichakul, M.; Chaihongsa, N.; Poasakate, A.; Potue, P.; Rattanakanokchai, S.; Bunbupha, S.; Chiangsaen, P.; Pakdeechote, P. Butterfly Pea Flower (Clitoria ternatea Linn.) Extract Ameliorates Cardiovascular Dysfunction and Oxidative Stress in Nitric Oxide-Deficient Hypertensive Rats. Antioxidants 2021, 10, 523. [Google Scholar] [CrossRef] [PubMed]
- Poasakate, A.; Maneesai, P.; Rattanakanokchai, S.; Bunbupha, S.; Tong-Un, T.; Pakdeechote, P. Genistein Prevents Nitric Oxide Deficiency-Induced Cardiac Dysfunction and Remodeling in Rats. Antioxidants 2021, 10, 237. [Google Scholar] [CrossRef] [PubMed]
- Jan-On, G.; Sangartit, W.; Pakdeechote, P.; Kukongviriyapan, V.; Sattayasai, J.; Senaphan, K.; Kukongviriyapan, U. Virgin Rice Bran Oil Alleviates Hypertension through the Upregulation of ENOS and Reduction of Oxidative Stress and Inflammation in L-NAME-Induced Hypertensive Rats. Nutrition 2020, 69, 110575. [Google Scholar] [CrossRef]
- Maneesai, P.; Prasarttong, P.; Bunbupha, S.; Kukongviriyapan, U.; Kukongviriyapan, V.; Tangsucharit, P.; Prachaney, P.; Pakdeechote, P. Synergistic Antihypertensive Effect of Carthamus Tinctorius L. Extract and Captopril in L-NAME-Induced Hypertensive Rats via Restoration of ENOS and AT1R Expression. Nutrients 2016, 8, 122. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Jardón, F.F.; Castro-Moreno, P.; Figueroa-Guillén, E.S.; Gallardo-Ortíz, I.A.; Godínez-Hernández, D.; Ibarra-Barajas, M. Angiotensin II Augments Renal Vasoconstriction via AT1 Receptors in L-NAME-Induced Hypertensive Rats. Proc. West. Pharmacol. Soc. 2009, 52, 47–49. [Google Scholar]
- Wunpathe, C.; Maneesai, P.; Rattanakanokchai, S.; Bunbupha, S.; Kukongviriyapan, U.; Tong-Un, T.; Pakdeechote, P. Tangeretin Mitigates L-NAME-Induced Ventricular Dysfunction and Remodeling through the AT(1)R/PERK1/2/PJNK Signaling Pathway in Rats. Food Funct. 2020, 11, 1322–1333. [Google Scholar] [CrossRef]
- Pakdeechote, P.; Meephat, S.; Sakonsinsiri, C.; Phetcharaburanin, J.; Bunbupha, S.; Maneesai, P. Syzygium Gratum Extract Alleviates Vascular Alterations in Hypertensive Rats. Medicina 2020, 56, 509. [Google Scholar] [CrossRef]
- Bezalel, S.; Mahlab-Guri, K.; Asher, I.; Werner, B.; Sthoeger, Z.M. Angiotensin-Converting Enzyme Inhibitor-Induced Angioedema. Am. J. Med. 2015, 128, 120–125. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Mukherjee, D.; Maji, A.K.; Rai, S.; Heinrich, M. The Sacred Lotus (Nelumbo nucifera)—Phytochemical and Therapeutic Profile. J. Pharm. Pharmacol. 2009, 61, 407–422. [Google Scholar] [CrossRef]
- Paudel, K.R.; Panth, N. Phytochemical Profile and Biological Activity of Nelumbo nucifera. Evid. Based Complement. Altern. Med. 2015, 2015, 789124. [Google Scholar] [CrossRef]
- Sim, W.-S.; Choi, S.-I.; Cho, B.-Y.; Choi, S.-H.; Han, X.; Cho, H.-D.; Kim, S.-H.; Lee, B.-Y.; Kang, I.-J.; Cho, J.-H.; et al. Anti-Obesity Effect of Extract from Nelumbo nucifera L., Morus alba L., and Raphanus sativus Mixture in 3T3-L1 Adipocytes and C57BL/6J Obese Mice. Foods 2019, 8, 170. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Wang, Q.; Zhang, J.; Dai, X.; Miao, S.; Lu, X. The Antioxidant Capacity and Nutrient Composition Characteristics of Lotus (Nelumbo nucifera Gaertn.) Seed Juice and Their Relationship with Color at Different Storage Temperatures. Food Chem. X 2023, 18, 100669. [Google Scholar] [CrossRef]
- Moon, S.W.; Ahn, C.-B.; Oh, Y.; Je, J.-Y. Lotus (Nelumbo nucifera) Seed Protein Isolate Exerts Anti-Inflammatory and Antioxidant Effects in LPS-Stimulated RAW264.7 Macrophages via Inhibiting NF-ΚB and MAPK Pathways, and Upregulating Catalase Activity. Int. J. Biol. Macromol. 2019, 134, 791–797. [Google Scholar] [CrossRef]
- Rai, S.; Wahile, A.; Mukherjee, K.; Saha, B.P.; Mukherjee, P.K. Antioxidant Activity of Nelumbo nucifera (Sacred Lotus) Seeds. J. Ethnopharmacol. 2006, 104, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Jiang, C.; Li, J.; Zheng, T. Protective Effects of Lotus (Nelumbo nucifera Gaertn.) Germ Oil against Carbon Tetrachloride-Induced Injury in Mice and Cultured PC-12 Cells. Food Chem. Toxicol. 2012, 50, 1447–1453. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Zhang, X.; Lu, Y.; Wen, Y.; Xie, Q.; Yang, X.; He, S.; Guo, Z.; Li, J.; Shen, A.; et al. Neferine Ameliorates Hypertensive Vascular Remodeling Modulating Multiple Signaling Pathways in Spontaneously Hypertensive Rats. Biomed. Pharmacother. 2023, 158, 114203. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, D.; Khatua, T.N.; Venkatesh, P.; Saha, B.P.; Mukherjee, P.K. Immunomodulatory Potential of Rhizome and Seed Extracts of Nelumbo nucifera Gaertn. J. Ethnopharmacol. 2010, 128, 490–494. [Google Scholar] [CrossRef]
- Punia Bangar, S.; Dunno, K.; Kumar, M.; Mostafa, H.; Maqsood, S. A Comprehensive Review on Lotus Seeds (Nelumbo nucifera Gaertn.): Nutritional Composition, Health-Related Bioactive Properties, and Industrial Applications. J. Funct. Foods 2022, 89, 104937. [Google Scholar] [CrossRef]
- Wicha, P.; Onsa-Ard, A.; Chaichompoo, W.; Suksamrarn, A.; Tocharus, C. Vasorelaxant and Antihypertensive Effects of Neferine in Rats: An In Vitro and In Vivo Study. Planta Med. 2020, 86, 496–504. [Google Scholar] [CrossRef]
- Inchan, A.; Chootip, K.; Kongthong, K.; Bualeong, T.; Sumsakul, W.; Apaikawee, P.; Sa-Nguanpong, P.; Senarat, S.; Wongphoom, J.; Charoenphon, N. Lotus Seed (Nelumbo nucifera Gaertn.) Extract at Low Dose Ameliorates Reproductive Dysfunction in L-NAME-Induced Hypertension and Oxidative Stress in Male Rats. J. Tradit. Complement. Med. 2024, 15, 404–413. [Google Scholar] [CrossRef]
- Manogaran, P.; Beeraka, N.M.; Padma, V.V. The Cytoprotective and Anti-Cancer Potential of Bisbenzylisoquinoline Alkaloids from Nelumbo nucifera. Curr. Top. Med. Chem. 2019, 19, 2940–2957. [Google Scholar] [CrossRef]
- Bharathi Priya, L.; Huang, C.-Y.; Hu, R.-M.; Balasubramanian, B.; Baskaran, R. An Updated Review on Pharmacological Properties of Neferine-A Bisbenzylisoquinoline Alkaloid from Nelumbo nucifera. J. Food Biochem. 2021, 45, e13986. [Google Scholar] [CrossRef]
- Maneesai, P.; Potue, P.; Khamseekaew, J.; Sangartit, W.; Rattanakanokchai, S.; Poasakate, A.; Pakdeechote, P. Kaempferol Protects against Cardiovascular Abnormalities Induced by Nitric Oxide Deficiency in Rats by Suppressing the TNF-α Pathway. Eur. J. Pharmacol. 2023, 960, 176112. [Google Scholar] [CrossRef]
- Bunbupha, S.; Pakdeechote, P.; Kukongviriyapan, U.; Prachaney, P.; Kukongviriyapan, V. Asiatic Acid Reduces Blood Pressure by Enhancing Nitric Oxide Bioavailability with Modulation of ENOS and P47phox Expression in L-NAME-Induced Hypertensive Rats. Phytother. Res. 2014, 28, 1506–1512. [Google Scholar] [CrossRef] [PubMed]
- Vrankova, S.; Zemancikova, A.; Torok, J.; Pechanova, O. Effect of Low Dose L-NAME Pretreatment on Nitric Oxide/Reactive Oxygen Species Balance and Vasoactivity in L-NAME/Salt-Induced Hypertensive Rats. J. Physiol. Pharmacol. 2019, 70, 535–544. [Google Scholar] [CrossRef]
- Bunbupha, S.; Pakdeechote, P.; Maneesai, P.; Prachaney, P.; Boonprom, P. Carthamus Tinctorius L. Extract Attenuates Cardiac Remodeling in L-NAME-Induced Hypertensive Rats by Inhibiting the NADPH Oxidase-Mediated TGF-Β1 and MMP-9 Pathway. Ann. Anat. 2019, 222, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Liu, T.; Zhang, C.; Guo, M. Flavonoids of Lotus (Nelumbo nucifera) Seed Embryos and Their Antioxidant Potential. J. Food Sci. 2017, 82, 1834–1841. [Google Scholar] [CrossRef]
- HarishKumar, R.; Selvaraj, C.I. Nuciferine from Nelumbo nucifera Gaertn. Attenuates Isoproterenol-Induced Myocardial Infarction in Wistar Rats. Biotechnol. Appl. Biochem. 2022, 69, 1176–1189. [Google Scholar] [CrossRef] [PubMed]
- Maaliki, D.; Shaito, A.A.; Pintus, G.; El-Yazbi, A.; Eid, A.H. Flavonoids in Hypertension: A Brief Review of the Underlying Mechanisms. Curr. Opin. Pharmacol. 2019, 45, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Dikalova, A.E.; Góngora, M.C.; Harrison, D.G.; Lambeth, J.D.; Dikalov, S.; Griendling, K.K. Upregulation of Nox1 in Vascular Smooth Muscle Leads to Impaired Endothelium-Dependent Relaxation via ENOS Uncoupling. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H673–H679. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, L.; Castillo, J.; Quiñones, M.; Garcia-Vallvé, S.; Arola, L.; Pujadas, G.; Muguerza, B. Inhibition of Angiotensin-Converting Enzyme Activity by Flavonoids: Structure-Activity Relationship Studies. PLoS ONE 2012, 7, e49493. [Google Scholar] [CrossRef]
- Sa-nguanpong, P.; Wetprasit, P.; Inchan, A.; Chaichana, C.; Kaewkong, W.; Charoenphon, N.; Adthapanyawanich, K.; Tantanarat, K.; Tochampa, W.; Ruttarattanamongkol, K.; et al. Sacha Inchi Meal Protein Hydrolysate Mitigates Lipid Accumulation and Oxidative Stress in HepG2 and 3 T3-L1 Cells and Synergistically Enhances Captopril’s Antihypertensive Effects in L-NAME-Induced Hypertensive Rats. J. Funct. Foods 2025, 127, 106772. [Google Scholar] [CrossRef]
- Inchan, A.; Pathomwichaiwat, T.; Bualeong, T.; Tipratchadaporn, S.; Chootip, K. Anti-Hypotensive Effect of “Yahom Navakot” in Rats with Orthostatic Hypotension. J. Tradit. Complement. Med. 2022, 12, 180–189. [Google Scholar] [CrossRef]
- Choowong-In, P.; Sattayasai, J.; Boonchoong, P.; Poodendaen, C.; Wu, A.T.; Tangsrisakda, N.; Sawatpanich, T.; Arun, S.; Uabundit, N.; Iamsaard, S. Protective Effects of Thai Mucuna pruriens (L.) DC. Var. Pruriens Seeds on Sexual Behaviors and Essential Reproductive Markers in Chronic Unpredictable Mild Stress Mice. J. Tradit. Complement. Med. 2022, 12, 402–413. [Google Scholar] [CrossRef]
- Wei, S.-M.; Wang, R.-Y.; Chen, Y.-S. Sesamol Protects Testis from Ischemia-Reperfusion Injury through Scavenging Reactive Oxygen Species and Upregulating CREMτ Expression. Oxid. Med. Cell Longev. 2020, 2020, 9043806. [Google Scholar] [CrossRef]
Parameters | |||||||
---|---|---|---|---|---|---|---|
Groups | SBP (mmHg) | DBP (mmHg) | MAP (mmHg) | HR (bpm) | BW (g) | HW/BW (per BW%) | LW/BW (per BW%) |
Control | 116.4 ± 3.3 | 81.3 ± 2.7 | 93.0 ± 2.8 | 349.4 ± 8.4 | 534.6 ± 9.2 | 0.28 ± 0.01 | 3.2 ± 0.2 |
L-NAME | 172.7 ± 5.1 ** | 129.3 ± 3.5 ** | 143.8 ± 3.6 ** | 388.1 ± 12.9 * | 533.1 ± 17.6 | 0.26 ± 0.01 | 3.3 ± 0.2 |
LN + LSE5 | 148.6 ± 7.6 **# | 103.3 ± 4.2 *## | 117.8 ± 5.3 *## | 321.1 ± 5.0 # | 565.9 ± 11.2 | 0.25 ± 0.01 | 3.2 ± 0.1 |
LN + LSE10 | 145.7 ± 9.3 **# | 108.6 ± 7.7 **# | 120.5 ± 8.1 **# | 326.4 ± 10.9 # | 548.4 ± 9.2 | 0.27 ± 0.01 | 3.3 ± 0.1 |
LN + LSE100 | 145.4 ± 8.3 **# | 108.7 ± 7.5 **# | 121.0 ± 7.7 **# | 333.2 ± 10.5 # | 537.8 ± 9.8 | 0.28 ± 0.01 | 3.2 ± 0.1 |
LN + CAP5 | 127.0 ± 4.6 ## | 93.6 ± 3.0 ## | 104.7 ± 3.5 ## | 335.4 ± 5.0 # | 528.6 ± 7.6 | 0.25 ± 0.01 | 3.5 ± 0.1 |
LN + LSE2.5 | 126.0 ± 2.9 ## | 91.9 ± 3.2 ## | 103.3 ± 3.0 ## | 320.4 ± 8.3 # | 568.1 ± 9.1 | 0.25 ± 0.01 | 3.5 ± 0.1 |
+Cap2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inchan, A.; Bualeong, T.; Kaewkong, W.; Nuengchamnong, N.; Apaikawee, P.; Sa-Nguanpong, P.; Sumsakul, W.; Charoenphon, N.; Chatturong, U.; Deetud, W.; et al. Antihypertensive Effects of Lotus Seed (Nelumbo nucifera Gaertn.) Extract via eNOS Upregulation and Oxidative Stress Reduction in L-NAME-Induced Hypertensive Rats. Pharmaceuticals 2025, 18, 1156. https://doi.org/10.3390/ph18081156
Inchan A, Bualeong T, Kaewkong W, Nuengchamnong N, Apaikawee P, Sa-Nguanpong P, Sumsakul W, Charoenphon N, Chatturong U, Deetud W, et al. Antihypertensive Effects of Lotus Seed (Nelumbo nucifera Gaertn.) Extract via eNOS Upregulation and Oxidative Stress Reduction in L-NAME-Induced Hypertensive Rats. Pharmaceuticals. 2025; 18(8):1156. https://doi.org/10.3390/ph18081156
Chicago/Turabian StyleInchan, Anjaree, Tippaporn Bualeong, Worasak Kaewkong, Nitra Nuengchamnong, Phapada Apaikawee, Pakaporn Sa-Nguanpong, Wiriyaporn Sumsakul, Natthawut Charoenphon, Usana Chatturong, Watcharakorn Deetud, and et al. 2025. "Antihypertensive Effects of Lotus Seed (Nelumbo nucifera Gaertn.) Extract via eNOS Upregulation and Oxidative Stress Reduction in L-NAME-Induced Hypertensive Rats" Pharmaceuticals 18, no. 8: 1156. https://doi.org/10.3390/ph18081156
APA StyleInchan, A., Bualeong, T., Kaewkong, W., Nuengchamnong, N., Apaikawee, P., Sa-Nguanpong, P., Sumsakul, W., Charoenphon, N., Chatturong, U., Deetud, W., & Chootip, K. (2025). Antihypertensive Effects of Lotus Seed (Nelumbo nucifera Gaertn.) Extract via eNOS Upregulation and Oxidative Stress Reduction in L-NAME-Induced Hypertensive Rats. Pharmaceuticals, 18(8), 1156. https://doi.org/10.3390/ph18081156