Design, Synthesis, and In Vitro Evaluation of 4-(Arylchalcogenyl)methyl)-1H-1,2,3-triazol-1-yl-menadione: Exploring Their Potential Against Tuberculosis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antimycobacterial Evaluation
2.2. In Silico Pharmacokinetic and Toxicity Profile (ADMET) Analysis
2.3. Molecular Docking Studies
2.4. Integrating Docking Results with Biological Activity
3. Materials and Methods
3.1. General Procedure
3.1.1. General Procedure for the Synthesis of Propargyl Selenides 7a–e [20]
3.1.2. Characterization
3.1.3. General Procedure for the Synthesis of Propargyl Sulfides 8a–e [21]
3.1.4. Characterization
3.1.5. General Procedure for the Synthesis of Chalcogen–Naphthoquinones–1,2,3-Triazoles 9a–i and 10a–i [22]
3.1.6. Characterization
3.2. Antimycobacterial Evaluation
3.3. Cytotoxicity Evaluation
3.4. ADMET Analysis
- Absorption: gastrointestinal (GI) absorption, P-glycoprotein (P-gp) substrate classification, and skin permeability (log Kp).
- Distribution: blood–brain barrier (BBB) penetration and volume of distribution at steady state (VDss).
- Metabolism: prediction of cytochrome P450 enzyme inhibition (CYP450 isoforms: 1A2, 2C9, 2C19, 2D6, and 3A4).
- Excretion: Total clearance and renal clearance predictions.
- Hepatotoxicity.
- Mutagenicity (AMES test).
- Carcinogenicity.
- Potential for cardiotoxicity (hERG channel inhibition).
3.5. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2023. Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports (accessed on 24 April 2024).
- World Health Organization. Tuberculosis. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/tuberculosis (accessed on 25 April 2024).
- Fiocruz Escola Nacional de Saúde Pública Sérgio Arouca: Informe ENSP. Relatório Global da OMS Destaca Aumento Histórico no Diagnóstico de Tuberculose. Available online: https://informe.ensp.fiocruz.br/noticias/54719 (accessed on 25 April 2024).
- World Health Organization. Tuberculosis. 2023. Available online: https://www.who.int/news-room/questions-and-answers/item/tuberculosis/ (accessed on 24 April 2024).
- Lenardão, E.J.; Santi, C.; Perin, G.; Alves, D. Organochalcogen Compounds: Synthesis, Catalysis and New Protocols with Greener Perspectives, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Mustafa, M.; Winum, J.-Y. The Importance of Sulfur-Containing Motifs in Drug Design and Discovery. Expert Opin. Drug Discov. 2022, 17, 501. [Google Scholar] [CrossRef] [PubMed]
- Gomes, L.S.; Neto, J.S.S.; Di Leo, I.; Barbosa, C.G.; Moraes, C.B.; Freitas-Junior, L.H.; Rizzuti, B.; Santi, C.; Nascimento, V. Ecofriendly aminochalcogenation of alkenes: A green alternative to obtain compounds with potential anti-SARS-CoV-2 activity New J. Chem. 2023, 47, 6591. [Google Scholar] [CrossRef]
- Roldán-Peña, J.M.; Puerta, A.; Dinic, J.; Stojanov, S.J.; González-Bakker, A.; Hicke, F.J.; Mishra, A.; Piyasaengthong, A.; Maya, I.; Walton, J.W.; et al. Biotinylated selenocyanates: Potent and selective cytostatic agents. Bioorg. Chem. 2023, 133, 106410. [Google Scholar] [CrossRef] [PubMed]
- Thanna, S.; Goins, C.M.; Knudson, S.E.; Slayden, R.A.; Ronning, D.R.; Sucheck, S.J. Thermal and Photoinduced Copper-Promoted C–Se Bond Formation: Synthesis of 2-Alkyl-1,2-benzisoselenazol-3(2H)-ones and Evaluation against Mycobacterium tuberculis. J. Org. Chem. 2017, 84, 3844. [Google Scholar] [CrossRef]
- Pasha, M.A.; Mondal, S.; Panigrahi, N.; Shetye, G.; Ma, R.; Franzblau, S.G.; Zheng, Y.; Murugesan, S. One-Pot Synthesis of Novel Hydrazono-1,3-Thıazolıdın-4-One Derivatives as Anti-HIV and Anti-Tubercular Agents: Synthesıs, Bıologıcal Evaluatıon, Molecular Modelling and Admet Studıes. Curr. HIV Res. 2022, 20, 255–271. [Google Scholar]
- Nogueira, C.W.; Barbosa, N.V.; Rocha, J.B. Toxicology and pharmacology of synthetic organoselenium compounds: An update. Arch. Toxicol. 2021, 95, 1179–1226. [Google Scholar]
- Obieziurska-Fabisiak, M.; Pacuła-Miszewska, A.J.; Laskowska, A.; Ścianowski, J. Organoselenium compounds as antioxidants. Arkivoc 2023, 16, 69–92. [Google Scholar] [CrossRef]
- Oliveira, V.S.; Silva, C.C.; Oliveira, J.W.F.; Silva, M.S.; Ferreira, P.G.; Silva, F.C.; Ferreira, V.F.; Barbosa, E.G.; Barbosa, C.G.; Morais, C.B.; et al. The evaluation of in vitro antichagasic and anti-SARS-CoV-2 potential of inclusion complexes of β- and methyl-β-cyclodextrin with naphthoquinone. J. Drug Deliv. Technol. 2023, 81, 104229. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, X.; Yang, L.; Li, Q.; Zheng, X.; Bai, T.; Wang, X. Antibacterial Activity of Juglone Revealed in a Wound Model of Staphylococcus aureus Infection. Int. J. Mol. Sci. 2023, 24, 3931. [Google Scholar] [CrossRef]
- Cabral, R.G.; Viegas, G.; Pacheco, R.; Sousa, A.C.; Robalo, M.P. Sustainable Synthesis, Antiproliferative and Acetylcholinesterase Inhibition of 1,4- and 1,2-Naphthoquinone Derivatives. Molecules 2023, 28, 1232. [Google Scholar] [CrossRef]
- Velázquez-Becerra, C.; Ambriz-Ortiz, G.Y.; Torres-Martínez, R.; Martínez-Pacheco, M.M. Repellent and Insecticidal Activity of Naphthoquinones from the Heartwood of Tectona grandis on Incisitermes marginipennis (Latreille). Phyton 2023, 92, 2166. [Google Scholar]
- Lara, L.S.; Moreira, C.S.; Calvet, C.M.; Lechuga, G.C.; Souza, R.S.; Bourguignon, S.C.; Ferreira, V.F.; Rocha, D.; Pereira, M.C.S. Efficacy of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinone derivatives against different Trypanosoma cruzi discrete type units: Identification of a promising hit compound. Eur. J. Med. Chem. 2018, 144, 572. [Google Scholar] [CrossRef]
- Sebastián-Pérez, V.; Iturrate, P.M.; Nácher-Vázquez, M.; Nóvoa, L.; Pérez, C.; Campillo, N.E.; Gil, C.; Rivas, L. Naphthoquinone as a New Chemical Scaffold for Leishmanicidal Inhibitors of Leishmania GSK-3. Biomedicines 2022, 10, 1136. [Google Scholar] [CrossRef]
- Borba-Santos, L.P.; Barreto, T.L.; Vila, T.; Chi, K.D.; Monti, F.S.; Farias, M.R.; Alviano, D.S.; Alviano, C.S.; Futuro, D.O.; Ferreira, V.; et al. In Vitro and In Vivo Antifungal Activity of Buparvaquone against Sporothrix brasiliensis. Antimicrob. Agents Chemother. 2021, 65, e0069921. [Google Scholar] [CrossRef] [PubMed]
- Borba-Santos, L.P.; Nicoletti, C.D.; Vila, T.; Ferreira, P.G.; Araújo-Lima, C.F.; Galvão, P.V.D.; Felzenszwalb, I.; Souza, W.; Da Silva, F.C.; Ferreira, V.F.; et al. A novel naphthoquinone derivative shows selective antifungal activity against Sporothrix yeasts and biofilms. Braz. J. Microbiol. 2022, 53, 749. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.C.A. Structure-Activity Relationship Study of Naphthoquinone Derivatives as Antitubercular Agents Using Molecular Modeling Techniques. Interdiscip. Sci. 2015, 7, 346–356. [Google Scholar] [CrossRef]
- Kokot, M.; Hrast, M.; Rambaher, L.; Mitchenall, L.A.; Lawson, D.M.; Maxwell, A.; Parish, T.; Minovski, N.; Anderluh, M. Structural Aspects of Mycobacterium tuberculosis DNA Gyrase Targeted by Novel Bacterial Topoisomerase Inhibitors. ACS Med. Chem. Lett. 2024, 15, 2164–2170. [Google Scholar] [CrossRef]
- Ribeiro, R.C.B.; Marins, D.B.; Di Leo, I.; Gomes, L.S.; Moraes, M.G.; Abbadi, B.L.; Villela, A.D.; Silva, W.F.; Silva, L.C.R.P.; Machado, P.; et al. Anti-tubercular profile of new selenium-menadione conjugates Against Mycobacterium tuberculosis H37Rv (ATCC27294) strain and multidrug-resistant clinical isolates. Eur. J. Med. Chem. 2021, 209, 112859. [Google Scholar] [CrossRef]
- Oliveira, V.N.M.; Moura, C.F.A.; Peixoto, A.S.; Ferreira, V.P.G.; Araújo, H.M.; Pimentel, L.M.L.M.; Pessoa, C.O.; Nicolete, R.; Anjos, J.V.; Sharma, P.P.; et al. Synthesis of alkynylated 1,2,4-oxadiazole/1,2,3-1H-triazole glycoconjugates: Discovering new compounds for use in chemotherapy against lung carcinoma and Mycobacterium tuberculosis. Eur. J. Med. Chem. 2021, 220, 113472. [Google Scholar] [CrossRef]
- Shaveta; Mishra, S.; Singh, P. Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem. 2016, 24, 500–536. [Google Scholar] [CrossRef]
- Dutta, A.; Trivedi, P.; Gehlot, P.S.; Gogoi, D.; Hazarika, R.; Chetia, P.; Kumar, A.; Chaliha, A.K.; Chaturvedi, V.; Sarma, D. Design and Synthesis of Quinazolinone-Triazole Hybrids as Potent Anti-Tubercular Agents. ACS Appl. Bio Mater. 2022, 5, 4413. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Pal, S.K.; Pandey, D.; Fakir, N.A.; Rathod, S.; Sinha, D.; SivaKumar, S.; Sinha, P.; Periera, M.; Balgam, S.; et al. PknB remains an essential and a conserved target for drug development in susceptible and MDR strains of M. Tuberculosis. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 56. [Google Scholar] [CrossRef] [PubMed]
- Knoll, K.E.; Van der Walt, M.M.; Loots, D.T. In Silico Drug Discovery Strategies Identified ADMET Properties of Decoquinate RMB041 and Its Potential Drug Targets against Mycobacterium tuberculosis. Microbiol. Spectr. 2022, 10, e0231521. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.F.; Pinto, A.V.; Pinto, M.C.R.; Santos, S.C. The Diels-Alder Reaction with O-2,3-Dimethylene-1,4-Naphthoquinone: A Useful Intermediate for the Synthesis of the B Ring of Anthracyclinones. J. Braz. Chem. Soc. 1996, 7, 169. [Google Scholar] [CrossRef]
- De Souza, A.S.; Dias, D.S.; Ribeiro, R.C.B.; Costa, D.C.S.; De Moraes, M.G.; Pinho, D.R.; Masset, M.E.G.; Marins, L.M.; Valle, S.P.; De Carvalho, C.J.C.; et al. Novel naphthoquinone-1H-1,2,3-triazole hybrids: Design, synthesis and evaluation as inductors of ROS-mediated apoptosis in the MCF-7 cells. Bioorg. Med. Chem. 2024, 102, 117671. [Google Scholar] [CrossRef]
- Jana, S.; Koenigs, R.M. Rhodium-Catalyzed Carbene Transfer Reactions for Sigmatropic Rearrangement Reactions of Selenium Ylides. Org. Lett. 2019, 21, 3653. [Google Scholar] [CrossRef]
- Iwashita, M.; Hoshino, M.; Yoshikoshi, A. Sodium phenylseleno(triethoxy)borate, Na+[PhSeB(OEt)3]−: The reactive species generated from (PhSe)2 with NaBH4 in ethanol. Tetrahedron Lett. 1988, 29, 347. [Google Scholar]
- Denmark, S.E.; Harmata, M.A.; White, K.S. Studies on the addition of allyl oxides to sulfonylallenes. Preparation of highly substituted allyl vinyl ethers for carbanionic Claisen rearrangements. J. Org. Chem. 1987, 52, 4031. [Google Scholar] [CrossRef]
- Jia, Z.; Zhu, Q. ‘Click’ assembly of selective inhibitors for MAO-A. Bioorg. Med. Chem. Lett. 2010, 20, 6222. [Google Scholar] [CrossRef]
- Saady, A.; Goldup, S.M. Triazole formation and the click concept in the synthesis of interlocked molecules. Chem 2023, 9, 2110. [Google Scholar] [CrossRef]
- Akolkar, S.V.; Shaikh, M.H.; Bhalmode, M.K.; Pawar, P.U.; Sangshetti, J.N.; Damale, M.G.; Shingate, B.B. Click chemistry inspired syntheses of new amide linked 1,2,3-triazoles from naphthols: Biological evaluation and in silico computational study. Res. Chem. Intermed. 2023, 49, 2725. [Google Scholar] [CrossRef]
- Pavan, F.R.; Maia, P.I.D.S.; Leite, S.R.; Deflon, V.M.; Batista, A.A.; Sato, D.N.; Franzblau, S.G.; Leite, C.Q. Thiosemicarbazones, semicarbazones, dithiocarbazates and hydrazide/hydrazones: Anti Mycobacterium tuberculosis activity and cytotoxicity. Eur. J. Med. Chem. 2010, 45, 1898. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.; Santos, S.; Ventura, C.; Elvas-Leitão, R.; Santos, L.; Vitorino, S.; Reis, M.; Miranda, V.; Correia, H.F.; Aires-de-Sousa, J.; et al. Design, synthesis and biological evaluation of novel isoniazid derivatives with potent antitubercular activity. Eur. J. Med. Chem. 2014, 81, 119. [Google Scholar] [CrossRef]
- Hans, R.H.; Guantai, E.M.; Lategan, C.; Smith, P.J.; Wan, B.; Franzblau, S.G.; Gut, J.; Rosenthal, P.J.; Chibale, K. Synthesis, antimalarial and antitubercular activity of acetylenic chalcones. Bioorg. Med. Chem. Lett. 2010, 20, 942. [Google Scholar] [CrossRef] [PubMed]
- Das, U.; Das, S.; Bandy, B.; Stables, J.P.; Dimmocka, J.R. N-Aroyl-3,5-bis(benzylidene)-4-piperidones: A novel class of antimycobacterial agents. Bioorg. Med. Chem. Lett. 2008, 16, 3602. [Google Scholar] [CrossRef]
- Chawla, P.; Upadhyay, S.; Khan, S.; Nagarajan, S.N.; Forti, F.; Nandicoori, V.K. Protein kinase B (PknB) of Mycobacterium tuberculosis is essential for growth of the pathogen in vitro as well as for survival within the host. J. Biol. Chem. 2014, 289, 13858. [Google Scholar] [CrossRef] [PubMed]
- Lougheed, K.E.A.; Osborne, S.A.; Saxty, B.; Whalley, D.; Chapman, T.; Bouloc, N.; Chugh, J.; Nott, T.J.; Patel, D.; Spivey, V.L.; et al. Effective inhibitors of the essential kinase PknB and their potential as anti-mycobacterial agents. Tuberculosis 2011, 9, 277. [Google Scholar] [CrossRef]
- Franzblau, S.G.; Witzig, R.S.; McLaughlin, J.C.; Torres, P.; Madico, G.; Hernandez, A.; Degnan, M.T.; Cook, M.B.; Quenzer, V.K.; Ferguson, R.M.; et al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J. Clin. Microbiol. 1998, 36, 362. [Google Scholar] [CrossRef]
- SwissADME. Available online: http://www.swissadme.ch/ (accessed on 15 April 2025).
- pkCSM. Available online: http://biosig.unimelb.edu.au/pkcsm (accessed on 15 April 2025).
- MarvinSketch 24.1.0. Available online: https://chemaxon.com/products/marvin (accessed on 15 April 2025).
- Mani, N.; Suresh, S.; Govindammal, M.; Kannan, S.; Paulraj, E.I.; Nicksonsebastin, D.; Prasath, M. Spectroscopic (FT-IR, FT-Raman, NMR and UV–visible), ADMET and molecular docking investigation of aztreonam as anti-tuberculosis agent. Chem. Phys. Impact 2023, 7, 100254. [Google Scholar] [CrossRef]
- Thongdee, P.; Hanwarinroj, C.; Pakamwong, B.; Kamsri, P.; Punkvang, A.; Leanpolchareanchai, J.; Ketrat, S.; Saparpakorn, P.; Hannongbua, S.; Ariyachaokun, K.; et al. Virtual Screening Identifies Novel and Potent Inhibitors of Mycobacterium tuberculosis PknB with Antibacterial Activity. J. Chem. Inf. Model. 2022, 62, 6508. [Google Scholar] [CrossRef]
- Wehenkel, A.; Fernandez, P.; Bellinzoni, M.; Catherinot, V.; Barilone, N.; Labesse, G.; Jackson, M.; Alzari, P.M. The structure of PknB in complex with mitoxantrone, an ATP-competitive inhibitor, suggests a mode of protein kinase regulation in mycobacteria. FEBS Lett. 2006, 580, 3018. [Google Scholar] [CrossRef] [PubMed]
- Hunter, A.D. ACD/ChemSketch 1.0 (freeware), ACD/ChemSketch 2.0 and its Tautomers, Dictionary, and 3D Plug-ins, ACD/HNMR 2.0, ACD/CNMR 2.0. J. Chem. Educ. 1997, 74, 905. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [PubMed]
Entry | Structure | MIC (µg/mL) a | cLogP b | Entry | Structure | MIC (µg/mL) a | cLogP b |
---|---|---|---|---|---|---|---|
9a | ≤6.23 | 4.10 | 10a | 100.08 | 3.73 | ||
9b | ≤3.20 | 4.82 | 10b | >100.03 | 4.50 | ||
9c | ≤49.91 | 4.99 | 10c | >100.19 | 4.23 | ||
9d | >99.86 | 5.60 | 10d | >100.19 | 4.23 | ||
9e | 99.90 | 5.28 | 10e | >100.14 | 3.30 | ||
9f | ≤6.23 | 4.41 | 10f | 100.21 | 4.04 | ||
9g | ≤12.49 | 5.65 | 10g | >100.14 | 5.28 | ||
9h | 24.94 | 6.15 | 10h | >100.19 | 5.78 | ||
INH c | 0.12 | −0.71 | RIF d | 1.00 | 3.85 | ||
EMB e | 3.26 | −0.12 | PZA f | 100.06 | −0.71 |
Compound | MIC (µg/mL) INH/RIFR-Mtb a |
---|---|
9a | 3 |
9b | ≤3 |
9c | >99 |
9f | 50 |
9g | ≤3 |
9h | ≤3 |
INH | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, N.L.B.; Gomes, L.S.; Ribeiro, R.C.B.; Carvalho, A.S.d.; Lourenço, M.C.S.; Marins, L.M.; Valle, S.P.; Doring, T.H.; Andricopulo, A.D.; Oliveira, A.S.d.; et al. Design, Synthesis, and In Vitro Evaluation of 4-(Arylchalcogenyl)methyl)-1H-1,2,3-triazol-1-yl-menadione: Exploring Their Potential Against Tuberculosis. Pharmaceuticals 2025, 18, 797. https://doi.org/10.3390/ph18060797
Santos NLB, Gomes LS, Ribeiro RCB, Carvalho ASd, Lourenço MCS, Marins LM, Valle SP, Doring TH, Andricopulo AD, Oliveira ASd, et al. Design, Synthesis, and In Vitro Evaluation of 4-(Arylchalcogenyl)methyl)-1H-1,2,3-triazol-1-yl-menadione: Exploring Their Potential Against Tuberculosis. Pharmaceuticals. 2025; 18(6):797. https://doi.org/10.3390/ph18060797
Chicago/Turabian StyleSantos, Nathália L. B., Luana S. Gomes, Ruan C. B. Ribeiro, Alcione S. de Carvalho, Maria Cristina S. Lourenço, Laís Machado Marins, Sandy Polycarpo Valle, Thiago H. Doring, Adriano D. Andricopulo, Aldo S. de Oliveira, and et al. 2025. "Design, Synthesis, and In Vitro Evaluation of 4-(Arylchalcogenyl)methyl)-1H-1,2,3-triazol-1-yl-menadione: Exploring Their Potential Against Tuberculosis" Pharmaceuticals 18, no. 6: 797. https://doi.org/10.3390/ph18060797
APA StyleSantos, N. L. B., Gomes, L. S., Ribeiro, R. C. B., Carvalho, A. S. d., Lourenço, M. C. S., Marins, L. M., Valle, S. P., Doring, T. H., Andricopulo, A. D., Oliveira, A. S. d., Ferreira, V. F., da Silva, F. d. C., Forezi, L. d. S. M., & Nascimento, V. (2025). Design, Synthesis, and In Vitro Evaluation of 4-(Arylchalcogenyl)methyl)-1H-1,2,3-triazol-1-yl-menadione: Exploring Their Potential Against Tuberculosis. Pharmaceuticals, 18(6), 797. https://doi.org/10.3390/ph18060797