Analytical Strategies for Tocopherols in Vegetable Oils: Advances in Extraction and Detection
Abstract
1. Introduction
2. Physicochemical Characteristics and Occurrence of Tocopherols in Vegetable Oils
2.1. Structure and Physicochemical Properties
2.2. Occurrence and Distribution in Vegetable Oils
3. Sample Preparation for Tocopherols in Vegetable Oils
3.1. Direct Dilution and Saponification Strategies
3.2. Solvent Extraction
3.3. Supercritical Fluid Extraction
3.4. Liquid-Phase Microextraction
3.5. Solid-Phase Extraction
3.6. Magnetic Solid-Phase Extraction
4. Analytical Methods for the Tocopherols in Vegetable Oils
4.1. Chromatographic Techniques
4.2. Capillary Electrophoresis
4.3. Mass Spectrometry-Based Hyphenated Techniques
4.4. Spectroscopic Techniques
4.4.1. Near-Infrared Spectroscopy
4.4.2. Fourier-Transform Infrared Spectroscopy
4.4.3. Raman Spectroscopy
4.5. Electrochemical Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
APPI | Atmospheric pressure photoionization |
CE | Capillary electrophoresis |
DESs | Deep eutectic solvents |
DLLME | Dispersive liquid–liquid microextraction |
DPV | Differential pulse voltammetry |
EVOO | Extra virgin olive oil |
FT-IR | Fourier-transform infrared spectroscopy |
GC-MS | Gas chromatography coupled with mass spectrometry |
HBA | Hydrogen bond acceptor |
HBD | Hydrogen bond donor |
HF-LPME | Hollow-fiber liquid-phase microextraction |
HPLC | High-performance liquid chromatography |
HPLC-MS | High-performance liquid chromatography coupled with mass spectrometry |
HPLC-UV | High-performance liquid chromatography with ultraviolet detection |
LC-MS/MS | Liquid chromatography coupled with tandem mass spectrometry |
LLE | Liquid–liquid extraction |
LPME | Liquid-phase microextraction |
MGO | Magnetic graphene oxide |
MIP-SPE | Molecularly imprinted solid-phase extraction |
MIPs | Molecularly imprinted polymers |
MRM | Multiple reaction monitoring |
MSPE | Magnetic solid-phase extraction |
NIR | Near-infrared spectroscopy |
PGE | Pencil graphite electrode |
PLS | Partial least squares |
PLS-DA | Partial least squares–discriminant analysis |
RDPs | Resin-based directional polymers |
RODD | Rapeseed oil deodorizer distillate |
ROS | Reactive oxygen species |
RPDs | Residual predictive deviations |
SERS | Surface-enhanced Raman spectroscopy |
SFC-MS | Supercritical fluid chromatography coupled with mass spectrometry |
SFE-CO2 | Supercritical fluid extraction with carbon dioxide |
SODD | Soybean oil deodorizer distillate |
SODD-ME | Soybean oil deodorizer distillate fatty acid methyl esters |
SPE | Solid-phase extraction |
SWV | Square wave voltammetry |
TBAC | Tetrabutylammonium chloride |
TMS | Trimethylsilyl |
UV | Ultraviolet |
References
- Zahid, M.; Khalid, S.; Raana, S.; Amin, S.; Javaid, H.; Arshad, R.; Jahangeer, A.; Ahmad, S.; Hassan, S.A. Unveiling the anti-oxidative potential of fruits and vegetables waste in prolonging the shelf stability of vegetable oils. Future Foods 2024, 10, 100328. [Google Scholar] [CrossRef]
- Tian, M.; Bai, Y.; Tian, H.; Zhao, X. The Chemical Composition and Health-Promoting Benefits of Vegetable Oils-A Review. Molecules 2023, 28, 6393. [Google Scholar] [CrossRef]
- Wei, C.W.; Yu, Y.L.; Chen, Y.H.; Hung, Y.T.; Yiang, G.T. Anticancer effects of methotrexate in combination with alpha-tocopherol and alpha-tocopherol succinate on triple-negative breast cancer. Oncol. Rep. 2019, 41, 2060–2066. [Google Scholar] [CrossRef]
- Das Gupta, S.; Suh, N. Tocopherols in cancer: An update. Mol. Nutr. Food Res. 2016, 60, 1354–1363. [Google Scholar] [CrossRef] [PubMed]
- Martemucci, G.; Portincasa, P.; Centonze, V.; Mariano, M.; Khalil, M.; D’Alessandro, A.G. Prevention of Oxidative Stress and Diseases by Antioxidant Supplementation. Med. Chem. 2023, 19, 509–537. [Google Scholar] [CrossRef] [PubMed]
- Pelczarski, M.; Wolaniuk, S.; Zaborska, M.; Sadowski, J.; Sztangreciak-Lehun, A.; Buldak, R.J. The role of alpha-tocopherol in the prevention and treatment of Alzheimer’s disease. Mol. Cell. Biochem. 2025, 480, 3385–3398. [Google Scholar] [CrossRef] [PubMed]
- Debbabi, M.; Nury, T.; Zarrouk, A.; Mekahli, N.; Bezine, M.; Sghaier, R.; Gregoire, S.; Martine, L.; Durand, P.; Camus, E.; et al. Protective Effects of alpha-Tocopherol, gamma-Tocopherol and Oleic Acid, Three Compounds of Olive Oils, and No Effect of Trolox, on 7-Ketocholesterol-Induced Mitochondrial and Peroxisomal Dysfunction in Microglial BV-2 Cells. Int. J. Mol. Sci. 2016, 17, 1973. [Google Scholar] [CrossRef]
- San Andrés, M.P.; Otero, J.; Vera, S. High performance liquid chromatography method for the simultaneous determination of α-, γ- and δ-tocopherol in vegetable oils in presence of hexadecyltrimethylammonium bromide/n-propanol in mobile phase. Food Chem. 2011, 126, 1470–1474. [Google Scholar] [CrossRef]
- Liu, S.; Hu, H.; Yu, Y.; Zhao, J.; Liu, L.; Zhao, S.; Xie, J.; Li, C.; Shen, M. Simultaneous Determination of Tocopherols, Phytosterols, and Squalene in Vegetable Oils by High Performance Liquid Chromatography-Tandem Mass Spectrometry. Food Anal. Methods 2021, 14, 1567–1576. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Yang, R.; Mao, J.; Jiang, J.; Wang, X.; Zhang, W.; Zhang, Q.; Li, P. Simultaneous determination of tocopherols, carotenoids and phytosterols in edible vegetable oil by ultrasound-assisted saponification, LLE and LC-MS/MS. Food Chem. 2019, 289, 313–319. [Google Scholar] [CrossRef]
- Cortese, M.; Gigliobianco, M.R.; Magnoni, F.; Censi, R.; Di Martino, P.D. Compensate for or Minimize Matrix Effects? Strategies for Overcoming Matrix Effects in Liquid Chromatography-Mass Spectrometry Technique: A Tutorial Review. Molecules 2020, 25, 3047. [Google Scholar] [CrossRef]
- Zhang, R.; Shen, W.; Wei, X.; Zhang, F.; Shen, C.; Wu, B.; Zhao, Z.; Liu, H.; Deng, X. Simultaneous determination of tocopherols and tocotrienols in vegetable oils by GC-MS. Anal. Methods 2016, 8, 7341–7346. [Google Scholar] [CrossRef]
- Wu, L.; Zhao, J.; Wu, L.; Zhang, Y.; Li, J. Simultaneous determination of squalene, tocopherols and phytosterols in edible vegetable oil by SPE combined with saponification and GC-MS. LWT 2022, 169, 114026. [Google Scholar] [CrossRef]
- Xu, B.; You, S.; Zhou, L.; Kang, H.; Luo, D.; Ma, H.; Han, S. Simultaneous Determination of Free Phytosterols and Tocopherols in Vegetable Oils by an Improved SPE–GC–FID Method. Food Anal. Methods 2019, 13, 358–369. [Google Scholar] [CrossRef]
- Peng, W.L.; Mohd-Nasir, H.; Setapar, S.H.M.; Ahmad, A.; Lokhat, D. Optimization of process variables using response surface methodology for tocopherol extraction from Roselle seed oil by supercritical carbon dioxide. Ind. Crops Prod. 2020, 143, 111886. [Google Scholar] [CrossRef]
- Szłyk, E.; Szydłowska-Czerniak, A.; Kowalczyk-Marzec, A. NIR spectroscopy and partial least-squares regression for determination of natural α-tocopherol in vegetable oils. J. Agric. Food Chem. 2005, 53, 6980–6987. [Google Scholar] [CrossRef]
- Malekbala, M.R.; Soltani, S.M.; Hosseini, S.; Eghbali Babadi, F.; Malekbala, R. Current technologies in the extraction, enrichment and analytical detection of tocopherols and tocotrienols: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2935–2942. [Google Scholar] [CrossRef]
- Zaaboul, F.; Liu, Y. Vitamin E in foodstuff: Nutritional, analytical, and food technology aspects. Compr. Rev. Food Sci. Food Saf. 2022, 21, 964–998. [Google Scholar] [CrossRef]
- Azzi, A. Tocopherols, tocotrienols and tocomonoenols: Many similar molecules but only one vitamin E. Redox Biol. 2019, 26, 101259. [Google Scholar] [CrossRef]
- Pawlak, K.; Jopek, Z.; Swiecicka-Fuchsel, E.; Kutyla, A.; Namo Ombugadu, J.; Wojciechowski, K. A new RPLC-ESI-MS method for the determination of eight vitamers of vitamin E. Food Chem. 2024, 432, 137161. [Google Scholar] [CrossRef]
- Meier, R.; Tomizaki, T.; Schulze-Briese, C.; Baumann, U.; Stocker, A. The molecular basis of vitamin E retention: Structure of human alpha-tocopherol transfer protein. J. Mol. Biol. 2003, 331, 725–734. [Google Scholar] [CrossRef]
- Charlton, N.C.; Mastyugin, M.; Torok, B.; Torok, M. Structural Features of Small Molecule Antioxidants and Strategic Modifications to Improve Potential Bioactivity. Molecules 2023, 28, 1057. [Google Scholar] [CrossRef]
- Niki, E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: In vitro and in vivo evidence. Free Radic. Biol. Med. 2014, 66, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, H.; Ollilainen, V.; Piironen, V.; Lampi, A.-M. Tocopherol, tocotrienol and plant sterol contents of vegetable oils and industrial fats. J. Food Compos. Anal. 2008, 21, 152–161. [Google Scholar] [CrossRef]
- Ergönül, P.G.; Köseoğlu, O. Changes in α-, β-, γ- and δ-tocopherol contents of mostly consumed vegetable oils during refining process. CyTA J. Food 2013, 12, 199–202. [Google Scholar] [CrossRef]
- Shahidi, F.; de Camargo, A.C. Tocopherols and Tocotrienols in Common and Emerging Dietary Sources: Occurrence, Applications, and Health Benefits. Int. J. Mol. Sci. 2016, 17, 1745. [Google Scholar] [CrossRef]
- Yuan, C.; Xie, Y.; Jin, R.; Ren, L.; Zhou, L.; Zhu, M.; Ju, Y. Simultaneous Analysis of Tocopherols, Phytosterols, and Squalene in Vegetable Oils by High-Performance Liquid Chromatography. Food Anal. Methods 2017, 10, 3716–3722. [Google Scholar] [CrossRef]
- Chen, H.; Angiuli, M.; Ferrari, C.; Tombari, E.; Salvetti, G.; Bramanti, E. Tocopherol speciation as first screening for the assessment of extra virgin olive oil quality by reversed-phase high-performance liquid chromatography/fluorescence detector. Food Chem. 2011, 125, 1423–1429. [Google Scholar] [CrossRef]
- Frankel, E.N. Chemistry of extra virgin olive oil: Adulteration, oxidative stability, and antioxidants. J. Agric. Food Chem. 2010, 58, 5991–6006. [Google Scholar] [CrossRef]
- Lucci, P.; Bertoz, V.; Pacetti, D.; Moret, S.; Conte, L. Effect of the Refining Process on Total Hydroxytyrosol, Tyrosol, and Tocopherol Contents of Olive Oil. Foods 2020, 9, 292. [Google Scholar] [CrossRef]
- Liu, R.; Liu, R.; Shi, L.; Zhang, Z.; Zhang, T.; Lu, M.; Chang, M.; Jin, Q.; Wang, X. Effect of refining process on physicochemical parameters, chemical compositions and in vitro antioxidant activities of rice bran oil. LWT 2019, 109, 26–32. [Google Scholar] [CrossRef]
- Farhoosh, R.; Einafshar, S.; Sharayei, P. The effect of commercial refining steps on the rancidity measures of soybean and canola oils. Food Chem. 2009, 115, 933–938. [Google Scholar] [CrossRef]
- Flakelar, C.L.; Prenzler, P.D.; Luckett, D.J.; Howitt, J.A.; Doran, G. A rapid method for the simultaneous quantification of the major tocopherols, carotenoids, free and esterified sterols in canola (Brassica napus) oil using normal phase liquid chromatography. Food Chem. 2017, 214, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Mejean, M.; Brunelle, A.; Touboul, D. Quantification of tocopherols and tocotrienols in soybean oil by supercritical-fluid chromatography coupled to high-resolution mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 5133–5142. [Google Scholar] [CrossRef]
- Zhang, J.J.; Gao, Y.; Xu, X.; Zhao, M.L.; Xi, B.N.; Shu, Y.; Li, C.; Shen, Y. In Situ Rapid Analysis of Squalene, Tocopherols, and Sterols in Walnut Oils Based on Supercritical Fluid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry. J. Agric. Food Chem. 2023, 71, 16371–16380. [Google Scholar] [CrossRef]
- Souza, A.H.; Gohara, A.K.; Rodrigues, A.C.; Stroher, G.L.; Silva, D.C.; Visentainer, J.V.; Souza, N.E.; Matsushita, M. Optimization conditions of samples saponification for tocopherol analysis. Food Chem 2014, 158, 315–318. [Google Scholar] [CrossRef]
- Vicente, G.; Paiva, A.; Fornari, T.; Najdanovic-Visak, V. Liquid–liquid equilibria for separation of tocopherol from olive oil using ethyl lactate. Chem. Eng. J. 2011, 172, 879–884. [Google Scholar] [CrossRef]
- Qin, H.; Song, Z.; Qi, Z.; Sundmacher, K. Comparative screening of organic solvents, ionic liquids, and their binary mixtures for vitamin E extraction from deodorizer distillate. Chem. Eng. Process. Process Intensif. 2022, 171, 108711. [Google Scholar] [CrossRef]
- Dugo, L.; Russo, M.; Cacciola, F.; Mandolfino, F.; Salafia, F.; Vilmercati, A.; Fanali, C.; Casale, M.; De Gara, L.; Dugo, P.; et al. Determination of the Phenol and Tocopherol Content in Italian High-Quality Extra-Virgin Olive Oils by Using LC-MS and Multivariate Data Analysis. Food Anal. Methods 2020, 13, 1027–1041. [Google Scholar] [CrossRef]
- Özcan, M.M.; Ghafoor, K.; Al Juhaimi, F.; Ahmed, I.A.M.; Babiker, E.E. Effect of cold-press and soxhlet extraction on fatty acids, tocopherols and sterol contents of the Moringa seed oils. S. Afr. J. Bot. 2019, 124, 333–337. [Google Scholar] [CrossRef]
- Barp, L.; Visnjevec, A.M.; Moret, S. Pressurized Liquid Extraction: A Powerful Tool to Implement Extraction and Purification of Food Contaminants. Foods 2023, 12, 2017. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Jafarian Asl, P.; Niazmand, R.; Yahyavi, F. Extraction of phytosterols and tocopherols from rapeseed oil waste by supercritical CO(2) plus co-solvent: A comparison with conventional solvent extraction. Heliyon 2020, 6, e03592. [Google Scholar] [CrossRef] [PubMed]
- Arumugham, T.; K, R.; Hasan, S.W.; Show, P.L.; Rinklebe, J.; Banat, F. Supercritical carbon dioxide extraction of plant phytochemicals for biological and environmental applications—A review. Chemosphere 2021, 271, 129525. [Google Scholar] [CrossRef]
- Dassoff, E.S.; Li, Y.O. Mechanisms and effects of ultrasound-assisted supercritical CO2 extraction. Trends Food Sci. Technol. 2019, 86, 492–501. [Google Scholar] [CrossRef]
- Narváez-Cuenca, C.-E.; Inampues-Charfuelan, M.-L.; Hurtado-Benavides, A.-M.; Parada-Alfonso, F.; Vincken, J.-P. The phenolic compounds, tocopherols, and phytosterols in the edible oil of guava (Psidium guava) seeds obtained by supercritical CO2 extraction. J. Food Compos. Anal. 2020, 89, 103467. [Google Scholar] [CrossRef]
- Nyam, K.L.; Tan, C.P.; Karim, R.; Lai, O.M.; Long, K.; Man, Y.B.C. Extraction of tocopherol-enriched oils from Kalahari melon and roselle seeds by supercritical fluid extraction (SFE-CO2). Food Chem. 2010, 119, 1278–1283. [Google Scholar] [CrossRef]
- Vafaei, N.; Rempel, C.B.; Scanlon, M.G.; Jones, P.J.H.; Eskin, M.N.A. Application of Supercritical Fluid Extraction (SFE) of Tocopherols and Carotenoids (Hydrophobic Antioxidants) Compared to Non-SFE Methods. Appl. Chem. 2022, 2, 68–92. [Google Scholar] [CrossRef]
- Rutkowska, M.; Płotka-Wasylka, J.; Sajid, M.; Andruch, V. Liquid–phase microextraction: A review of reviews. Microchem. J. 2019, 149, 103989. [Google Scholar] [CrossRef]
- Zgoła-Grześkowiak, A.; Grześkowiak, T. Dispersive liquid-liquid microextraction. TrAC Trends Anal. Chem. 2011, 30, 1382–1399. [Google Scholar] [CrossRef]
- Ghambarian, M.; Yamini, Y.; Esrafili, A. Developments in hollow fiber based liquid-phase microextraction: Principles and applications. Microchim. Acta 2012, 177, 271–294. [Google Scholar] [CrossRef]
- Moron-Ortiz, A.; Mapelli-Brahm, P.; Melendez-Martinez, A.J. Sustainable Green Extraction of Carotenoid Pigments: Innovative Technologies and Bio-Based Solvents. Antioxidants 2024, 13, 239. [Google Scholar] [CrossRef]
- Liu, M.; Cao, D.; Bi, W.; Chen, D.D.Y. Extraction of Natural Products by Direct Formation of Eutectic Systems. ACS Sustain. Chem. Eng. 2021, 9, 12049–12057. [Google Scholar] [CrossRef]
- Mohammadi, B.; Shekaari, H.; Zafarani-Moattar, M.T. Selective separation of α-tocopherol using eco-friendly choline chloride —Based deep eutectic solvents (DESs) via liquid-liquid extraction. Colloids Surf. A Physicochem. Eng. Asp. 2021, 617, 126317. [Google Scholar] [CrossRef]
- Xie, Q.; Xia, M.; Sun, D.; Cao, J.; Xiao, Y.; Lin, M.; Hou, B.; Jia, L.; Li, D. Deep eutectic solvent-based liquid-phase microextraction coupled with reversed-phase high-performance liquid chromatography for determination of alpha-, beta-, gamma-, and delta-tocopherol in edible oils. Anal. Bioanal. Chem. 2021, 413, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Fu, X.; Yang, G.; Liu, W. Effective extraction of tocopherols from soybean oil deodorizer distillate methyl esters using phenolic deep eutectic solvents. Microchem. J. 2025, 214, 113913. [Google Scholar] [CrossRef]
- Grigoriadou, D.; Androulaki, A.; Psomiadou, E.; Tsimidou, M. Solid phase extraction in the analysis of squalene and tocopherols in olive oil. Food Chem. 2007, 105, 675–680. [Google Scholar] [CrossRef]
- Alghamdi, E.M.; Whitcombe, M.J.; Piletsky, S.A.; Piletska, E.V. Solid phase extraction of α-tocopherol and other physiologically active components from sunflower oil using rationally designed polymers. Anal. Methods 2018, 10, 314–321. [Google Scholar] [CrossRef]
- Kalogiouri, N.P.; Kabir, A.; Olayanju, B.; Furton, K.G.; Samanidou, V.F. Development of highly hydrophobic fabric phase sorptive extraction membranes and exploring their applications for the rapid determination of tocopherols in edible oils analyzed by high pressure liquid chromatography-diode array detection. J. Chromatogr. A 2022, 1664, 462785. [Google Scholar] [CrossRef]
- Karaoglu, O.; Alpdogan, G.; Zor, S.D.; Bildirir, H.; Ertas, E. Efficient solid phase extraction of alpha-tocopherol and beta-sitosterol from sunflower oil waste by improving the mesoporosity of the zeolitic adsorbent. Food Chem. 2020, 311, 125890. [Google Scholar] [CrossRef]
- Feng, S.; Gao, F.; Chen, Z.; Grant, E.; Kitts, D.D.; Wang, S.; Lu, X. Determination of alpha-tocopherol in vegetable oils using a molecularly imprinted polymers-surface-enhanced Raman spectroscopic biosensor. J. Agric. Food Chem. 2013, 61, 10467–10475. [Google Scholar] [CrossRef]
- Wu, A.; Zhao, X.; Wang, J.; Tang, Z.; Zhao, T.; Niu, L.; Yu, W.; Yang, C.; Fang, M.; Lv, H.; et al. Application of solid-phase extraction based on magnetic nanoparticle adsorbents for the analysis of selected persistent organic pollutants in environmental water: A review of recent advances. Crit. Rev. Environ. Sci. Technol. 2020, 51, 44–112. [Google Scholar] [CrossRef]
- Faraji, M.; Shirani, M.; Rashidi-Nodeh, H. The recent advances in magnetic sorbents and their applications. TrAC Trends Anal. Chem. 2021, 141, 116302. [Google Scholar] [CrossRef]
- Asl, P.J.; Niazmand, R.; Molaveisi, M.; Mousavi Kalajahi, S.E. Determination of vitamin E and β-sitosterol in vegetable oil wastes by graphene-based magnetic solid-phase extraction method coupled with GC-MS. J. Food Meas. Charact. 2021, 15, 5630–5636. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.-S. Tocopherols and tocotrienols in plants and their products: A review on methods of extraction, chromatographic separation, and detection. Food Res. Int. 2016, 82, 59–70. [Google Scholar] [CrossRef]
- Mei, F.; Wang, H.; Zhang, Y.; Shi, H.; Jiang, Y. Fast detection of adulteration of aromatic peanut oils based on alpha-tocopherol and gamma-tocopherol contents and ratio. LWT 2021, 143, 111168. [Google Scholar] [CrossRef]
- Celik, S.E.; Asfoor, A.; Senol, O.; Apak, R. Screening Method for Argan Oil Adulteration with Vegetable Oils: An Online HPLC Assay with Postcolumn Detection Utilizing Chemometric Multidata Analysis. J. Agric. Food Chem. 2019, 67, 8279–8289. [Google Scholar] [CrossRef] [PubMed]
- Bakre, S.M.; Gadmale, D.K.; Toche, R.B.; Gaikwad, V.B. Rapid determination of alpha tocopherol in olive oil adulterated with sunflower oil by reversed phase high-performance liquid chromatography. J. Food Sci. Technol. 2015, 52, 3093–3098. [Google Scholar] [CrossRef]
- Abu Bakar, N.B.; Makahleh, A.; Saad, B. In-vial liquid-liquid microextraction-capillary electrophoresis method for the determination of phenolic acids in vegetable oils. Anal. Chim. Acta 2012, 742, 59–66. [Google Scholar] [CrossRef]
- Bazakos, C.; Dulger, A.O.; Uncu, A.T.; Spaniolas, S.; Spano, T.; Kalaitzis, P. A SNP-based PCR-RFLP capillary electrophoresis analysis for the identification of the varietal origin of olive oils. Food Chem. 2012, 134, 2411–2418. [Google Scholar] [CrossRef]
- Galeano-Díaz, T.; Acedo-Valenzuela, M.I.; Silva-Rodríguez, A. Determination of tocopherols in vegetable oil samples by non-aqueous capillary electrophoresis (NACE) with fluorimetric detection. J. Food Compos. Anal. 2012, 25, 24–30. [Google Scholar] [CrossRef]
- Di Stefano, V.; Avellone, G.; Bongiorno, D.; Cunsolo, V.; Muccilli, V.; Sforza, S.; Dossena, A.; Drahos, L.; Vekey, K. Applications of liquid chromatography-mass spectrometry for food analysis. J. Chromatogr. A 2012, 1259, 74–85. [Google Scholar] [CrossRef]
- Tanno, R.; Kato, S.; Shimizu, N.; Ito, J.; Sato, S.; Ogura, Y.; Sakaino, M.; Sano, T.; Eitsuka, T.; Kuwahara, S.; et al. Analysis of oxidation products of alpha-tocopherol in extra virgin olive oil using liquid chromatography-tandem mass spectrometry. Food Chem. 2020, 306, 125582. [Google Scholar] [CrossRef]
- Alberdi-Cedeno, J.; Ibargoitia, M.L.; Guillen, M.D. Effect of the Enrichment of Corn Oil with alpha- or gamma-Tocopherol on Its in Vitro Digestion Studied by (1)H NMR and SPME-GC/MS; Formation of Hydroperoxy-, Hydroxy-, Keto-Dienes and Keto-E-epoxy-E-Monoenes in the more alpha-Tocopherol Enriched Samples. Antioxidants 2020, 9, 246. [Google Scholar] [CrossRef]
- Melchert, H.U.; Pollok, D.; Pabel, E.; Rubach, K.; Stan, H.J. Determination of tocopherols, tocopherolquinones and tocopherolhydroquinones by gas chromatography–mass spectrometry and preseparation with lipophilic gel chromatography. J. Chromatogr. A 2002, 976, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Melchert, H.-U.; Pabel, E. Quantitative determination of α-, β-, γ-and δ-tocopherols in human serum by high-performance liquid chromatography and gas chromatography–mass spectrometry as trimethylsilyl derivatives with a two-step sample preparation. J. Chromatogr. A 2000, 896, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Sachdeva, R.; Rai, B.; Saini, G.S.S. Structure and vibrational spectroscopic study of alpha-tocopherol. J. Mol. Struct. 2017, 1144, 347–354. [Google Scholar] [CrossRef]
- Pasquini, C. Near infrared spectroscopy: A mature analytical technique with new perspectives—A review. Anal. Chim. Acta. 2018, 1026, 8–36. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Gou, M.-j.; Jiang, K.; Wang, L.; Yin, G.; Wang, J.; Wang, P.; Tu, J.; Wang, T. Recent quantitative research of near infrared spectroscopy in traditional Chinese medicine analysis. Appl. Spectrosc. Rev. 2018, 54, 653–672. [Google Scholar] [CrossRef]
- Cayuela, J.A.; García, J.F. Sorting olive oil based on alpha-tocopherol and total tocopherol content using near-infra-red spectroscopy (NIRS) analysis. J. Food Eng. 2017, 202, 79–88. [Google Scholar] [CrossRef]
- Li, Q.; Chen, J.; Huyan, Z.; Kou, Y.; Xu, L.; Yu, X.; Gao, J.M. Application of Fourier transform infrared spectroscopy for the quality and safety analysis of fats and oils: A review. Crit. Rev. Food. Sci. Nutr. 2019, 59, 3597–3611. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.D.; Rosa, N.F.; Ferreira, A.E.; Boas, L.V.; Bronze, M.R. Rapid Determination of α-Tocopherol in Vegetable Oils by Fourier Transform Infrared Spectroscopy. Food Anal. Methods 2008, 2, 120–127. [Google Scholar] [CrossRef]
- Ahmed, M.K.; Daun, J.K.; Przybylski, R. FT-IR based methodology for quantitation of total tocopherols, tocotrienols and plastochromanol-8 in vegetable oils. J. Food Compos. Anal. 2005, 18, 359–364. [Google Scholar] [CrossRef]
- Jiménez-Sanchidrián, C.; Ruiz, J.R. Use of Raman spectroscopy for analyzing edible vegetable oils. Appl. Spectrosc. Rev. 2016, 51, 417–430. [Google Scholar] [CrossRef]
- Wang, K.; Sun, D.-W.; Wei, Q.; Pu, H. Quantification and visualization of α-tocopherol in oil-in-water emulsion based delivery systems by Raman microspectroscopy. LWT 2018, 96, 66–74. [Google Scholar] [CrossRef]
- Moe Htet, T.T.; Cruz, J.; Khongkaew, P.; Suwanvecho, C.; Suntornsuk, L.; Nuchtavorn, N.; Limwikrant, W.; Phechkrajang, C. PLS-regression-model-assisted raman spectroscopy for vegetable oil classification and non-destructive analysis of alpha-tocopherol contents of vegetable oils. J. Food Compos. Anal. 2021, 103, 104119. [Google Scholar] [CrossRef]
- Bounegru, A.V.; Apetrei, C. Evaluation of Olive Oil Quality with Electrochemical Sensors and Biosensors: A Review. Int. J. Mol. Sci. 2021, 22, 12708. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Classification and Antioxidant Activity Evaluation of Edible Oils by Using Nanomaterial-Based Electrochemical Sensors. Int. J. Mol. Sci. 2023, 24, 3010. [Google Scholar] [CrossRef]
- Jashari, G.; Kastrati, G.; Korecká, L.; Metelka, R.; Sýs, M.; Ashrafi, A.M. Electrochemical Behaviour of Tocopherols: Possibilities of Their Simultaneous Voltammetric Detection. Appl. Sci. 2021, 11, 8095. [Google Scholar] [CrossRef]
- Sys, M.; Svecova, B.; Svancara, I.; Metelka, R. Determination of vitamin E in margarines and edible oils using square wave anodic stripping voltammetry with a glassy carbon paste electrode. Food Chem. 2017, 229, 621–627. [Google Scholar] [CrossRef]
- Galeano Diaz, T.; Durán Merás, I.; Guiberteau Cabanillas, A.; Alexandre Franco, M.F. Voltammetric behavior and determination of tocopherols with partial least squares calibration: Analysis in vegetable oil samples. Anal. Chim. Acta. 2004, 511, 231–238. [Google Scholar] [CrossRef]
- Filik, H.; Avan, A.A.; Aydar, S.; Çakar, Ş. Determination of Tocopherol Using Reduced Graphene Oxide-Nafion Hybrid-Modified Electrode in Pharmaceutical Capsules and Vegetable Oil Samples. Food Anal. Methods 2015, 9, 1745–1753. [Google Scholar] [CrossRef]
- Karagözlü, M.; Adun, P.; Ozsoz, M.; Aşır, S. Detection of adulteration in cold-pressed olive oil by voltammetric analysis of alpha-tocopherol on single-use pencil graphite electrode. Int. J. Food Sci. Technol. 2024, 59, 1781–1788. [Google Scholar] [CrossRef]
- Yamamoto, K.; Kotani, A.; Hakamata, H. Electrochemical detection of tocopherols in vegetable oils by supercritical fluid chromatography equipped with carbon fiber electrodes. Anal. Methods 2018, 10, 4414–4418. [Google Scholar] [CrossRef]
Sample | Sample Preparation | Adsorbent/Solvent | Analytical Method | Analytical Column | Mobile Phase | Recovery, % | LOD | Reference |
---|---|---|---|---|---|---|---|---|
8 kinds of oils | Organic solvent dilution | Diluted in acetonitrile/tetrahydrofuran | HPLC-FLD | HyPurity C18 column (250 × 4.6 mm i.d., 5 μm) | Tetrahydrofuran and methanol (10:90, v/v) | 98.8–102.0 | 6–7 ng/g | [28] |
Canola oil | Organic solvent dilution | Diluted in hexane | HPLC-DAD-MS/MS | Phenomenex Luna silica column (150 × 4.6 mm, i.d., 3 μm) | n-Hexane and Ethyl acetate, gradient elution | 90.9–107 | 0.02–0.10 µg/mL | [33] |
5 kinds of oils | Organic solvent dilution | Diluted in hexane | HPLC-UV | Lichrosorb RP-18 column (150 × 4.0 mm i.d., 10 μm) | Hexadecyltrimethylammonium bromide (0.1 M) and n-propanol (65%, v/v) | / | 0.05–0.09 µg/mL | [8] |
Walnut oil | Organic solvent dilution | Diluted in hexane | SFC-QTOF-MS | Thermo Scientific BEH 2-Ethylpyridine (2-EP) column (100 × 3.0 mm i.d., 1.7 μm) | CO2 and methanol containing 0.1% formic acid, gradient elution | 70.61−101.44 | 0.05−0.20 ng/mL | [35] |
Soybean oil | Organic solvent dilution | Diluted in hexane | SFC-MS | Six different analytical columns were compared to optimize condition | CO2 and ethanol with 0.1% formic acid, gradient elution | 84.97−100.33 | 0.025−40.27 ng/mL | [34] |
4 kinds of oils | Saponification | NaOH | HPLC-DAD | ZORBAX Eclipse Plus C18 column (250 mm × 4.6 mm, 5 μm) | Methanol and water and isopropanol (98:2, v/v) | 91.2–102.2 | 0.10–0.25 µg/mL | [27] |
Camellia oils and olive oils | Ultrasound-assisted saponification | At temperature of 75 °C for 40 min. | LC-MS/MS | Thermo Scientific C18 column (100 × 2.1 mm i.d., 3 μm) | Methanol (0.02% aqueous formic acid) and acetonitrile (95:5, v/v) | 90.3−112.0 | 2.0–3.2 ng/mL | [10] |
8 kinds of oils | UAE- LLE | Methanol | GC-MS | DB-5MS capillary column (30 m × 0.25 mm, 0.25 μm) | Helium (99.999% purity) | 83.7−117.2 | 0.3−2.5 ng/mL | [12] |
Olive Oils | UAE- LLE | Methanol/water (3:2, v/v) | HPLC-FID | Ascentis Si column (250 × 4.6 mm i.d., 5 μm) | n-hexane and isopropanol (99:1, v/v) | 80.1−90.6 | 1−2 ng/mL | [39] |
9 kinds of oils | GPC | Cyclohexane/ethyl acetate (1:1, v/v) | HPLC-MS | YMC Carotenoid C30 column (250 × 4.6 mm, 5 μm) | Methanol and water (98:2, v/v) | 81.5−113.8 | 1 µg/g | [9] |
15 kinds of oils | SPE | Sep-Pak cartridge (Pro Elut NH2, 2.0 g/12 mL) | GC-MS | DB-5 MS capillary column (30 m × 0.25 mm, 0.25 μm) | Helium (99.999% purity) | 91.29−111.93 | 0.010–0.050 µg/mL | [13] |
5 kinds of oils | SPE | Sep-Pak cartridge | GC-FID | DB-5MS capillary column (30 m × 0.25 mm i.d., 0.25 μm) | Helium (99.999% purity) | 83.4−97.7 | 0.5 µg/g | [14] |
5 kinds of oils | FPSE | Sol-gel polycaprolactone-polydimethylsiloxane-polycaprolactone coated polyester FPSE membrane | HPLC-DAD | Nucleosil C18 column (250 mm × 4.6 mm, 5 μm) | MeOH and ACN, gradient elution | 90.8−95.1 | 0.05–0.10 µg/g | [59] |
Soybean and rapeseed oil deodorizer distillate | MSPE | MGO | GC-MS | HP-5MS capillary column (30 m × 0.25 mm i.d., 0.25 μm) | Helium (99.999% purity) | 94.44−97.77 | 0.05–0.01 mg/g | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Lv, M.; Wang, Y.; Wei, J.; Chen, D. Analytical Strategies for Tocopherols in Vegetable Oils: Advances in Extraction and Detection. Pharmaceuticals 2025, 18, 1137. https://doi.org/10.3390/ph18081137
Liu Y, Lv M, Wang Y, Wei J, Chen D. Analytical Strategies for Tocopherols in Vegetable Oils: Advances in Extraction and Detection. Pharmaceuticals. 2025; 18(8):1137. https://doi.org/10.3390/ph18081137
Chicago/Turabian StyleLiu, Yingfei, Mengyuan Lv, Yuyang Wang, Jinchao Wei, and Di Chen. 2025. "Analytical Strategies for Tocopherols in Vegetable Oils: Advances in Extraction and Detection" Pharmaceuticals 18, no. 8: 1137. https://doi.org/10.3390/ph18081137
APA StyleLiu, Y., Lv, M., Wang, Y., Wei, J., & Chen, D. (2025). Analytical Strategies for Tocopherols in Vegetable Oils: Advances in Extraction and Detection. Pharmaceuticals, 18(8), 1137. https://doi.org/10.3390/ph18081137