Commiphora leptophloeos Bark Decoction: Phytochemical Composition, Antioxidant Capacity, and Non-Genotoxic Safety Profile
Abstract
1. Introduction
2. Results
2.1. Phytochemical Evaluation
2.2. Antioxidant Potential
2.3. Cytotoxicity
2.4. Genotoxicity
2.5. Ames/Salmonella Test (Salmonella/Microsome Assay)
3. Discussion
4. Material and Methods
4.1. Plant Material and Aqueous Extract Preparation
4.2. Phytochemical Analysis
4.2.1. Analysis by UPLC-MS/MS
4.2.2. Dereplication of Natural Products of Commiphora leptophloeos Using NP3 MS Workflow Software
4.3. In Vitro Antioxidant Activity
4.3.1. DPPH Test
4.3.2. ABTS Test
4.3.3. Phosphomolybdenum
4.3.4. Reducing Power
4.4. Cytotoxicity, Genotoxicity, and Mutagenicity Tests
4.4.1. Cell Lineage
4.4.2. MTT Test (Cytotoxicity)
4.4.3. Micronucleus Test with Cytokinesis Block (CBMN Test, Genotoxicity)
4.4.4. Ames/Salmonella Test (Pre-Incubation Method, Mutagenicity)
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABTS | 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
CBMN | Micronucleus test with cytokinesis block |
CBPI | Cytokinesis-Block Proliferation Index |
CNPq | Conselho Nacional de Desenvolvimento Científico e Tecnológico |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
EC50 | Effective concentration |
EMA | European Medicines Agency |
FDA | Food and Drug Administration |
GNPS | Global Natural Products Social Molecular Networking |
MI | Mutagenicity Index |
MN | Micronuclei |
MTT | (3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide) |
NB | Nuclear bud |
NC | Negative control |
NPB | Nucleoplasmic bridge |
PC | Positive control |
SSMN | Spectra Similarity Molecular Networking |
UPLC-MS/MS | Ultra-performance liquid chromatography coupled with tandem mass spectrometry |
UNPD | Universal Natural Products in Silico Database |
References
- Carvalho, P.E.R. Imburana-de-Espinho-Commiphora leptophloeos. In Espécies Arbóreas Brasileiras, 1st ed.; Carvalho, P.E.R., Ed.; Embrapa Informação Tecnológica: Brasília, Brasil, 2009; Volume 3, pp. 1–8. [Google Scholar]
- Daly, D.C.B.; Fine, P.V.A.; Martínez-Habibe, M.C. Burseraceae: A model for studying the Amazon flora. Rodriguésia 2012, 63, 21–30. [Google Scholar] [CrossRef]
- Bolivia Catalogue. Available online: http://legacy.tropicos.org/Name/4700611?projectid=13&langid=66 (accessed on 28 March 2025).
- Agra, M.F.; Silva, K.N.; Basílio, I.J.L.D.; Freitas, P.F.; Barbosa-Filho, J.M. Survey of medicinal plants used in the region Northeast of Brazil. Rev. Bras. Farmacogn. 2008, 18, 472–508. [Google Scholar] [CrossRef]
- Benko-Iseppon, A.M.; Pinangé, D.S.B.; Chang, S.C.; Morawetz, W. Ethnobotanical uses of the native flora from Brazilian North-Eastern region. In Medicinal Plants: Biodiversity and Drugs; Ray, M., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 84–105. [Google Scholar]
- Macedo, J.G.F.; Menezes, I.R.A.; Alves, R.D.; Oliveira Santos, M.; Gonçalves, M.D.; Ferreira Macêdo, M.J.; Almeida, B.V.; Oliveira, L.G.S.; Leite, C.P.; Souza, M.M.A. Analysis of the variability of therapeutic indications of medicinal species in the Northeast of Brazil: Comparative study. J. Evid.-Based Complement. Altern. Med. 2018, 2018, 6769193. [Google Scholar] [CrossRef] [PubMed]
- Albergaria, E.T.; Silva, M.V.; Silva, A.G. Levantamento etnobotânico de plantas medicinais em comunidades rurais do município de Lagoa Grande, Pernambuco. Fitos 2019, 13, 137–154. [Google Scholar] [CrossRef]
- Albuquerque, U.P.; Monteiro, J.M.; Ramos, M.A.; Amorim, E.L.C. Medicinal and magic plants from a public market in northeastern Brazil. J. Ethnopharmacol. 2007, 110, 76–91. [Google Scholar] [CrossRef]
- Pessoa, R.F.; Duarte Figueiredo, I.A.; Ferreira, S.R.F.; Farias, A.R.C.S.L.; Paiva, R.L.M.; Cordeiro, L.V.; Lima, E.O.; Cabrera, S.P.; Silva, T.M.S.; Cavalcante, F.A. Investigation of ethnomedicinal use of Commiphora leptophloeos (Mart.) J.B. Gillett (Burseraceae) in treatment of diarrhea. J. Ethnopharmacol. 2021, 268, 113564. [Google Scholar] [CrossRef]
- Pereira, J.J.S.; Pereira, A.P.C.; Jandú, J.J.B.; Paz, J.A.; Crovella, S.; Correia, M.T.S.; Silva, J.A. Commiphora leptophloeos phytochemical and antimicrobial characterization. Front. Microbiol. 2017, 8, 52. [Google Scholar]
- Dantas-Medeiros, R.; Zanatta, A.C.; Souza, L.B.F.C.; Fernandes, J.M.; Amorim-Carmo, B.; Torres-Rêgo, M.; Fernandes-Pedrosa, M.F.; Vilegas, W.; Araújo, T.A.S.; Michel, S.; et al. Antifungal and antibiofilm activities of B-type oligomeric procyanidins from Commiphora leptophloeos used alone or in combination with fluconazole against Candida spp. Front. Microbiol. 2021, 12, 613155. [Google Scholar] [CrossRef]
- Alcântara, L.F.M.; Silva, P.T.; Oliveira, Q.M.; Santos Souza, T.G.; Silva, M.M.; Feitoza, G.S.; Costa, W.K.; Lira, M.A.C.; Chagas, C.A.; Aguiar-Júnior, F.C.A.; et al. Toxicological safety, antioxidant activity and phytochemical characterization of leaf and bark aqueous extracts of Commiphora leptophloeos (Mart.) J.B. Gillett. J. Toxicol. Environ. Health A 2023, 86, 557–574. [Google Scholar] [CrossRef]
- Araujo, J.R.S.; Arcoverde, J.V.B.; Silva, M.G.F.; Santana, E.R.; Silva, P.A.; Araujo, S.S.; Santos, N.; Almeida, P.M.; Lima, C.S.A.; Benko-Iseppon, A.M.; et al. Antioxidant and in vitro cytogenotoxic properties of Amburana cearensis (Allemão) A.C.Sm. leaf extract. Drug Chem. Toxicol. 2021, 46, 104–112. [Google Scholar] [CrossRef]
- Araujo, J.R.S.; Morais, J.G.S.; Santos, C.M.; Rocha, K.C.A.; Fagundes, A.D.C.A.R.; Silva-Filho, F.A.; Martins, F.A.; Almeida, P.M. Phytochemical prospecting, isolation, and protective effect of the ethanolic extract of the leaves of Jatropha mollissima (Pohl) Baill. J. Toxicol. Environ. Health A 2021, 84, 743–760. [Google Scholar] [CrossRef] [PubMed]
- Luna, M.S.M.; Costa, R.F.; de Sousa Araujo, S.; da Silva Araujo, J.R.; de Miranda, P.H.O.; de Veras, B.O.; Oliveira, F.G.S.; Harand, W.; Silva, C.E.S.S.; Carvalho, M.E.T.; et al. Chemical composition of Libidibia ferrea var. ferrea aqueous extract for antimicrobial purpose and cytogenotoxicity on human peripheral blood mononuclear cells. S. Afr. J. Bot. 2022, 148, 336–343. [Google Scholar]
- Costa, R.F.; Ximenes, N.C.A.; Salles, C.E.; de Sousa Araujo, S.; da Silva Araujo, J.R.; de Oliveira, W.F.; Coelho, L.C.B.B.; Brasileiro-Vidal, A.C.; Correia, M.T.S. A new thermostable, non-cytotoxic and non-genotoxic lectin purified from pod of Libidibia ferrea var. ferrea (LifePL). S. Afr. J. Bot. 2024, 169, 38–45. [Google Scholar] [CrossRef]
- FDA. Food and Drug Administration. 2010 M3(R2) Nonclinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/m3r2-nonclinical-safety-studies-conduct-human-clinical-trials-and-marketing-authorization (accessed on 30 September 2020).
- EMA. European Medicines Agency. ICH M3 (R2) Non-Clinical Safety Studies for the Conduct of Human Clinical Trials for Pharmaceuticals. Available online: https://www.ema.europa.eu/en/ich-m3-r2-non-clinical-safety-studies-conduct-human-clinical-trials-pharmaceuticals-scientific-guideline (accessed on 30 September 2020).
- Fenech, M. Cytokinesis-Block Micronucleus Cytome Assay Evolution into a More Comprehensive Method to Measure Chromosomal Instability. Genes 2020, 11, 1203. [Google Scholar] [CrossRef]
- Mortelmans, K. A perspective on the development of the Ames Salmonella/mammalian-microsome mutagenicity assay. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 841, 14–16. [Google Scholar] [CrossRef]
- Trentin, D.S.; Silva, D.B.; Amaral, M.W.; Zimmer, K.R.; Silva, M.V.; Lopes, N.P.; Giordani, R.B.; Macedo, A.J. Tannins possessing bacteriostatic effect impair Pseudomonas aeruginosa adhesion and biofilm formation. PLoS ONE 2013, 8, e66257. [Google Scholar] [CrossRef]
- Yang, H.; Tuo, X.; Wang, L.; Tundis, R.; Portillo, M.P.; Simal-Gandara, J.; Yu, Y.; Zou, L.; Xiao, J.; Deng, J. Bioactive procyanidins from dietary sources: The relationship between bioactivity and polymerization degree. Trends Food Sci. Technol. 2021, 111, 114–127. [Google Scholar] [CrossRef]
- Dantas-Medeiros, R.; Marena, G.D.; Araújo, V.H.S.; Bezerra Neto, F.A.; Zanatta, A.C.; Lopes, N.P.; Bermejo, P.; Guerra, J.A.; Bedoya, L.M.; Fonseca-Santos, B.; et al. A new hydrogel containing a proanthocyanidin polymer-rich extract of Commiphora leptophloeos for treating vulvovaginal candidiasis: Preclinical results using the alternative model of Galleria mellonella. J. Drug Deliv. Sci. Technol. 2023, 85, 104531. [Google Scholar] [CrossRef]
- Cordeiro, M.L.S.; Ribeiro, A.R.C.; Melo, L.F.M.; Silva, L.F.; Fidelis, G.P.; Silva, L.M.P.; Caland, R.B.O.; Cadavid, C.O.M.; Aragão, C.F.S.; Zucolotto, S.M.; et al. Antioxidant activities of Commiphora leptophloeos (Mart.) J.B. Gillett (Burseraceae) leaf extracts using in vitro and in vivo assays. Oxid. Med. Cell. Longev. 2021, 2021, 3043720. [Google Scholar] [CrossRef]
- Saito, A.; Mizushina, Y.; Ikawa, H.; Yoshida, H.; Doi, Y.; Tanaka, A.; Nakajima, N. Systematic synthesis of galloyl-substituted procyanidin B1 and B2, and their ability of DPPH radical scavenging activity and inhibitory activity of DNA polymerases. Bioorg. Med. Chem. 2005, 13, 2759–2771. [Google Scholar] [CrossRef]
- Vishnoi, H.; Bodla, R.B.; Kant, R.; Bodla, R.B. Green tea (Camellia sinensis) and its antioxidant property: A review. Int. J. Pharm. Sci. Res. 2018, 9, 1723–1736. [Google Scholar]
- Jiang, X.; Liu, Y.; Wu, Y.; Tan, H.; Meng, F.; Wang, Y.S.; Xu, S.; Tan, X.; Liu, Q.; Zhang, J.; et al. Analysis of accumulation patterns and preliminary study on the condensation mechanism of proanthocyanidins in the tea plant (Camellia sinensis). Sci. Rep. 2015, 5, 8742. [Google Scholar] [CrossRef] [PubMed]
- Bouhlel, I.; Skandrani, I.; Nefatti, A.; Valenti, K.; Ghedira, K.; Mariotte, A.M.; Chekir-Ghedira, L. Antigenotoxic and antioxidant activities of isorhamnetin 3-O-neohesperidoside from Acacia salicina. Drug Chem. Toxicol. 2009, 32, 258–267. [Google Scholar] [CrossRef]
- Bhagat, P.P.; Bansode, T.N. Coumarin Derivatives: Pioneering New Frontiers in Biological Applications. Curr. Org. Chem. 2025, 29, 794–813. [Google Scholar] [CrossRef]
- Silva, A.P.G.; Sganzerla, W.G.; John, O.D.; Marchiosi, R. A Comprehensive Review of the Classification, Sources, Biosynthesis, and Biological Properties of Hydroxybenzoic and Hydroxycinnamic Acids. Phytochem. Rev. 2023, 24, 1061–1090. [Google Scholar] [CrossRef]
- Soleymani, S.; Habtemariam, S.; Rahimi, R.; Nabavi, S.M. The What and Who of Dietary Lignans in Human Health: Special Focus on Prooxidant and Antioxidant Effects. Trends Food Sci. Technol. 2020, 106, 382–390. [Google Scholar] [CrossRef]
- Tang, L.P.; Liu, T.; Han, X.Y.; Li, B.; Liu, H.D.; Gao, X.M. Unlocking the Power of Sesquiterpenoids: Phytochemistry and Bioactivities in Artemisia (2017–2023). Phytochem. Rev. 2024, 23, 1–85. [Google Scholar] [CrossRef]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-Inflammatory Effects of Flavonoids. Food Chem. 2019, 299, 125124. [Google Scholar] [CrossRef]
- Ramanan, M.; Sinha, S.; Sudarshan, K.; Aidhen, I.S.; Doble, M. Inhibition of the Enzymes in the Leukotriene and Prostaglandin Pathways in Inflammation by 3-Aryl Isocoumarins. Eur. J. Med. Chem. 2016, 124, 428–434. [Google Scholar] [CrossRef]
- Sudarshan, K.; Aidhen, I.S. Convenient Synthesis of 3-Glycosylated Isocoumarins. Eur. J. Org. Chem. 2017, 2017, 34–38. [Google Scholar] [CrossRef]
- Hossler, P.; Racicot, C.; Chumsae, C.; McDermott, S.; Cochran, K. Cell culture media supplementation of infrequently used sugars for the targeted shifting of protein glycosylation profiles. Biotechnol. Prog. 2017, 33, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Zain, M.S.C.; Lee, S.Y.; Sarian, M.N.; Fakurazi, S.; Shaari, K. In vitro wound healing potential of flavonoid C-glycosides from oil palm (Elaeis guineensis Jacq.) leaves on 3T3 fibroblast cells. Antioxidants 2020, 9, 326. [Google Scholar] [CrossRef]
- Zhuan, Q.; Li, J.; Du, X.; Zhang, L.; Meng, L.; Luo, Y.; Zhou, D.; Liu, H.; Wan, P.; Hou, Y.; et al. Antioxidant procyanidin B2 protects oocytes against cryoinjuries via mitochondria regulated cortical tension. J. Anim. Sci. Biotechnol. 2022, 13, 95. [Google Scholar] [CrossRef]
- Wang, H.; Hao, W.; Yang, L.; Li, T.; Zhao, C.; Yan, P.; Wei, S. Procyanidin B2 alleviates heat-induced oxidative stress through the Nrf2 pathway in bovine mammary epithelial cells. Int. J. Mol. Sci. 2022, 23, 7769. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Y.; Zhang, H.; Zhang, Y. Procyanidin B2 reduces vascular calcification through inactivation of ERK1/2-RUNX2 pathway. Antioxidants 2021, 10, 916. [Google Scholar] [CrossRef]
- Lü, J.; Jiang, C.; Schell, T.D.; Joshi, M.; Raman, J.D.; Xing, C. Angelica gigas: Signature Compounds, In Vivo Anticancer, Analgesic, Neuroprotective and Other Activities, and the Clinical Translation Challenges. Am. J. Chin. Med. 2022, 50, 1475–1527. [Google Scholar] [CrossRef]
- Gao, H.; Wu, L.; Kuroyanagi, M.; Harada, K.; Kawahara, N.; Nakane, T.; Nakamura, Y. Antitumor-promoting constituents from Chaenomeles sinensis Koehne and their activities in JB6 mouse epidermal cells. Chem. Pharm. Bull. 2003, 51, 1318–1321. [Google Scholar] [CrossRef]
- Akkol, E.K.; Ilhan, M.; Kozan, E.; Gürağaç Dereli, F.T.; Sobarzo-Sánchez, E.; Capasso, R. Coumarins and Coumarin-Related Compounds in Pharmacotherapy of Cancer. Cancers 2020, 12, 1959. [Google Scholar] [CrossRef] [PubMed]
- Ruwizhi, N.; Aderibigbe, B.A. Cinnamic Acid Derivatives and Their Biological Efficacy. Int. J. Mol. Sci. 2020, 21, 5712. [Google Scholar] [CrossRef]
- Chen, Q.F.; Liu, Z.P.; Wang, F.P. Natural Sesquiterpenoids as Cytotoxic Anticancer Agents. Mini Rev. Med. Chem. 2011, 11, 1153–1164. [Google Scholar] [CrossRef]
- ANVISA. Agência de Vigilância Sanitária. 2019. Estudos não Clínicos Necessários ao Desenvolvimento de Medicamentos Fitoterápicos e Produtos Tradicionais Fitoterápicos. Available online: https://www.gov.br/anvisa/pt-br/centraisdeconteudo/publicacoes/medicamentos/pesquisa-clinica/manuais-e-guias/guia-22_estudos-nao-clinicos-fitoterapicos.pdf (accessed on 8 October 2020).
- Takahashi, T.; Yokoo, Y.; Inoue, T.; Ishii, A. Toxicological studies on procyanidin B-2 for external application as a hair growing agent. Food Chem. Toxicol. 1999, 37, 545–552. [Google Scholar] [CrossRef]
- Yang, J.H.; Shin, B.Y.; Han, J.Y.; Kim, M.G.; Wi, J.E.; Kim, Y.W.; Cho, I.J.; Kim, S.C.; Shin, S.M.; Ki, S.H. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes. Toxicol. Appl. Pharmacol. 2014, 274, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Amorim, M.H.R.; Gil da Costa, R.M.; Lopes, C.; Bastos, M.M. Sesquiterpene Lactones: Adverse Health Effects and Toxicity Mechanisms. Crit. Rev. Toxicol. 2013, 43, 559–579. [Google Scholar] [CrossRef]
- Matsumura, S.; Ito, Y.; Morita, O.; Honda, H. Genome resequencing analysis of Salmonella typhimurium LT-2 strains TA98 and TA100 for the establishment of a next-generation sequencing-based mutagenicity assay: Genome resequencing of S. Typhimurium LT-2 strains TA98 and TA100. J. Appl. Toxicol. 2017, 37, 1125–1128. [Google Scholar] [CrossRef] [PubMed]
- Edenharder, R.; Tang, X. Inhibition of the mutagenicity of 2-nitrofluorene, 3-nitrofluoranthene and 1-nitropyrene by flavonoids, coumarins, quinones and other phenolic compounds. Food Chem. Toxicol. 1997, 35, 357–372. [Google Scholar] [CrossRef]
- Sotto, A.; De Paolis, F.; Gullì, M.; Vitalone, A.; Di Giacomo, S. Sesquiterpenes: A Terpene Subclass with Multifaceted Bioactivities. In Terpenes; Bentham Science Publishers: Sharjah, United Arab Emirates, 2023; pp. 1–55. [Google Scholar]
- Maistro, E.L.; de Souza Marques, E.; Fedato, R.P.; Tolentino, F.; da Silva, C.D.A.C.; Tsuboy, M.S.F.; Resende, F.A.; Varanda, E.A. In Vitro Assessment of Mutagenic and Genotoxic Effects of Coumarin Derivatives 6,7-Dihydroxycoumarin and 4-Methylesculetin. J. Toxicol. Environ. Health A 2015, 78, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, Z.A.; Abdul Hisam, E.E.; Rofiee, M.S.; Norhafizah, M.; Somchit, M.N.; Teh, L.K.; Salleh, M.Z. In vivo antiulcer activity of the aqueous extract of Bauhinia purpurea leaf. J. Ethnopharmacol. 2011, 137, 1047–1054. [Google Scholar] [CrossRef]
- Felício, R.; Ballone, P.; Bazzano, C.F.; Alves, L.F.; Sigrist, R.; Infante, G.P.; Niero, H.; Rodrigues-Costa, F.; Fernandes, A.Z.N.; Tonon, L.A.C.; et al. Chemical elicitors induce rare bioactive secondary metabolites in deep-sea bacteria under laboratory conditions. Metabolites 2021, 11, 107. [Google Scholar] [CrossRef]
- Bazzano, F.C. A Pipeline for LC-MS/MS Metabolomics Data Process and Analysis Version—1.1.4. 2022. Available online: https://github.com/danielatrivella/NP3_MS_Workflow/blob/master/docs/Manual_NP3_workflow.pdf (accessed on 28 October 2022).
- Vieira, B.D.; Niero, H.; Felício, R.; Alves, L.F.G.; Bazzano, C.F.; Sigrist, R.; Furtado, G.F.P.; Costa-Lotufo, L.V.; Trivella, D.B.B. Production of epoxyketone peptide-based proteasome inhibitors by Streptomyces sp. BRA-346: Regulation and biosynthesis. Front. Microbiol. 2022, 13, 2022. [Google Scholar]
- Allard, P.M.; Péresse, T.; Bisson, J.; Gindro, K.; Marcourt, L.; Pham, V.C.; Roussi, F.; Litaudon, M.; Wolfender, J.L. Integration of molecular networking and in silico MS/MS fragmentation for natural products dereplication. Anal. Chem. 2016, 88, 3317–3323. [Google Scholar] [CrossRef]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Bandeira, N. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Wróblewska, K.B.; Baby, A.R.; Guaratini, M.T.G.; Moreno, P.R.H. In vitro antioxidant and photoprotective activity of five native Brazilian bamboo species. Ind. Crops Prod. 2019, 130, 208–215. [Google Scholar] [CrossRef]
- Sridhar, K.; Charles, A.L. In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC50 using advanced statistical programs. Food Chem. 2019, 275, 41–49. [Google Scholar] [CrossRef]
- Rasera, G.B.; Hilkner, M.H.; Alencar, S.M.; Castro, R.J.S. Biologically active compounds from white and black mustard grains: An optimization study for recovery and identification of phenolic antioxidants. Ind. Crops Prod. 2019, 135, 294–300. [Google Scholar] [CrossRef]
- Subramanian, S.K.; Ramani, P. Antioxidant and cytotoxic activities of Indian caper (Capparis brevispina DC (Capparaceae)) leaf extracts. Eur. J. Integr. Med. 2020, 33, 101038. [Google Scholar] [CrossRef]
- Djouahri, A.; Saka, B.; Boudarene, L.; Lamari, L.; Sabaou, N.; Baaliouamer, A. Essential oil variability of Tetraclinis articulata (Vahl) Mast. parts during its phenological cycle and incidence on the antioxidant and antimicrobial activities. Chem. Biodivers. 2017, 14, e1600216. [Google Scholar] [CrossRef] [PubMed]
- Berker, K.I.; Güçlü, K.; Tor, İ.; Apak, R. Comparative evaluation of Fe(III) reducing power-based antioxidant capacity assays in the presence of phenanthroline, bathophenanthroline, tripyridyltriazine (FRAP), and ferricyanide reagents. Talanta 2007, 72, 1157–1165. [Google Scholar] [CrossRef]
- Vasilijević, B.; Knežević-Vukčević, J.; Mitić-Ćulafić, D.; Orčić, D.; Francišković, M.; Srdic-Rajic, T.; Nikolić, B. Chemical characterization, antioxidant, genotoxic and in vitro cytotoxic activity assessment of Juniperus communis var. saxatilis. Food Chem. Toxicol. 2018, 112, 118–125. [Google Scholar] [CrossRef]
- OECD 2016. TG 487: In Vitro Mammalian Cell Micronucleus Test. Available online: https://www.oecd-ilibrary.org/docserver/9789264264861-en.pdf?expires=1593694259&id=id&accname=guest&checksum=C401D5563DF80463BBC3E538FEB204C6 (accessed on 28 October 2022).
- OECD 2020. Test No. 471: Bacterial Reverse Mutation Test, OECD Guidelines for the Testing of Chemicals. Available online: https://www.oecd.org/en/publications/test-no-471-bacterial-reverse-mutation-test_9789264071247-en.html (accessed on 28 September 2020).
- Mortelmans, K.; Zeiger, E. The Ames Salmonella/microsome mutagenicity assay. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2000, 455, 29–60. [Google Scholar] [CrossRef]
- Cleophas, T.J.; Zwinderman, A.H. Non-parametric tests for three or more samples (Friedman and Kruskal-Wallis). In Clinical Data Analysis on a Pocket Calculator; Cleophas, T.J., Zwinderman, A.H., Eds.; Springer: Cham, Switzerland, 2016; pp. 193–197. [Google Scholar]
- Kozak, M.; Piepho, H.P. What’s normal anyway? Residual plots are more telling than significance tests when checking ANOVA assumptions. J. Agron. Crop Sci. 2018, 204, 86–98. [Google Scholar] [CrossRef]
No | m/z | Rt (s) | Annotated Compound | Class GNPS | Formula | MolecularMass | CAS |
---|---|---|---|---|---|---|---|
8 | 303.1077 | 94,44 | Picraquassioside D | Organooxygen | C13H18O8 | 302.1002 | 148707-37-3 |
11 | 579.1450 | 123,07 | Procyanidin B2 | Flavonoid | C30H26O12 | 578.52 | 82262-99-5 |
12 | 466.1927 | 137,46 | (3,4-dimethoxyphenoxy)-6-[(3,4,5-trihydroxyoxan-2-yl)oxymethyl]oxane-3,4,5-triol | Organooxygen | C19H28O12 | 448.1581 | - |
14 | 579.1505 | 146,20 | ent-epicatechin-(4α→8)-ent-epicatechin | Flavonoid | C30H26O12 | 578.1424 | 82262-99-5 |
15 | 355.1027 | 149,38 | Magnolioside | Cumarin | C16H18O9 | 354.0950 | 20186-29-2 |
18 | 347.1340 | 158,40 | 1-beta-D-glucopyranosyloxy-3,4,5-trimethoxybenzene | Organooxygen | C15H22O9 | 346.1264 | 41514-64-1 |
19 | 579.1450 | 161,75 | Procyanidin B2 | Flavonoid | C30H26O12 | 578.52 | 82262-99-5 |
21 | 477.1976 | 165,17 | Forsythoside E | Organooxygen | C21H32O12 | 476.1894 | 31864-08-09 |
22 | 493.1923 | 169,41 | 1-(alpha-L-rhamnopyranosyl-(1->6)-beta-D-glucopyranosyloxy)-3,4,5-trimethoxybenzene | Flavonoid | C21H32O13 | 492.1843 | 1023336-03-9 |
23 | 387.202 | 187,37 | (3S,5R,8R)-3,5-dihydroxy-6,7-megastigmadien-9-one 5-O-beta-D-glucopyranoside | Fatty acyl | C19H30O8 | 386.437 | 120278-09-3 |
28 | 579.1450 | 236,07 | Procyanidin B2 | Flavonoid | C30H26O12 | 578.52 | 82262-99-5 |
29 | 625.1774 | 261,04 | isorhamnetin 3-O-neohesperidoside | Unclassified | C28H32O16 | 624.1690 | 55033-90-4 |
30 | 219.1018 | 262,89 | (+)-(E,E)-3-Hydroxy-7-phenyl-4,6-heptadienic acid | Diarylpropanoid | C13H14O3 | 218.0943 | - |
32 | 453.1407 | 269,81 | 6′-O-vanilloyltachioside | Organooxygen | C21H24O11 | 452.409 | 1413911-15-9 |
33 | 359.1492 | 285,96 | Glicophenone | Lignan | C20H22O6 | 358.385 | 111254-27-4 |
34 | 359.1495 | 301,13 | Glicophenone | Lignan | C20H22O6 | 358.385 | 111254-27-4 |
38 | 295.1028 | 339,42 | 3-O-beta-D-glucopyranosyl-2-deoxy-D-ribono-gamma-lactone | Organooxygen | C11H18O9 | 294.0951 | 959761-28-5 |
41 | 221.1904 | 390,55 | Helianthol A | Organonitrogen | C15H24O | 220.1827 | 72916-06-4 |
43 | 331.0816 | 426,04 | Butoletol | Cumarin | C17H14O7 | 330.0740 | 35214-88-1 |
45 | 403.2025 | 499,66 | Aurantiamide | Carboxylic acid | C25H26N2O3 | 402.1943 | 58115-31-4 |
48 | 445.2134 | 555,18 | Benzenepropanamide, N-[2-(acetyloxy)-1-(phenylmethyl)ethyl]-α-(benzoylamino) | Carboxylic acid | C27H28N2O4 | 444.2049 | 56121-42-7 |
49 | 229.1226 | 597,67 | 3,7-dimethyl-5-isopropyl-6-formylindenone | Unclassified | C15H16O2 | 228.1150 | - |
Sample | EC50 (μg/mL) 1 | |||
---|---|---|---|---|
DPPH 2 | ABTS 2 | Phosphomolybdenum 3 | Reducing Power 3 | |
C. leptophloeos | 5.43 ± 1.12 a | 12.40 ± 1.15 a | 35.20 ± 1.16 a | 31.27 ± 1.25 a |
Ascorbic acid | 6.40 ± 1.32 a | 5.48 ± 1.25 b | 12.70 ± 1.18 b | 6.39 ± 1.10 b |
Treatment μg/mL | MN * | BN * | PN * | Total Alterations * | CBPI |
---|---|---|---|---|---|
NC | 10.00 ± 2.68 a | 8.00 ± 2.60 a | 0.00 ± 0.00 a | 18.00 ± 4.33 a | 1.70 ab |
PC | 66.00 ± 7.78 b | 25.60 ± 5.55 b | 1.20 ± 0.40 a | 92.43 ± 8.92 b | 1.42 c |
6.25 | 8.22 ± 4.20 a | 7.88 ± 2.80 a | 1.20 ± 0.40 a | 16.55 ± 4.27 a | 1.72 a |
25 | 9.11 ± 4.64 a | 10.00 ± 3.35 a | 1.40 ± 0.80 a | 20.51 ± 8.34 ac | 1.69 ab |
100 | 8.25 ± 2.31 a | 9.22 ± 2.58 a | 1.00 ± 0.00 a | 18.00 ± 5.37 a | 1.66 ab |
400 | 15.65 ± 4.21 c | 8.16 ± 2.11 a | 1.00 ± 0.00 a | 21.55 ± 7.87 ac | 1.69 ab |
Treatment | Concentration (μg/plate) | −S9 | MI | +S9 | MI |
---|---|---|---|---|---|
TA100 | |||||
NC | 0 | 100.60 ± 9.0 a | - | 115.40 ± 11.6 a | - |
NaN3 | 0.5 | 1023.50 ± 55.9 b | 7.9 | - | - |
2AA | 5 | - | - | 330.00 ± 100.0 b | 3.7 |
C. leptopholeos | 6.25 | 102.30 ± 8.5 a | 0.8 | 98.70 ± 7.0 a | 1.1 |
25 | 82.00 ± 4.6 a | 0.6 | 117.70 ± 10.7 a | 1.3 | |
100 | 104.30 ± 14.6 a | 0.8 | 102.30 ± 9.3 a | 1.1 | |
400 | 111.00 ± 13.1 a | 0.9 | 99.30 ± 8.3 a | 1.1 | |
1600 | 98.00 ± 6.2 a | 0.8 | 100.00 ± 18.2 a | 1.1 | |
TA98 | |||||
NC | 0 | 24.20 ± 5.12 a | - | 31.25 ± 1.71 a | - |
4NQO | 0.5 | 109.50 ± 16.26 b | 1.9 | - | - |
2AA | 5 | - | - | 281.00 ± 18.38 b | 8.4 |
C. leptopholeos | 6.25 | 21.67 ± 2.08 a | 0.4 | 32.33 ± 4.73 a | 0.6 |
25 | 21.00 ± 2.83 a | 0.4 | 31.00 ± 4.58 a | 0.8 | |
100 | 26.00 ± 2.65 a | 0.5 | 34.67 ± 8.39 a | 1.0 | |
400 | 18.00 ± 2.83 a | 0.3 | 29.33 ± 2.08 a | 0.8 | |
1600 | 24.00 ± 6.93 a | 0.4 | 31.33 ± 4.93 a | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araujo, J.R.d.S.; de Felício, R.; Marinho da Silva, C.; Oliveira, P.L.d.; Araújo, S.d.S.; Sommaggio, L.R.D.; da Silva, A.F.C.; Nunes, P.H.V.; Veras, B.O.d.; de Oliveira, E.B.; et al. Commiphora leptophloeos Bark Decoction: Phytochemical Composition, Antioxidant Capacity, and Non-Genotoxic Safety Profile. Pharmaceuticals 2025, 18, 863. https://doi.org/10.3390/ph18060863
Araujo JRdS, de Felício R, Marinho da Silva C, Oliveira PLd, Araújo SdS, Sommaggio LRD, da Silva AFC, Nunes PHV, Veras BOd, de Oliveira EB, et al. Commiphora leptophloeos Bark Decoction: Phytochemical Composition, Antioxidant Capacity, and Non-Genotoxic Safety Profile. Pharmaceuticals. 2025; 18(6):863. https://doi.org/10.3390/ph18060863
Chicago/Turabian StyleAraujo, José Rafael da Silva, Rafael de Felício, Camila Marinho da Silva, Palloma Lima de Oliveira, Silvany de Sousa Araújo, Laís Roberta Deroldo Sommaggio, Adriana Fabiana Corrêa da Silva, Paulo Henrique Valença Nunes, Bruno Oliveira de Veras, Erwelly Barros de Oliveira, and et al. 2025. "Commiphora leptophloeos Bark Decoction: Phytochemical Composition, Antioxidant Capacity, and Non-Genotoxic Safety Profile" Pharmaceuticals 18, no. 6: 863. https://doi.org/10.3390/ph18060863
APA StyleAraujo, J. R. d. S., de Felício, R., Marinho da Silva, C., Oliveira, P. L. d., Araújo, S. d. S., Sommaggio, L. R. D., da Silva, A. F. C., Nunes, P. H. V., Veras, B. O. d., de Oliveira, E. B., Aguiar, J. d. S., Marin-Morales, M. A., Trivella, D. B. B., Benko-Iseppon, A. M., Silva, M. V. d., & Brasileiro-Vidal, A. C. (2025). Commiphora leptophloeos Bark Decoction: Phytochemical Composition, Antioxidant Capacity, and Non-Genotoxic Safety Profile. Pharmaceuticals, 18(6), 863. https://doi.org/10.3390/ph18060863