Resveratrol Alleviates Inflammatory Response Through P2X7/NLRP3 Signaling Pathway: In Silico and In Vitro Evidence from Activated Microglia
Abstract
1. Introduction
2. Results
2.1. RSV Has Binding Affinity for the PYD Domain of NLRP3
2.2. RSV Decreases Cell Viability Without Increasing the Oxidative Profile
2.3. Microglia with Activated NLRP3 and Pre-Treated with RSV Arrest Cell Cycle
2.4. P2X7 and A1 Receptors Are Altered by RSV Treatment in Active Microglia
2.5. NLRP3, CASP-1, and Cytokines Are Restored with RSV in Microglia Exposed to Inflammasome Activation Conditions
3. Discussion
4. Materials and Methods
4.1. Computer Simulation
4.1.1. Molecular Docking
4.1.2. Molecular Dynamics Simulation
4.1.3. Generalized Born and Surface Area Continuum Solvation Calculations (MM/GBSA)
4.2. Microglia Cell Culture
4.3. Resveratrol In Vitro Safety Profile
4.4. Resveratrol Pre-Treatment and NLRP3 Inflammasome Activation
4.5. Experimental Assays
4.5.1. Determination of Cell Viability and Extracellular Double-Strand DNA
4.5.2. Nitrite and ROS Level Measurement Analysis
4.5.3. Cell Cycle Evaluation
4.5.4. Flow Cytometer Analysis
4.5.5. RT-qPCR Analysis
4.5.6. Western Blot Analysis
4.6. Statistical Analysis
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASC | Apoptosis-associated adapter protein containing the CARD domain |
CASP-1 | Caspase-1 |
CNS | Central nervous system |
DAMPs | Damage-associated patterns |
DCFH-DA | 2′-7′-Dichlorodihydrofluorescein diacetate |
DMSO | Dimethylsulfoxide |
dsDNA | Extracellular double-stranded DNA |
FSB | Fetal bovine serum |
FTSITE | Functional transformation SITE |
IL-10 | Interleukin-10 |
IL-18 | Interleukin-18 |
IL-1β | Interleukin-1 beta |
IL-6 | Interleukin-6 |
LPS | Lipopolysaccharide |
MM/GBSA | Generalized Born and surface area continuum solvation calculations |
NIG | Nigericin |
NLRP3 | NOD-like receptor family pyrin domain containing 3 |
NO | Nitric oxide |
NPT | Isothermal–isobaric ensemble |
PAMPs | Pathogen-associated molecular patterns |
PFA | Paraformaldehyde |
PI | Propidium iodide |
Rg | Radius of gyration |
RMSD | Root mean square deviation |
RNS | Reactive nitrogen species |
ROS | Reactive oxygen species |
RMSF | Root mean square fluctuation |
RSV | Resveratrol |
SASA | Solvent-accessible surface area |
SNP | Sodium nitroprusside |
TNF-α | Tumor necrosis factor-alpha |
References
- Rabolli, V.; Lison, D.; Huaux, F. The Complex Cascade of Cellular Events Governing Inflammasome Activation and IL-1β Processing in Response to Inhaled Particles. Part. Fibre Toxicol. 2016, 13, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Groslambert, M.; Py, B.F. Spotlight on the NLRP3 Inflammasome Pathway. J. Inflamm. Res. 2018, 11, 359–374. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Li, T. Regulation of NLRP3 Inflammasome by Phosphorylation. Front. Immunol. 2018, 9, 2305. [Google Scholar] [CrossRef]
- Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int. J. Mol. Sci. 2019, 20, 3328. [Google Scholar] [CrossRef]
- Swanson, K.V.; Deng, M.; Ting, J.P.-Y. The NLRP3 Inflammasome: Molecular Activation and Regulation to Therapeutics. Nat. Rev. Immunol. 2019, 19, 477–489. [Google Scholar] [CrossRef]
- Schroder, K.; Sagulenko, V.; Zamoshnikova, A.; Richards, A.A.; Cridland, J.A.; Irvine, K.M.; Stacey, K.J.; Sweet, M.J. Acute Lipopolysaccharide Priming Boosts Inflammasome Activation Independently of Inflammasome Sensor Induction. Immunobiology 2012, 217, 1325–1329. [Google Scholar] [CrossRef]
- Elliott, E.I.; Sutterwala, F.S. Initiation and Perpetuation of NLRP3 Inflammasome Activation and Assembly. Immunol. Rev. 2015, 265, 35–52. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Hara, H.; Núñez, G. Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem. Sci. 2016, 41, 1012–1021. [Google Scholar] [CrossRef]
- Abbracchio, M.P.; Burnstock, G.; Verkhratsky, A.; Zimmermann, H. Purinergic Signalling in the Nervous System: An Overview. Trends Neurosci. 2009, 32, 19–29. [Google Scholar] [CrossRef]
- Di Virgilio, F. Purinergic Mechanism in the Immune System: A Signal of Danger for Dendritic Cells. Purinergic Signal. 2005, 1, 205–209. [Google Scholar] [CrossRef]
- Lister, M.F.; Sharkey, J.; Sawatzky, D.A.; Hodgkiss, J.P.; Davidson, D.J.; Rossi, A.G.; Finlayson, K. The Role of the Purinergic P2X7 Receptor in Inflammation. J. Inflamm. 2007, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Giacomelli, Á.; Petiz, L.L.; Andrejew, R.; Turrini, N.; Silva, J.B.; Sack, U.; Ulrich, H. Role of P2X7 Receptors in Immune Responses During Neurodegeneration. Front. Cell. Neurosci. 2021, 15, 662935. [Google Scholar] [CrossRef]
- Stone, T.W.; Ceruti, S.; Abbracchio, M.P. Adenosine Receptors and Neurological Disease: Neuroprotection and Neurodegeneration. Handb. Exp. Pharmacol. 2009, 193, 535–587. [Google Scholar] [CrossRef]
- Pang, F.; Yang, Y.; Huang, S.; Yang, Z.; Zhu, Z.; Liao, D.; Guo, X.; Zhou, M.; Li, Y.; Tang, C. Electroacupuncture Alleviates Depressive-like Behavior by Modulating the Expression of P2X7/NLRP3/IL-1β of Prefrontal Cortex and Liver in Rats Exposed to Chronic Unpredictable Mild Stress. Brain Sci. 2023, 13, 436. [Google Scholar] [CrossRef]
- Wang, C.; Cui, C.; Xie, X.; Chen, B.; Feng, L.; Jiang, P. Calcitriol Attenuates Lipopolysaccharide-Induced Neuroinflammation and Depressive-like Behaviors by Suppressing the P2X7R/NLRP3/Caspase-1 Pathway. Psychopharmacology 2024, 241, 1329–1343. [Google Scholar] [CrossRef]
- Thawkar, B.S.; Kaur, G. Inhibitors of NF-ΚB and P2X7/NLRP3/Caspase 1 Pathway in Microglia: Novel Therapeutic Opportunities in Neuroinflammation Induced Early-Stage Alzheimer’s Disease. J. Neuroimmunol. 2019, 326, 62–74. [Google Scholar] [CrossRef]
- Moreira-Souza, A.C.A.; Almeida-da-Silva, C.L.C.; Rangel, T.P.; Rocha, G.d.C.; Bellio, M.; Zamboni, D.S.; Vommaro, R.C.; Coutinho-Silva, R. The P2X7 Receptor Mediates Toxoplasma Gondii Control in Macrophages through Canonical NLRP3 Inflammasome Activation and Reactive Oxygen Species Production. Front. Immunol. 2017, 8, 1257. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A.; Jones, D.N.C. Emerging Role of the P2X7-NLRP3-IL1β Pathway in Mood Disorders. Psychoneuroendocrinology 2018, 98, 95–100. [Google Scholar] [CrossRef]
- Stockwell, J.; Jakova, E.; Cayabyab, F.S. Adenosine A1 and A2A Receptors in the Brain: Current Research and Their Role in Neurodegeneration. Molecules 2017, 22, 676. [Google Scholar] [CrossRef]
- Zhou, X.; Fernando, S.M.; Pan, A.Y.; Laposa, R.; Cullen, K.R.; Klimes-Dougan, B.; Andreazza, A.C. Characterizing the NLRP3 Inflammasome in Mood Disorders: Overview, Technical Development, and Measures of Peripheral Activation in Adolescent Patients. Int. J. Mol. Sci. 2021, 22, 12513. [Google Scholar] [CrossRef]
- Chu, J.Q.; Gao, F.F.; Wu, W.; Li, C.; Pan, Z.; Sun, J.; Wang, H.; Huang, C.; Lee, S.H.; Quan, J.H.; et al. Expression Profiles of NOD-like Receptors and Regulation of NLRP3 Inflammasome Activation in Toxoplasma Gondii-Infected Human Small Intestinal Epithelial Cells. Parasites Vectors 2021, 14, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Gov, L.; Schneider, C.A.; Lima, T.S.; Pandori, W.; Lodoen, M.B. NLRP3 and Potassium Efflux Drive Rapid IL-1β Release from Primary Human Monocytes during Toxoplasma Gondii Infection. J. Immunol. 2017, 199, 2855–2864. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, S.; Xiao, Y.; Zhang, W.; Wu, S.; Qin, T.; Yue, Y.; Qian, W.; Li, L. NLRP3 Inflammasome and Inflammatory Diseases. Oxid. Med. Cell. Longev. 2020, 2020, 4063562. [Google Scholar] [CrossRef]
- Mangan, M.S.J.; Olhava, E.J.; Roush, W.R.; Seidel, H.M.; Glick, G.D.; Latz, E. Targeting the NLRP3 Inflammasome in Inflammatory Diseases. Nat. Rev. Drug Discov. 2018, 17, 588–606. [Google Scholar] [CrossRef] [PubMed]
- Millan, M.J.; Goodwin, G.M.; Meyer-Lindenberg, A.; Ove Ogren, S. Learning from the Past and Looking to the Future: Emerging Perspectives for Improving the Treatment of Psychiatric Disorders. Eur. Neuropsychopharmacol. 2015, 25, 599–656. [Google Scholar] [CrossRef]
- Adams, S.D.; Kouzani, A.Z.; Tye, S.J.; Bennet, K.E.; Berk, M. An Investigation into Closed-Loop Treatment of Neurological Disorders Based on Sensing Mitochondrial Dysfunction. J. Neuroeng. Rehabil. 2018, 15, 8. [Google Scholar] [CrossRef]
- Ma, Q. Pharmacological Inhibition of the NLRP3 Inflammasome: Structure, Molecular Activation, and Inhibitor-NLRP3 Interaction. Pharmacol. Rev. 2023, 75, 487–520. [Google Scholar] [CrossRef]
- Boeing, H.; Bechthold, A.; Bub, A.; Ellinger, S.; Haller, D.; Kroke, A.; Leschik-Bonnet, E.; Müller, M.J.; Oberritter, H.; Schulze, M.; et al. Critical Review: Vegetables and Fruit in the Prevention of Chronic Diseases. Eur. J. Nutr. 2012, 51, 637–663. [Google Scholar] [CrossRef]
- González-Ponce, H.A.; Rincón-Sánchez, A.R.; Jaramillo-Juárez, F.; Moshage, H. Natural Dietary Pigments: Potential Mediators against Hepatic Damage Induced by over-the-Counter Non-Steroidal Anti-Inflammatory and Analgesic Drugs. Nutrients 2018, 10, 117. [Google Scholar] [CrossRef]
- Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K.M.; Gomez-Cabrera, M.C.; Vina, J.; et al. Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans. Oxid. Med. Cell. Longev. 2015, 2015, 837042. [Google Scholar] [CrossRef]
- Zhang, L.X.; Li, C.X.; Kakar, M.U.; Khan, M.S.; Wu, P.F.; Amir, R.M.; Dai, D.F.; Naveed, M.; Li, Q.Y.; Saeed, M.; et al. Resveratrol (RV): A Pharmacological Review and Call for Further Research. Biomed. Pharmacother. 2021, 143, 112164. [Google Scholar] [CrossRef]
- Tian, B.; Liu, J. Resveratrol: A Review of Plant Sources, Synthesis, Stability, Modification and Food Application. J. Sci. Food Agric. 2020, 100, 1392–1404. [Google Scholar] [CrossRef]
- Meng, T.; Xiao, D.; Muhammed, A.; Deng, J.; Chen, L.; He, J. Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules 2021, 26, 229. [Google Scholar] [CrossRef] [PubMed]
- Chiang, M.C.; Nicol, C.J.B.; Lo, S.S.; Hung, S.W.; Wang, C.J.; Lin, C.H. Resveratrol Mitigates Oxygen and Glucose Deprivation-Induced Inflammation, NLRP3 Inflammasome, and Oxidative Stress in 3D Neuronal Culture. Int. J. Mol. Sci. 2022, 23, 11678. [Google Scholar] [CrossRef] [PubMed]
- Zemheri-Navruz, F.; Ince, S.; Arslan-Acaroz, D.; Acaroz, U.; Demirel, H.H.; Demirkapi, E.N. Resveratrol Alleviates Pyraclostrobin-Induced Lipid Peroxidation, Oxidative Stress, and DNA Damage in Rats. Environ. Sci. Pollut. Res. 2023, 30, 6414–6423. [Google Scholar] [CrossRef]
- Fan, W.; Chen, S.; Wu, X.; Zhu, J.; Li, J. Resveratrol Relieves Gouty Arthritis by Promoting Mitophagy to Inhibit Activation of Nlrp3 Inflammasomes. J. Inflamm. Res. 2021, 14, 3523–3536. [Google Scholar] [CrossRef] [PubMed]
- Tufekci, K.U.; Eltutan, B.I.; Isci, K.B.; Genc, S. Resveratrol Inhibits NLRP3 Inflammasome-Induced Pyroptosis and MiR-155 Expression in Microglia Through Sirt1/AMPK Pathway. Neurotox. Res. 2021, 39, 1812–1829. [Google Scholar] [CrossRef]
- Xie, Z.; Ying, Q.; Luo, H.; Qin, M.; Pang, Y.; Hu, H.; Zhong, J.; Song, Y.; Zhang, Z.; Zhang, X. Resveratrol Alleviates Retinal Ischemia-Reperfusion Injury by Inhibiting the NLRP3/Gasdermin D/Caspase-1/Interleukin-1β Pyroptosis Pathway. Investig. Opthalmol. Vis. Sci. 2023, 64, 28. [Google Scholar] [CrossRef]
- Bottari, N.B.; Reichert, K.P.; Fracasso, M.; Dutra, A.; Assmann, C.E.; Ulrich, H.; Schetinger, M.R.C.; Morsch, V.M.; Da Silva, A.S. Neuroprotective Role of Resveratrol Mediated by Purinergic Signalling in Cerebral Cortex of Mice Infected by Toxoplasma Gondii. Parasitol. Res. 2020, 119, 2897–2905. [Google Scholar] [CrossRef]
- Zou, P.; Liu, X.; Li, G.; Wang, Y. Resveratrol Pretreatment Attenuates Traumatic Brain Injury in Rats by Suppressing NLRP3 Inflammasome Activation via SIRT1. Mol. Med. Rep. 2018, 17, 3212–3217. [Google Scholar] [CrossRef]
- Ohto, U.; Kamitsukasa, Y.; Ishida, H.; Zhang, Z.; Murakami, K.; Hirama, C.; Maekawa, S.; Shimizu, T. Structural Basis for the Oligomerization-Mediated Regulation of NLRP3 Inflammasome Activation. Proc. Natl. Acad. Sci. USA 2022, 119, e2121353119. [Google Scholar] [CrossRef] [PubMed]
- Sharif, H.; Wang, L.; Wang, W.L.; Magupalli, V.G.; Andreeva, L.; Qiao, Q.; Hauenstein, A.V.; Wu, Z.; Núñez, G.; Mao, Y.; et al. Structural Mechanism for NEK7-Licensed Activation of NLRP3 Inflammasome. Nature 2019, 570, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Vong, C.T.; Tseng, H.H.L.; Yao, P.; Yu, H.; Wang, S.; Zhong, Z.; Wang, Y. Specific NLRP3 Inflammasome Inhibitors: Promising Therapeutic Agents for Inflammatory Diseases. Drug Discov. Today 2021, 26, 1394–1408. [Google Scholar] [CrossRef]
- Blevins, H.M.; Xu, Y.; Biby, S.; Zhang, S. The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases. Front. Aging Neurosci. 2022, 14, 879021. [Google Scholar] [CrossRef]
- Davidson, C.B.; El Sabbagh, D.E.S.; Machado, A.K.; Pappis, L.; Sagrillo, M.R.; Somacal, S.; Emanuelli, T.; Schultz, J.V.; Augusto Pereira da Rocha, J.; dos Santos, A.F.; et al. Euterpe Oleracea Mart. Bioactive Molecules: Promising Agents to Modulate the NLRP3 Inflammasome. Biology 2024, 13, 729. [Google Scholar] [CrossRef]
- da Rocha, E.C.M.; da Rocha, J.A.P.; da Costa, R.A.; Costa, A.d.S.S.d.; Barbosa, E.d.S.; Josino, L.P.C.; Brasil, L.d.S.N.d.S.; Vendrame, L.F.O.; Machado, A.K.; Fagan, S.B.; et al. High-Throughput Molecular Modeling and Evaluation of the Anti-Inflammatory Potential of Açaí Constituents against NLRP3 Inflammasome. Int. J. Mol. Sci. 2024, 25, 8112. [Google Scholar] [CrossRef]
- Juhasz, B.; Mukherjee, S.; Das, D.K. Hormetic Response of Resveratrol against Cardioprotection. Exp. Clin. Cardiol. 2010, 15, 2–6. [Google Scholar]
- Calabrese, E.J.; Mattson, M.P.; Calabrese, V. Resveratrol Commonly Displays Hormesis: Occurrence and Biomedical Significance. Hum. Exp. Toxicol. 2010, 29, 980–1015. [Google Scholar] [CrossRef]
- Borriello, A.; Bencivenga, D.; Caldarelli, I.; Tramontano, A.; Borgia, A.; Pirozzi, A.V.A.; Oliva, A.; Ragione, F. Della Resveratrol and Cancer Treatment: Is Hormesis a Yet Unsolved Matter? Curr. Pharm. Des. 2013, 19, 5384–5393. [Google Scholar] [CrossRef] [PubMed]
- Galiniak, S.; Aebisher, D.; Bartusik-Aebisher, D. Health Benefits of Resveratrol Administration. Acta Biochim. Pol. 2019, 66, 13–21. [Google Scholar] [CrossRef]
- Lang, J.; Gao, L.; Wu, J.; Meng, J.; Gao, X.; Ma, H.; Yan, D. Resveratrol Attenuated Manganese-Induced Learning and Memory Impairments in Mice Through PGC-1Alpha-Mediated Autophagy and Microglial M1/M2 Polarization. Neurochem. Res. 2022, 47, 3414–3427. [Google Scholar] [CrossRef] [PubMed]
- Janpaijit, S.; Lertpatipanpong, P.; Sillapachaiyaporn, C.; Baek, S.J.; Charoenkiatkul, S.; Tencomnao, T.; Sukprasansap, M. Anti-Neuroinflammatory Effects of Cleistocalyx Nervosum Var. Paniala Berry-Seed Extract in BV-2 Microglial Cells via Inhibition of MAPKs/NF-ΚB Signaling Pathway. Heliyon 2022, 8, e11869. [Google Scholar] [CrossRef]
- Bartra, C.; Yuan, Y.; Vuraić, K.; Valdés-Quiroz, H.; Garcia-Baucells, P.; Slevin, M.; Pastorello, Y.; Suñol, C.; Sanfeliu, C. Resveratrol Activates Antioxidant Protective Mechanisms in Cellular Models of Alzheimer’s Disease Inflammation. Antioxidants 2024, 13, 177. [Google Scholar] [CrossRef]
- Lu, Y.N.; Shen, X.Y.; Lu, J.M.; Jin, G.N.; Lan, H.W.; Xu, X.; Piao, L.X. Resveratrol Inhibits Toxoplasma Gondii-Induced Lung Injury, Inflammatory Cascade and Evidences of Its Mechanism of Action. Phytomedicine 2023, 108, 154522. [Google Scholar] [CrossRef] [PubMed]
- Madreiter-Sokolowski, C.T.; Sokolowski, A.A.; Graier, W.F. Dosis Facit Sanitatem—Concentration-Dependent Effects of Resveratrol on Mitochondria. Nutrients 2017, 9, 1117. [Google Scholar] [CrossRef]
- Sareen, D.; Darjatmoko, S.R.; Albert, D.M.; Polans, A.S. Mitochondria, Calcium, and Calpain Are Key Mediators of Resveratrol-Induced Apoptosis in Breast Cancer. Mol. Pharmacol. 2007, 72, 1466–1475. [Google Scholar] [CrossRef]
- Ma, X.; Tian, X.; Huang, X.; Yan, F.; Qiao, D. Resveratrol-Induced Mitochondrial Dysfunction and Apoptosis Are Associated with Ca2+ and MCICR-Mediated MPT Activation in HepG2 Cells. Mol. Cell. Biochem. 2007, 302, 99–109. [Google Scholar] [CrossRef]
- Plauth, A.; Geikowski, A.; Cichon, S.; Wowro, S.J.; Liedgens, L.; Rousseau, M.; Weidner, C.; Fuhr, L.; Kliem, M.; Jenkins, G.; et al. Hormetic Shifting of Redox Environment by Pro-Oxidative Resveratrol Protects Cells against Stress. Free Radic. Biol. Med. 2016, 99, 608–622. [Google Scholar] [CrossRef]
- Latz, E.; Xiao, T.S.; Stutz, A. Activation and Regulation of the Inflammasomes. Nat. Rev. Immunol. 2013, 13, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Tschopp, J.; Schroder, K. NLRP3 Inflammasome Activation: The Convergence of Multiple Signalling Pathways on ROS Production? Nat. Rev. Immunol. 2010, 10, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Schroder, K.; Tschopp, J. The Inflammasomes. Cell 2010, 140, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Fukui, M.; Choi, H.J.; Zhu, B.T. Mechanism for the Protective Effect of Resveratrol against Oxidative Stress-Induced Neuronal Death. Free Radic. Biol. Med. 2010, 49, 800–813. [Google Scholar] [CrossRef]
- Kiernan, E.A.; Smith, S.M.C.; Mitchell, G.S.; Watters, J.J. Mechanisms of Microglial Activation in Models of Inflammation and Hypoxia: Implications for Chronic Intermittent Hypoxia. J. Physiol. 2016, 594, 1563–1577. [Google Scholar] [CrossRef]
- Merighi, S.; Nigro, M.; Travagli, A.; Gessi, S. Microglia and Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 12990. [Google Scholar] [CrossRef]
- Paolicelli, R.C.; Sierra, A.; Stevens, B.; Tremblay, M.-E.; Aguzzi, A.; Ajami, B.; Amit, I.; Audinat, E.; Bechmann, I.; Bennett, M.; et al. Microglia States and Nomenclature: A Field at Its Crossroads. Neuron 2022, 110, 3458–3483. [Google Scholar] [CrossRef]
- Guo, A.; Chang, Y.; Lin, J.; Guo, J.; He, Y.; Wang, C.; Wu, Z.; Xing, Y.; Jin, F.; Deng, Y. Resveratrol Enhances Anticancer Effects of Silybin on HepG2 Cells and H22 Tumor-Bearing Mice via Inducing G2/M Phase Arrest and Increasing Bax/Bcl-2 Ratio. Comb. Chem. High Throughput Screen. 2024, 27, 89–98. [Google Scholar] [CrossRef]
- Gandy, K.A.O.; Zhang, J.; Nagarkatti, P.; Nagarkatti, M. Resveratrol (3,5,4′-Trihydroxy-Trans-Stilbene) Attenuates a Mouse Model of Multiple Sclerosis by Altering the MiR-124/Sphingosine Kinase 1 Axis in Encephalitogenic T Cells in the Brain. J. Neuroimmune Pharmacol. 2019, 14, 462–477. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Q.; Cheng, X.; Li, X.; Li, N.; Liu, T.; Li, J.; Yang, Q.; Dong, R.; Zhang, Y.; et al. Inhibitive Effect of Resveratrol on the Inflammation in Cultured Astrocytes and Microglia Induced by Aβ 1–42. Neuroscience 2018, 379, 390–404. [Google Scholar] [CrossRef]
- Pasquini, S.; Contri, C.; Borea, P.A.; Vincenzi, F.; Varani, K. Adenosine and Inflammation: Here, There and Everywhere. Int. J. Mol. Sci. 2021, 22, 7685. [Google Scholar] [CrossRef] [PubMed]
- Alves, V.S.; Leite-Aguiar, R.; da Silva, J.P.; Coutinho-Silva, R.; Savio, L.E.B. Purinergic Signaling in Infectious Diseases of the Central Nervous System. Brain. Behav. Immun. 2020, 89, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Yue, N.; Huang, H.; Zhu, X.; Han, Q.; Wang, Y.; Li, B.; Liu, Q.; Wu, G.; Zhang, Y.; Yu, J. Activation of P2X7 Receptor and NLRP3 Inflammasome Assembly in Hippocampal Glial Cells Mediates Chronic Stress-Induced Depressive-like Behaviors. J. Neuroinflammation 2017, 14, 102. [Google Scholar] [CrossRef] [PubMed]
- Murphy, N.; Cowley, T.R.; Richardson, J.C.; Virley, D.; Upton, N.; Walter, D.; Lynch, M.A. The Neuroprotective Effect of a Specific P2X7 Receptor Antagonist Derives from Its Ability to Inhibit Assembly of the NLRP3 Inflammasome in Glial Cells. Brain Pathol. 2012, 22, 295–306. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, H.; Dai, C.; Wang, H.; Zhang, H.; Huang, Y.; Wang, S.; Gaskin, F.; Yang, N.; Fu, S.M. P2X7 Blockade Attenuates Murine Lupus Nephritis by Inhibiting Activation of the NLRP3/ASC/Caspase 1 Pathway. Arthritis Rheum. 2013, 65, 3176–3185. [Google Scholar] [CrossRef]
- Di Virgilio, F.; Dal Ben, D.; Sarti, A.C.; Giuliani, A.L.; Falzoni, S. The P2X7 Receptor in Infection and Inflammation. Immunity 2017, 47, 15–31. [Google Scholar] [CrossRef]
- Pelegrin, P. P2X7 Receptor and the NLRP3 Inflammasome: Partners in Crime. Biochem. Pharmacol. 2021, 187, 114385. [Google Scholar] [CrossRef]
- Aziz, N.A.W.; Iezhitsa, I.; Agarwal, R.; Bakar, N.S.; Abd. Latiff, A.; Ismail, N.M. Neuroprotection by Trans-Resveratrol in Rats With Intracerebral Hemorrhage: Insights into the Role of Adenosine A1 Receptors. J. Neuropathol. Exp. Neurol. 2022, 81, 596–613. [Google Scholar] [CrossRef]
- Bottari, N.B.; Pillat, M.M.; Schetinger, M.R.C.; Reichert, K.P.; Machado, V.; Assmann, C.E.; Ulrich, H.; Dutra, A.; Morsch, V.M.; Vidal, T.; et al. Resveratrol-Mediated Reversal of Changes in Purinergic Signaling and Immune Response Induced by Toxoplasma Gondii Infection of Neural Progenitor Cells. Purinergic Signal. 2019, 15, 77–84. [Google Scholar] [CrossRef]
- Fracasso, M.; Reichert, K.; Bottari, N.B.; da Silva, A.D.; Schetinger, M.R.C.; Monteiro, S.G.; da Silva, A.S. Involvement of Ectonucleotidases and Purinergic Receptor Expression during Acute Chagas Disease in the Cortex of Mice Treated with Resveratrol and Benznidazole. Purinergic Signal. 2021, 17, 493–502. [Google Scholar] [CrossRef]
- Xie, J.; Liu, S.; Wu, B.; Li, G.; Rao, S.; Zou, L.; Yi, Z.; Zhang, C.; Jia, T.; Zhao, S.; et al. The Protective Effect of Resveratrol in the Transmission of Neuropathic Pain Mediated by the P2X7 Receptor in the Dorsal Root Ganglia. Neurochem. Int. 2017, 103, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, M.; O’Garra, A. The Regulation of IL-10 Production by Immune Cells. Nat. Rev. Immunol. 2010, 10, 170–181. [Google Scholar] [CrossRef]
- Yang, J.; Wang, C.; Xin, W.; Liu, J.; Ping, X.; Lu, Y.; Zhao, J.; Pei, L. Exploring the Therapeutic Potential of Baicalin: Mitigating Anxiety and Depression in Epileptic Rats. Comb. Chem. High Throughput Screen. 2025, 28, 1776–1794. [Google Scholar] [CrossRef] [PubMed]
- Ozdamar Unal, G.; Kumbul, D.; Hekimler Ozturk, K.; Erkılınc, G.; Donmez, F.; Dogan Kıran, E.; Yuceer, R.O. The Effect of Vortioxetine on the NLRP3 Pathway and Microglial Activity in the Prefrontal Cortex in an Experimental Model of Depression. Immunopharmacol. Immunotoxicol. 2024, 46, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Rifat, A.; Ossola, B.; Bürli, R.W.; Dawson, L.A.; Brice, N.L.; Rowland, A.; Lizio, M.; Xu, X.; Page, K.; Fidzinski, P.; et al. Differential Contribution of THIK-1 K+ Channels and P2X7 Receptors to ATP-Mediated Neuroinflammation by Human Microglia. J. Neuroinflammation 2024, 21, 58. [Google Scholar] [CrossRef]
- Chai, Y.; Cai, Y.; Fu, Y.; Wang, Y.; Zhang, Y.; Zhang, X.; Zhu, L.; Miao, M.; Yan, T. Salidroside Ameliorates Depression by Suppressing NLRP3-Mediated Pyroptosis via P2X7/NF-ΚB/NLRP3 Signaling Pathway. Front. Pharmacol. 2022, 13, 812362. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Wang, Y.; Zhang, Z.; Xin, C.; Wang, Y.; Rong, P. Transcutaneous Vagus Nerve Stimulation Modulates Depression-like Phenotype Induced by High-Fat Diet via P2X7R/NLRP3/IL-1β in the Prefrontal Cortex. CNS Neurosci. Ther. 2024, 30, e14755. [Google Scholar] [CrossRef]
- Valdés-Tresanco, M.S.; Valdés-Tresanco, M.E.; Valiente, P.A.; Moreno, E. AMDock: A Versatile Graphical Tool for Assisting Molecular Docking with Autodock Vina and Autodock4. Biol. Direct 2020, 15, 12. [Google Scholar] [CrossRef]
- da Rocha, J.A.P.; da Costa, R.A.; da Costa, A.d.S.S.; da Rocha, E.C.M.; Gomes, A.J.B.; Machado, A.K.; Fagan, S.B.; Brasil, D.d.S.B.; Lima e Lima, A.H. Harnessing Brazilian Biodiversity Database: Identification of Flavonoids as Potential Inhibitors of SARS-CoV-2 Main Protease Using Computational Approaches and All-Atom Molecular Dynamics Simulation. Front. Chem. 2024, 12, 1336001. [Google Scholar] [CrossRef]
- dos Santos, A.F.; Martins, M.O.; Lameira, J.; de Oliveira Araújo, J.; Frizzo, M.S.; Davidson, C.B.; de Souza, D.V.; Machado, A.K.; Mortari, S.R.; Druzian, D.M.; et al. Evaluation Interaction of Graphene Oxide with Heparin for Antiviral Blockade: A Study of Ab Initio Simulations, Molecular Docking, and Experimental Analysis. J. Mol. Model. 2023, 29, 235. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Woods, R.J.; Chappelle, R. Restrained Electrostatic Potential Atomic Partial Charges for Condensed-Phase Simulations of Carbohydrates. J. Mol. Struct. THEOCHEM 2000, 527, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Cerutti, D.S.; Cisneros, G.A.; Cruzeiro, V.W.D.; Forouzesh, N.; Giese, T.J.; Götz, A.W.; Gohlke, H.; et al. AmberTools. J. Chem. Inf. Model. 2023, 63, 6183–6191. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. Ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from Ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.C.; Myers, J.B.; Folta, T.; Shoja, V.; Heath, L.S.; Onufriev, A. H++: A Server for Estimating p Ka s and Adding Missing Hydrogens to Macromolecules. Nucleic Acids Res. 2005, 33, W368–W371. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Neria, E.; Fischer, S.; Karplus, M. Simulation of Activation Free Energies in Molecular Systems. J. Chem. Phys. 1996, 105, 1902–1921. [Google Scholar] [CrossRef]
- da Costa, R.A.; da Rocha, J.A.P.; Pinheiro, A.S.; da Costa, A.D.S.S.; da Rocha, E.C.M.; Silva, R.C.; Gonçalves, A.d.S.; Santos, C.B.R.; Brasil, D.D.S.B. A Computational Approach Applied to the Study of Potential Allosteric Inhibitors Protease NS2B/NS3 from Dengue Virus. Molecules 2022, 27, 4118. [Google Scholar] [CrossRef]
- Loncharich, R.J.; Brooks, B.R.; Pastor, R.W. Langevin Dynamics of Peptides: The Frictional Dependence of Isomerization Rates of N-acetylalanyl-N′-methylamide. Biopolymers 1992, 32, 523–535. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; Dinola, A.; Haak, J.R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding Affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef]
- Da Costa, R.A.; Da Rocha, J.A.P.; Pinheiro, A.S.; Da Costa, A.S.S.; Da Rocha, E.C.M.; Josino, L.P.C.; Da, A.; Gonçalves, S.; Lima, A.H.L.; Brasil, D.S.B. In Silico Identification of Novel Allosteric Inhibitors of Dengue Virus NS2B/NS3 Serine Protease. J. Serb. Chem. Soc 2022, 87, 693–706. [Google Scholar] [CrossRef]
- Bottari, N.B.; Schetinger, M.R.C.; Pillat, M.M.; Palma, T.V.; Ulrich, H.; Alves, M.S.; Morsch, V.M.; Melazzo, C.; de Barros, L.D.; Garcia, J.L.; et al. Resveratrol as a Therapy to Restore Neurogliogenesis of Neural Progenitor Cells Infected by Toxoplasma Gondii. Mol. Neurobiol. 2019, 56, 2328–2338. [Google Scholar] [CrossRef] [PubMed]
- Copetti, P.M.; Bissacotti, B.F.; da Silva Gündel, S.; Bottari, N.B.; Sagrillo, M.R.; Machado, A.K.; Ourique, A.F.; Chitolina Schetinger, M.R.; Schafer da Silva, A. Pharmacokinetic Profiles, Cytotoxicity, and Redox Metabolism of Free and Nanoencapsulated Curcumin. J. Drug Deliv. Sci. Technol. 2022, 72, 103352. [Google Scholar] [CrossRef]
- Bissacotti, B.F.; Copetti, P.M.; Bottari, N.B.; Gündel, S.d.S.; Machado, A.K.; Sagrillo, M.R.; Ourique, A.F.; Morsch, V.M.M.; da Silva, A.S. Impact of Free Curcumin and Curcumin Nanocapsules on Viability and Oxidative Status of Neural Cell Lines. Drug Chem. Toxicol. 2021, 46, 155–165. [Google Scholar] [CrossRef]
- Pappis, L.; Ramos, A.P.; Fontana, T.; Sangoi, G.G.; Dornelles, R.C.; Dolwitsch, C.B.; Sagrillo, M.R.; Cadoná, F.C.; Machado, A.K.; Bauermann, L.d.F. Randia Ferox (Cham & Schltdl) DC.: Phytochemical Composition, in Vitro Cyto- and Genotoxicity Analyses. Nat. Prod. Res. 2022, 36, 4170–4176. [Google Scholar] [CrossRef]
- Copetti, P.M.; Gündel, S.d.S.; de Oliveira, P.S.B.; Favarin, F.R.; Ramos, A.P.; Pintos, F.G.; Pappis, L.; Gündel, A.; Machado, A.K.; Ourique, A.F.; et al. Development, Characterisation, Stability Study and Antileukemic Evaluation of Nanoemulsions Containing Astrocaryum Aculeatum Extract. Nat. Prod. Res. 2020, 36, 1321–1326. [Google Scholar] [CrossRef]
- de Souza, D.V.; Pappis, L.; Bandeira, T.T.; Sangoi, G.G.; Fontana, T.; Rissi, V.B.; Sagrillo, M.R.; Duarte, M.M.; Duarte, T.; Bodenstein, D.F.; et al. Açaí (Euterpe Oleracea Mart.) Presents Anti-Neuroinflammatory Capacity in LPS-Activated Microglia Cells. Nutr. Neurosci. 2022, 25, 1188–1199. [Google Scholar] [CrossRef] [PubMed]
- El Sabbagh, D.; Attisano, L.; Andreazza, A.C.; Machado, A.K. A Dynamic Protocol to Explore NLRP3 Inflammasome Activation in Cerebral Organoids. Int. J. Mol. Sci. 2024, 25, 6335. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Ahn, S.; Costa, J.; Emanuel, J. PicoGreen Quantitation of DNA: Effective Evaluation of Samples Pre- or Post-PCR. Nucleic Acids Res. 1996, 24, 2623–2625. [Google Scholar] [CrossRef]
- Choi, W.; Shin, P.; Lee, J.; Kim, G. The Regulatory Effect of Veratric Acid on NO Production in LPS-Stimulated. Cell. Immunol. 2012, 280, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.; Dornelles, E.; Mânica-Cattani, M.F.; Algarve, T.D.; de Souza Filho, O.C.; Sagrillo, M.R.; Garcia, L.F.M.; da Cruz, I.B.M. Influence of Val16Ala SOD2 Polymorphism on the In-Vitro Effect of Clomiphene Citrate in Oxidative Metabolism. Reprod. Biomed. Online 2012, 24, 474–481. [Google Scholar] [CrossRef] [PubMed]
- William-Faltaos, S.; Rouillard, D.; Lechat, P.; Bastian, G. Cell Cycle Arrest and Apoptosis Induced by Oxaliplatin (L-OHP) on Four Human Cancer Cell Lines. Anticancer Res. 2006, 26, 2093–2099. [Google Scholar] [PubMed]
- McLaren, F.H.; Svendsen, C.N.; Van der Meide, P.; Joly, E. Analysis of Neural Stem Cells by Flow Cytometry: Cellular Differentiation Modifies Patterns of MHC Expression. J. Neuroimmunol. 2001, 112, 35–46. [Google Scholar] [CrossRef]
- Rebola, N.; Pinheiro, P.C.; Oliveira, C.R.; Malva, J.O.; Cunha, R.A. Subcellular Localization of Adenosine A1 Receptors in Nerve Terminals and Synapses of the Rat Hippocampus. Brain Res. 2003, 987, 49–58. [Google Scholar] [CrossRef]
Ligand | Affinity (kcal/mol) | Estimated Ki | RMSD (Å) |
---|---|---|---|
RSV | −6.7 | 12.27 µM | 0.480 |
MCC950 | −8.4 | 696.25 nM | 0.541 |
Ligand | RMSD | SASA | Rg | |||
---|---|---|---|---|---|---|
Average (Å) | Standard Deviation (Å) | Average (Å2) | Standard Deviation (Å2) | Average (Å) | Standard Deviation (Å) | |
APO | 2.26 | 0.33 | 5975.17 | 226.85 | 22.59 | 1.87 |
RSV | 2.17 | 0.33 | 5751.66 | 231.06 | 21.55 | 1.22 |
MCC950 | 3.25 | 0.60 | 5802.91 | 209.53 | 27.03 | 2.18 |
Molecule | ∆EvdW | ∆Eele | ∆GGB | ∆Gnonpol | ∆GMM/GBSA |
---|---|---|---|---|---|
RSV | −31.9652 ± 2.9491 | −23.0579 ± 4.0545 | 37.3798 ± 3.1234 | −4.7990 ± 0.2427 | −22.4423 ± 5.9119 |
MCC950 | −22.4536 ± 7.2380 | −0.6858 ± 5.3272 | 12.4086 ± 6.4026 | −2.9039 ± 1.0302 | −13.6347 ± 11.0825 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bissacotti, B.F.; da Silveira, M.V.; Assmann, C.E.; Copetti, P.M.; Santos, A.F.d.; Fagan, S.B.; da Rocha, J.A.P.; Schetinger, M.R.C.; Morsch, V.M.M.; Bottari, N.B.; et al. Resveratrol Alleviates Inflammatory Response Through P2X7/NLRP3 Signaling Pathway: In Silico and In Vitro Evidence from Activated Microglia. Pharmaceuticals 2025, 18, 950. https://doi.org/10.3390/ph18070950
Bissacotti BF, da Silveira MV, Assmann CE, Copetti PM, Santos AFd, Fagan SB, da Rocha JAP, Schetinger MRC, Morsch VMM, Bottari NB, et al. Resveratrol Alleviates Inflammatory Response Through P2X7/NLRP3 Signaling Pathway: In Silico and In Vitro Evidence from Activated Microglia. Pharmaceuticals. 2025; 18(7):950. https://doi.org/10.3390/ph18070950
Chicago/Turabian StyleBissacotti, Bianca Fagan, Marcylene Vieira da Silveira, Charles Elias Assmann, Priscila Marquezan Copetti, André Flores dos Santos, Solange Binotto Fagan, João Augusto Pereira da Rocha, Maria Rosa Chitolina Schetinger, Vera Maria Melchiors Morsch, Nathieli Bianchin Bottari, and et al. 2025. "Resveratrol Alleviates Inflammatory Response Through P2X7/NLRP3 Signaling Pathway: In Silico and In Vitro Evidence from Activated Microglia" Pharmaceuticals 18, no. 7: 950. https://doi.org/10.3390/ph18070950
APA StyleBissacotti, B. F., da Silveira, M. V., Assmann, C. E., Copetti, P. M., Santos, A. F. d., Fagan, S. B., da Rocha, J. A. P., Schetinger, M. R. C., Morsch, V. M. M., Bottari, N. B., Machado, A. K., & da Silva, A. S. (2025). Resveratrol Alleviates Inflammatory Response Through P2X7/NLRP3 Signaling Pathway: In Silico and In Vitro Evidence from Activated Microglia. Pharmaceuticals, 18(7), 950. https://doi.org/10.3390/ph18070950