Population Pharmacokinetics of Risperidone and Paliperidone in Schizophrenia: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Design
2.2. Source of Data Collection
2.3. Information Processing
2.4. Final Selection of Articles
2.5. Data Extraction
3. Results
3.1. Study Design
3.2. Population of the Studies
3.3. PopPK Models
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A | amount |
AUC | concentration-time curve |
B1 | formulation Batch 3 |
B3 | formulation Batch 3 |
BIREME | Latin American and Caribbean Center on Health Sciences Information |
BMI | body mass index |
C | central |
CBZ | carbamazepine |
CGI-S | Clinical Global Impression-Severity |
CL | clearance |
CLf | apparent clearance from risperidone to 9-OHrisperidone |
CLcr | creatinine clearance |
Cmax | maximum plasma concentration |
Cmin | minimum plasma concentration |
Cp | plasma concentration |
CV | coefficient of variation |
D | release duration |
DZ | diazepam |
DeCS | Health Sciences Descriptors |
EM | extensive metaboliser |
ER | extended-release |
F | bioavailability |
FO | first-order estimation method |
FP | first-pass metabolism |
FOCE | first-order conditional estimation |
GOF | goodness of fit |
HPLC-ECD | high-performance liquid chromatography with electrochemical detection |
IIV | inter-individual variability |
IM | intramuscular |
INSJ | injection site |
IOV | inter-occasion variability |
IVOL | injection volume |
ka | absorption rate constant |
kamt1,50 | dose amount needed to reach 50% of the maximum absorption capacity for the slow absorption process |
kamt3,50 | dose amount needed to reach 50% of the maximum absorption capacity for the rapid absorption process |
Karapid,max | maximum absorption rate for the rapid absorption process |
Kaslow,max | maximum absorption rate for the slow absorption process |
kel | elimination rate constant |
KF | fraction of risperidone to 9-OHrisperidone |
kr | intercompartmental flow rate constant |
krconv | rate constant conversion riperidone to 9-OHrisperidone |
ktr | absorption transit rate constant |
LAI | long-acting injectable |
LC-MS/MS | liquid chromatography coupled with tandem mass spectrometry |
LILACS | Latin American and Caribbean Health Sciences Literature |
LLOQ | lower limit of quantification |
MC | multicentre |
MeSH | Medical Subject Headings |
MI | moderate CYP2D6 inhibitor |
MIDZ | midazolam |
MIPD | model-informed precision dosing |
NA | not available |
NPC | numerical predictive check |
NPDE | normalised prediction distribution errors |
P | peripheral compartment |
PAL | 9-OHrisperidone |
PANSS | Positive and Negative Syndrome Scale |
pcVPC | prediction-corrected visual predictive check |
PD | pharmacodynamic |
P-gp | P-glycoprotein |
PK | pharmacokinetics |
PKPD | pharmacokinetic-pharmacodynamic |
PM | poor metaboliser |
PopPK | population pharmacokinetic |
PP1M | paliperidone palmitate monthly |
PP3M | paliperidone palmitate quarterly |
PP6M | paliperidone palmitate half.yearly |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
Q | apparent intercompartmental flow |
RI | renal impairment |
RIA | radio immunoassay |
RISP | risperidone |
RS | rich sampling |
SAEM | stochastic approximation expectation-maximisation |
SC | subcutaneous |
SD | standard deviation |
SI | strong CYP2D6 inhibitor |
SS | sparse sampling |
tlag | time delay on absorption |
UM | ultra rapid metabolisers |
V | apartment volume of distribution |
Vd | volume of distribution |
VPC | visual predictive check |
WT | weight |
References
- Krejčí, V.; Murínová, I.; Slanař, O.; Šíma, M. Evidence for Therapeutic Drug Monitoring of Atypical Antipsychotics. Prague Med. Rep. 2024, 125, 101–129. [Google Scholar] [CrossRef] [PubMed]
- Biagi, E.; Capuzzi, E.; Colmegna, F.; Mascarini, A.; Brambilla, G.; Ornaghi, A.; Santambrogio, J.; Clerici, M. Long-Acting Injectable Antipsychotics in Schizophrenia: Literature Review and Practical Perspective, with a Focus on Aripiprazole Once-Monthly. Adv. Ther. 2017, 34, 1036–1048. [Google Scholar] [CrossRef] [PubMed]
- Hasan, A.; Falkai, P.; Lehmann, I.; Gaebel, W. Schizophrenia. Dtsch. Ärzteblatt Int. 2020, 117, 412–429. [Google Scholar] [CrossRef] [PubMed]
- Overview. Psychosis and Schizophrenia in Adults: Prevention and Management. Guidance. NICE. 2014. Available online: https://www.nice.org.uk/guidance/cg178 (accessed on 15 February 2025).
- Marder, S.R.; Cannon, T.D. Schizophrenia. N. Engl. J. Med. 2019, 381, 1753–1761. [Google Scholar] [CrossRef]
- CIE-11 Para Estadísticas de Mortalidad y Morbilidad. Available online: https://icd.who.int/browse/2024-01/mms/en#1683919430 (accessed on 15 February 2025).
- Melkote, R.; Singh, A.; Vermeulen, A.; Remmerie, B.; Savitz, A. Relationship between antipsychotic blood levels and treatment failure during the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study. Schizophr. Res. 2018, 201, 324–328. [Google Scholar] [CrossRef]
- Krogmann, A.; Peters, L.; von Hardenberg, L.; Bödeker, K.; Nöhles, V.B.; Correll, C.U. Keeping up with the therapeutic advances in schizophrenia: A review of novel and emerging pharmacological entities. CNS Spectr. 2019, 24, 38–69. [Google Scholar] [CrossRef]
- Chue, P. Long-acting risperidone injection: Efficacy, safety, and cost-effectiveness of the first long-acting atypical antipsychotic. Neuropsychiatr. Dis. Treat. 2007, 3, 13–39. [Google Scholar] [CrossRef]
- Keith, S. Use of long-acting risperidone in psychiatric disorders: Focus on efficacy, safety and cost–effectiveness. Expert. Rev. Neurother. 2009, 9, 9–31. [Google Scholar] [CrossRef]
- FT_PaliperidonaER. Available online: https://cima.aemps.es/cima/pdfs/es/ft/83060/83060%20ft.pdf (accessed on 16 July 2024).
- Ficha Técnica Risperidona Oral. Available online: https://cima.aemps.es/cima/pdfs/es/ft/72920/72920_ft.pdf (accessed on 16 July 2024).
- Ficha Técnica Palmitato de Paliperidona Suspension Inyectable. Available online: https://cima.aemps.es/cima/pdfs/es/ft/86051/86051_ft.pdf (accessed on 15 February 2025).
- FT_RisperidalConsta. Available online: https://cima.aemps.es/cima/pdfs/ft/65214/FT_65214.pdf (accessed on 16 July 2024).
- Ficha Técnica OKEDI (Risperidona). Available online: https://ec.europa.eu/health/documents/community-register/2022/20220214154589/anx_154589_es.pdf (accessed on 16 July 2024).
- Risperidona_FT.pdf. Available online: https://www.aemps.gob.es/informa/notasInformativas/medicamentosUsoHumano/seguridad/2004/docs/risperidona_FT.pdf (accessed on 16 July 2024).
- BOTPLUS, Risperidona. Available online: https://botplusweb.farmaceuticos.com/BInicio?txt=RISPERIDONA&opb=1&filtro=ESTADO__0&numMostrar=110&idxOrden=0 (accessed on 15 February 2025).
- BOTPLUS, Paliperidona. Available online: https://botplusweb.farmaceuticos.com/BInicio?txt=palipeRIDONA (accessed on 15 February 2025).
- Cleton, A.; Rossenu, S.; Crauwels, H.; Berwaerts, J.; Hough, D.; Gopal, S.; Eerdekens, M.; Vandebosch, A.; Remmerie, B.; De Meulder, M.; et al. A single-dose, open-label, parallel, randomized, dose-proportionality study of paliperidone after intramuscular injections of paliperidone palmitate in the deltoid or gluteal muscle in patients with schizophrenia. J. Clin. Pharmacol. 2014, 54, 1048–1057. [Google Scholar] [CrossRef]
- Peniche, C.J.; Peniche, H.; Bada, N.; Sáez, V.; Acosta, N.; Peniche, C.A. Diseño de una formulación parenteral para la liberación prolongada de risperidona basada en un sistema de gelificación in situ. Rev. Cuba. Investig. Bioméd. 2017, 36, 1–11. [Google Scholar]
- Messer, T.; Bernardo, M.; Anta, L.; Martínez-González, J. Risperidone ISM®: Review and update of its usefulness in all phases of schizophrenia. Ther. Adv. Psychopharmacol. 2024, 14, 20451253241280046. [Google Scholar] [CrossRef] [PubMed]
- Rainer, M.K. Risperidone long-acting injection: A review of its long term safety and efficacy. Neuropsychiatr. Dis. Treat. 2008, 4, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, G.; Casoy, J.; Zummo, J. Impact of long-acting injectable antipsychotics on medication adherence and clinical, functional, and economic outcomes of schizophrenia. Patient Prefer. Adherence 2013, 7, 1171–1180. [Google Scholar] [CrossRef] [PubMed]
- Pilon, D.; Tandon, N.; Lafeuille, M.H.; Kamstra, R.; Emond, B.; Lefebvre, P.; Joshi, K. Treatment Patterns, Health Care Resource Utilization, and Spending in Medicaid Beneficiaries Initiating Second-generation Long-acting Injectable Agents Versus Oral Atypical Antipsychotics. Clin. Ther. 2017, 39, 1972–1985.e2. [Google Scholar] [CrossRef]
- Bartzokis, G.; Lu, P.H.; Amar, C.P.; Raven, E.P.; Detore, N.R.; Altshuler, L.L.; Mintz, J.; Ventura, J.; Casaus, L.R.; Luo, J.S.; et al. Long Acting Injection Versus Oral Risperidone in First-Episode Schizophrenia: Differential Impact on White Matter Myelination Trajectory. Schizophr. Res. 2011, 132, 35–41. [Google Scholar] [CrossRef]
- Mauri, M.C.; Franco, G.; Minutillo, A.; Paletta, S.; Di Pace, C.; Reggiori, A.; Baldelli, S.; Cattaneo, D. The Switch from Paliperidone Long-Acting Injectable 1- to 3-Monthly. J. Clin. Psychopharmacol. 2022, 42, 23–30. [Google Scholar] [CrossRef]
- Hiemke, C.; Bergemann, N.; Clement, H.W.; Conca, A.; Deckert, J.; Domschke, K.; Eckermann, G.; Egberts, K.; Gerlach, M.; Greiner, C.; et al. Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology: Update 2017. Pharmacopsychiatry 2018, 51, 9–62. [Google Scholar] [CrossRef]
- Olsen, C.K.; Brennum, L.T.; Kreilgaard, M. Using pharmacokinetic–pharmacodynamic modelling as a tool for prediction of therapeutic effective plasma levels of antipsychotics. Eur. J. Pharmacol. 2008, 584, 318–327. [Google Scholar] [CrossRef]
- Hiemke, C. Clinical utility of drug measurement and pharmacokinetics—Therapeutic drug monitoring in psychiatry. Eur. J. Clin. Pharmacol. 2008, 64, 159–166. [Google Scholar] [CrossRef]
- Spina, E.; Avenoso, A.; Scordo, M.G.; Ancione, M.; Madia, A.; Gatti, G.; Perucca, E. Inhibition of risperidone metabolism by fluoxetine in patients with schizophrenia: A clinically relevant pharmacokinetic drug interaction. J. Clin. Psychopharmacol. 2002, 22, 419–423. [Google Scholar] [CrossRef]
- Huang, M.L.; Peer, A.V.; Woestenborghs, R.; De Coster, R.; Heykants, J.; Jansen, A.A.I.; Zylicz, Z.; Visscher, H.W.; Jonkman, J.H.G. Pharmacokinetics of the novel antipsychotic agent risperidone and the prolactin response in healthy subjects. Clin. Pharmacol. Ther. 1993, 54, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Spina, E.; Avenoso, A.; Facciolà, G.; Salemi, M.; Scordo, M.G.; Ancione, M.; Madia, A.G.; Perucca, E. Relationship between plasma risperidone and 9-hydroxyrisperidone concentrations and clinical response in patients with schizophrenia. Psychopharmacology 2001, 153, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Zhao, X.; Zhou, Y.; Duan, J.L.; Cui, Y.M. Effect of CYP2D6, CYP3A5, and MDR1 Genetic Polymorphisms on the Pharmacokinetics of Risperidone and Its Active Moiety. J. Clin. Pharmacol. 2010, 50, 659–666. [Google Scholar] [CrossRef] [PubMed]
- de Greef, R.; Maloney, A.; Olsson-Gisleskog, P.; Schoemaker, J.; Panagides, J. Dopamine D2 Occupancy as a Biomarker for Antipsychotics: Quantifying the Relationship with Efficacy and Extrapyramidal Symptoms. AAPS J. 2011, 13, 121–130. [Google Scholar] [CrossRef]
- Ismail, M.; Straubinger, T.; Uchida, H.; Graff-Guerrero, A.; Nakajima, S.; Suzuki, T.; Caravaggio, F.; Gerretsen, P.; Mamo, D.; Mulsant, B.H.; et al. MAP Bayesian modeling combining striatal dopamine receptor occupancy and plasma concentrations to optimize antipsychotic dose regimens in individual patients. Br. J. Clin. Pharmacol. 2022, 88, 3341–3350. [Google Scholar] [CrossRef]
- Schoretsanitis, G.; Kane, J.M.; Correll, C.U.; Marder, S.R.; Citrome, L.; Newcomer, J.W.; Robinson, D.G.; Goff, D.C.; Kelly, D.L.; Freudenreich, O.; et al. Blood Levels to Optimize Antipsychotic Treatment in Clinical Practice: A Joint Consensus Statement of the American Society of Clinical Psychopharmacology and the Therapeutic Drug Monitoring Task Force of the Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie. J. Clin. Psychiatry 2020, 81, 3649. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Wanden-Berghe, C.; Sanz-Valero, J. Systematic reviews in nutrition: Standardized methodology. Br. J. Nutr. 2012, 107, S3–S7. [Google Scholar] [CrossRef]
- Gomeni, R.; Bressolle-Gomeni, F. Convolution-based approach for modeling the paliperidone extended release and Long-Acting Injectable (LAI) PK of once-, and three-monthly products administration and for optimizing the development of new LAI products. J. Pharmacokinet. Pharmacodyn. 2023, 50, 89–96. [Google Scholar] [CrossRef] [PubMed]
- T’jollyn, H.; Venkatasubramanian, R.; Neyens, M.; Gopal, S.; Russu, A.; Nandy, P.; Perez-Ruixo, J.J.; Ackaert, O. Model-Informed Clinical Development of 6-Monthly Injection of Paliperidone Palmitate in Patients with Schizophrenia: Dosing Strategies Guided by Population Pharmacokinetic Modeling and Simulation (Part II). Eur. J. Drug Metab. Pharmacokinet. 2024, 49, 491–506. [Google Scholar] [CrossRef] [PubMed]
- Thyssen, A.; Vermeulen, A.; Fuseau, E.; Fabre, M.A.; Mannaert, E. Population Pharmacokinetics of Oral Risperidone in Children, Adolescents and Adults with Psychiatric Disorders. Clin. Pharmacokinet. 2010, 49, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Korell, J.; Green, B.; Remmerie, B.; Vermeulen, A. Determination of Plasma Concentration Reference Ranges for Risperidone and Paliperidone. CPT Pharmacomet. Syst. Pharmacol. 2017, 6, 589–595. [Google Scholar] [CrossRef]
- Laveille, C.; Snoeck, E.; Ochoa Díaz de Monasterioguren, L.; Martínez-González, J.; Llaudó, J.; Anta, L.; Gutierro, I. Development of a population pharmacokinetic model for the novel long-acting injectable antipsychotic risperidone ISM®. Br. J. Clin. Pharmacol. 2024, 90, 2256–2270. [Google Scholar] [CrossRef]
- Gomeni, R.; Bressolle-Gomeni, F. Modeling Complex Pharmacokinetics of Long-Acting Injectable Products Using Convolution-Based Models With Nonparametric Input Functions. J. Clin. Pharmacol. 2021, 61, 1081–1095. [Google Scholar] [CrossRef]
- Laffont, C.M.; Gomeni, R.; Zheng, B.; Heidbreder, C.; Fudala, P.J.; Nasser, A.F. Population Pharmacokinetics and Prediction of Dopamine D2 Receptor Occupancy After Multiple Doses of RBP-7000, a New Sustained-Release Formulation of Risperidone, in Schizophrenia Patients on Stable Oral Risperidone Treatment. Clin. Pharmacokinet. 2014, 53, 533–543. [Google Scholar] [CrossRef]
- Pilla Reddy, V.; Kozielska, M.; Suleiman, A.A.; Johnson, M.; Vermeulen, A.; Liu, J.; de Greef, R.; Groothuis, G.M.M.; Danhof, M.; Proost, J.H. Pharmacokinetic–pharmacodynamic modeling of antipsychotic drugs in patients with schizophrenia Part I: The use of PANSS total score and clinical utility. Schizophr. Res. 2013, 146, 144–152. [Google Scholar] [CrossRef]
- Magnusson, M.O.; Samtani, M.N.; Plan, E.L.; Jonsson, E.N.; Rossenu, S.; Vermeulen, A.; Russu, A. Population Pharmacokinetics of a Novel Once-Every 3 Months Intramuscular Formulation of Paliperidone Palmitate in Patients with Schizophrenia. Clin. Pharmacokinet. 2017, 56, 421–433. [Google Scholar] [CrossRef]
- Feng, Y.; Pollock, B.G.; Coley, K.; Marder, S.; Miller, D.; Kirshner, M.; Aravagiri, M.; Schneider, L.; Bies, R.R. Population pharmacokinetic analysis for risperidone using highly sparse sampling measurements from the CATIE study. Br. J. Clin. Pharmacol. 2008, 66, 629–639. [Google Scholar] [CrossRef]
- Laffont, C.M.; Gomeni, R.; Zheng, B.; Heidbreder, C.; Fudala, P.J.; Nasser, A.F. Population pharmacokinetic modeling and simulation to guide dose selection for RBP-7000, a new sustained-release formulation of risperidone. J. Clin. Pharmacol. 2015, 55, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Ivaturi, V.; Gopalakrishnan, M.; Gobburu, J.V.S.; Zhang, W.; Liu, Y.; Heidbreder, C.; Laffont, C.M. Exposure-response analysis after subcutaneous administration of RBP-7000, a once-a-month long-acting Atrigel formulation of risperidone. Br. J. Clin. Pharmacol. 2017, 83, 1476–1498. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, X.; Dong, Y.; Walling, D.P.; Liu, P.; Liu, W.; Shi, Y.; Sun, K. Population Pharmacokinetic Analysis to Support and Facilitate Switching from Risperidone Formulations to Rykindo in Patients with Schizophrenia. Neurol. Ther. 2024, 13, 355–372. [Google Scholar] [CrossRef] [PubMed]
- Perlstein, I.; Merenlender Wagner, A.; Gomeni, R.; Lamson, M.; Harary, E.; Spiegelstein, O.; Kalmanczhelyi, A.; Tiver, R.; Loupe, P.; Levi, M.; et al. Population Pharmacokinetic Modeling and Simulation of TV-46000: A Long-Acting Injectable Formulation of Risperidone. Clin. Pharmacol. Drug Dev. 2022, 11, 865–877. [Google Scholar] [CrossRef]
- Vandenberghe, F.; Guidi, M.; Choong, E.; von Gunten, A.; Conus, P.; Csajka, C.; Eap, C.B. Genetics-Based Population Pharmacokinetics and Pharmacodynamics of Risperidone in a Psychiatric Cohort. Clin. Pharmacokinet. 2015, 54, 1259–1272. [Google Scholar] [CrossRef]
- Locatelli, I.; Kastelic, M.; Koprivšek, J.; Kores-Plesničar, B.; Mrhar, A.; Dolžan, V.; Grabnar, I. A population pharmacokinetic evaluation of the influence of CYP2D6 genotype on risperidone metabolism in patients with acute episode of schizophrenia. Eur. J. Pharm. Sci. 2010, 41, 289–298. [Google Scholar] [CrossRef]
- Gomeni, R.; Heidbreder, C.; Fudala, P.J.; Nasser, A.F. A model-based approach to characterize the population pharmacokinetics and the relationship between the pharmacokinetic and safety profiles of RBP-7000, a new, long-acting, sustained-released formulation of risperidone. J. Clin. Pharmacol. 2013, 53, 1010–1019. [Google Scholar] [CrossRef]
- Samtani, M.N.; Vermeulen, A.; Stuyckens, K. Population Pharmacokinetics of Intramuscular Paliperidone Palmitate in Patients with Schizophrenia. Clin. Pharmacokinet. 2009, 48, 585–600. [Google Scholar] [CrossRef]
- Vermeulen, A.; Piotrovsky, V.; Ludwig, E.A. Population Pharmacokinetics of Risperidone and 9-Hydroxyrisperidone in Patients with Acute Episodes Associated with Bipolar I Disorder. J. Pharmacokinet. Pharmacodyn. 2007, 34, 183–206. [Google Scholar] [CrossRef]
- Hirano, K.; Yamada, H. Studies on the absorption of practically water-insoluble drugs following injection. IV. An approach for predicting relative intramuscular absorption rates of a drug in oily solution, aqueous suspension and aqueous surfactant solution in rats. Chem. Pharm. Bull. 1981, 29, 1410–1415. [Google Scholar] [CrossRef]
- Aman, M.G.; Vinks, A.A.; Remmerie, B.; Mannaert, E.; Ramadan, Y.; Masty, J.; Lindsay, R.L.; Malone, K. Plasma Pharmacokinetic Characteristics of Risperidone and Their Relationship to Saliva Concentrations in Children with Psychiatric or Neurodevelopmental Disorders. Clin. Ther. 2007, 29, 1476–1486. [Google Scholar] [CrossRef] [PubMed]
- Heykants, J.; Huang, M.L.; Mannens, G.; Meuldermans, W.; Snoeck, E.; Van Beijsterveldt, L.; Van Peer, A.; Woestenborghs, R. The pharmacokinetics of risperidone in humans: A summary. J. Clin. Psychiatry 1994, 55, 13–17. [Google Scholar] [PubMed]
- de Leon, J.; Susce, M.T.; Pan, R.M.; Wedlund, P.J.; Orrego, M.L.; Diaz, F.J. A study of genetic (CYP2D6 and ABCB1) and environmental (drug inhibitors and inducers) variables that may influence plasma risperidone levels. Pharmacopsychiatry 2007, 40, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Mihara, K.; Kondo, T.; Yasui-Furukori, N.; Suzuki, A.; Ishida, M.; Ono, S.; Kubota, T.; Iga, T.; Takarada, Y.; de Vries, R.; et al. Effects of various CYP2D6 genotypes on the steady-state plasma concentrations of risperidone and its active metabolite, 9-hydroxyrisperidone, in Japanese patients with schizophrenia. Ther. Drug Monit. 2003, 25, 287–293. [Google Scholar] [CrossRef]
- Scordo, M.G.; Spina, E.; Facciolà, G.; Avenoso, A.; Johansson, I.; Dahl, M.L. Cytochrome P450 2D6 genotype and steady state plasma levels of risperidone and 9-hydroxyrisperidone. Psychopharmacology 1999, 147, 300–305. [Google Scholar] [CrossRef]
- Sim, S.C.; Ingelman-Sundberg, M. The Human Cytochrome P450 Allele Nomenclature Committee Web Site: Submission Criteria, Procedures, and Objectives. Methods Mol. Biol. Clifton 2006, 320, 183–191. [Google Scholar] [CrossRef]
- Kagimoto, M.; Heim, M.; Kagimoto, K.; Zeugin, T.; Meyer, U.A. Multiple mutations of the human cytochrome P450IID6 gene (CYP2D6) in poor metabolizers of debrisoquine. Study of the functional significance of individual mutations by expression of chimeric genes. J. Biol. Chem. 1990, 265, 17209–17214. [Google Scholar] [CrossRef]
- Bradford, L.D. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 2002, 3, 229–243. [Google Scholar] [CrossRef]
- Riedel, M.; Schwarz, M.J.; Strassnig, M.; Spellmann, I.; Müller-Arends, A.; Weber, K.; Zach, J.; Müller, N.; Möller, H.J. Risperidone plasma levels, clinical response and side-effects. Eur. Arch. Psychiatry Clin. Neurosci. 2005, 255, 261–268. [Google Scholar] [CrossRef]
- Roh, H.K.; Kim, C.E.; Chung, W.G.; Park, C.S.; Svensson, J.O.; Bertilsson, L. Risperidone metabolism in relation to CYP2D6*10 allele in Korean schizophrenic patients. Eur. J. Clin. Pharmacol. 2001, 57, 671–675. [Google Scholar] [CrossRef]
- de Leon, J.; Susce, M.T.; Pan, R.M.; Fairchild, M.; Koch, W.H.; Wedlund, P.J. The CYP2D6 poor metabolizer phenotype may be associated with risperidone adverse drug reactions and discontinuation. J. Clin. Psychiatry 2005, 66, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Interactions Médicamenteuses et Cytochromes P450. Available online: https://www.hug.ch/sites/interhug/files/structures/pharmacologie_et_toxicologie_cliniques/documents/2002_29_4.pdf (accessed on 14 February 2025).
- Yasui-Furukori, N.; Hidestrand, M.; Spina, E.; Facciolá, G.; Scordo, M.G.; Tybring, G. Different enantioselective 9-hydroxylation of risperidone by the two human CYP2D6 and CYP3A4 enzymes. Drug Metab. Dispos. Biol. Fate Chem. 2001, 29, 1263–1268. [Google Scholar] [PubMed]
- Ortho-McNeil-Janssen Pharmaceuticals, Inc. Invega (Paliperidone) Extended Release Tablets. 2010. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021999s018lbl.pdf (accessed on 15 February 2025).
- Rabinowitz, J.; Davidov, O. The association of dropout and outcome in trials of antipsychotic medication and its implications for dealing with missing data. Schizophr. Bull. 2008, 34, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Choong, E.; Polari, A.; Kamdem, R.H.; Gervasoni, N.; Spisla, C.; Jaquenoud Sirot, E.; Bickel, G.G.; Bondolfi, G.; Conus, P.; Eap, C.B. Pharmacogenetic study on risperidone long-acting injection: Influence of cytochrome P450 2D6 and pregnane X receptor on risperidone exposure and drug-induced side-effects. J. Clin. Psychopharmacol. 2013, 33, 289–298. [Google Scholar] [CrossRef]
- Yoshimura, R.; Ueda, N.; Nakamura, J. Possible relationship between combined plasma concentrations of risperidone plus 9-hydroxyrisperidone and extrapyramidal symptoms. Preliminary study. Neuropsychobiology 2001, 44, 129–133. [Google Scholar] [CrossRef]
- Mauri, M.C.; Laini, V.; Boscati, L.; Rudelli, R.; Salvi, V.; Orlandi, R.; Papa, P. Long-term treatment of chronic schizophrenia with risperidone: A study with plasma levels. Eur. Psychiatry J. Assoc. Eur. Psychiatry 2001, 16, 57–63. [Google Scholar] [CrossRef]
- Olesen, O.V.; Licht, R.W.; Thomsen, E.; Bruun, T.; Viftrup, J.E.; Linnet, K. Serum concentrations and side effects in psychiatric patients during risperidone therapy. Ther. Drug Monit. 1998, 20, 380–384. [Google Scholar] [CrossRef]
- Gahr, M.; Kölle, M.A.; Schönfeldt-Lecuona, C.; Lepping, P.; Freudenmann, R.W. Paliperidone extended-release: Does it have a place in antipsychotic therapy? Drug Des. Devel. Ther. 2011, 5, 125–146. [Google Scholar] [CrossRef]
- Gattaz, W.F.; de Oliveira Campos, J.A.; Lacerda, A.L.T.; Henna, E.; Ruschel, S.I.; Bressan, R.A.; de Oliveira, I.R.; Rocha, F.L.; Grabowski, H.M.; Sacomani, E.; et al. Switching from oral risperidone to flexibly dosed oral paliperidone extended-release: Core symptoms, satisfaction, and quality of life in patients with stable but symptomatic schizophrenia: The RISPALI study. Curr. Med. Res. Opin. 2014, 30, 695–709. [Google Scholar] [CrossRef]
- Kim, E.Y.; Chang, S.M.; Shim, J.C.; Joo, E.J.; Kim, J.J.; Kim, Y.S.; Ahn, Y.M. Long-term effectiveness of flexibly dosed paliperidone extended-release: Comparison among patients with schizophrenia switching from risperidone and other antipsychotic agents. Curr. Med. Res. Opin. 2013, 29, 1231–1240. [Google Scholar] [CrossRef]
- Hiemke, C.; Baumann, P.; Bergemann, N.; Conca, A.; Dietmaier, O.; Egberts, K.; Fric, M.; Gerlach, M.; Greiner, C.; Gründer, G.; et al. AGNP Consensus Guidelines for Therapeutic Drug Monitoring in Psychiatry: Update 2011. Pharmacopsychiatry 2011, 44, 195–235. [Google Scholar] [CrossRef] [PubMed]
- Melkersson, K.I. Prolactin elevation of the antipsychotic risperidone is predominantly related to its 9-hydroxy metabolite. Hum. Psychopharmacol. 2006, 21, 529–532. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, P.; Dinan, T.G. Prolactin and dopamine: What is the connection? A review article. J. Psychopharmacol. Oxf. Engl. 2008, 22 (Suppl. 2), 12–19. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Fukui, N.; Watanabe, J.; Ono, S.; Sugai, T.; Tsuneyama, N.; Inoue, Y.; Someya, T. Gender differences in the relationship between the risperidone metabolism and the plasma prolactin levels in psychiatric patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 1266–1268. [Google Scholar] [CrossRef]
- Knegtering, R.; Baselmans, P.; Castelein, S.; Bosker, F.; Bruggeman, R.; van den Bosch, R.J. Predominant role of the 9-hydroxy metabolite of risperidone in elevating blood prolactin levels. Am. J. Psychiatry 2005, 162, 1010–1012. [Google Scholar] [CrossRef]
- Halbreich, U.; Kahn, L.S. Hyperprolactinemia and schizophrenia: Mechanisms and clinical aspects. J. Psychiatr. Pract. 2003, 9, 344–353. [Google Scholar] [CrossRef]
- Yasui-Furukori, N.; Saito, M.; Nakagami, T.; Sugawara, N.; Sato, Y.; Tsuchimine, S.; Furukori, H.; Kaneko, S. Gender-specific prolactin response to antipsychotic treatments with risperidone and olanzapine and its relationship to drug concentrations in patients with acutely exacerbated schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 537–540. [Google Scholar] [CrossRef]
Authors (Year) | Country | No. of Subjects (Male/Female) | No. Observations | Sampling Design | Age Mean ± SD | BMI Mean ± SD | Weight (kg) Mean ± SD | CLcr (mL/min) Mean ± SD | Formulation | Daily Dose (mg) Median [range] | Bioanalytical Method (LLOQ (ng/mL)) | Pk Model Summary/ Influence CYP2D6 Status on the Model |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Risperidone | ||||||||||||
Vermeulen A et al. (2007) [42] | NA | 407 (275/132) | 5359 | RS | NA | NA | NA | NA | tablet | [2–8] | RIA and LC-MS/MS (0.10) | two compartments Yes |
Feng Y et al. (2008) [43] | MC | 490 (331/159) | 1236 | SS | 49.1 ± 18.8 | NA | 84.1 ± 22.5 | NA | tablet | [0.5–6] | LC–MS/MS (0.1) | one compartment Yes |
Thyssen A et al. (2010) [44] | MC | 780 (469/311) a | 4134 | RS | 28.1 ± 16.6 * | NA | 74.3 ± 34.5 * | 149.8 ± 67.5 * | tablet or oral solution | oral solution: [0.35–6] tablet: [0.25–15] | LC–MS/MS (0.10–1.0) | two compartments Yes |
Locatelli I et al. (2010) [45] | Slovenia | 50 (39/11) | 296 | SS | 34.0 ± 11.0 * | NA | 75.7 ± 14.0 * | 117.5 ± 33.5 * | tablet | one daily: 3 [2–4] two daily: 4 [1.5–6] | HPLC-ECD (1.0) | one compartment Yes |
Pilla V et al. (2013) [46] | MC | 1471 (NA) | NA | RS | NA | NA | NA | NA | tablet | [0.5–8] | NA | two compartments Yes |
Gomeni R et al. (2013) [47] | EEUU | 45 (32/13) | NA | RS | 43.0 ± 1.6 | 28.4 ± 0.5 | 88.7 ± 2.0 | NA | SC injection (monthly) | [60–120] | LC–MS/MS (0.1) | two compartments No |
Laffont C et al. (2014) [48] | MC | 45 (33/12) | 5232 | RS | 42.6 ± 9.2 | 28.6 ± 4.3 | 86.8 ± 15.0 | NA | SC injection (monthly)/tablet | [60–120] and [2–4] | LC–MS/MS (0.1) | oral: one compartment LAI: two compartments No |
Laffont C et al. (2015) [49] | MC | 90 (65/25) | 7568 | RS | 42.8 ± 9.8 | 28.5 ± 3.9 | 87.8 ± 14.3 | NA | SC injection (monthly) | [60–120] | LC–MS/MS (0.1) | two compartments No |
Vandenberghe F et al. (2015) [50] | Switzerland | 150 (82/68) | 178 | SS | 32.5 ± 17.7 * | 25.9 ± 6.3 * | NA | 115 ± 36 * | tablet | [0.5–8] | LC–MS/MS (NA) | one compartment Yes |
Ivaturi V et al. (2017) [51] | MC | 225 b (177/48) | 3154 | SS | 40.4 ± 9.4 | 29.5 ± 6.4 | 89.7 ± 19.6 | 122.3 ± 36.3 | SC injection (monthly) | [90–120] | LC–MS/MS (0.1) | two compartments Yes |
Korell J et al. (2017) [52] | MC | NA | NA | RS | NA | NA | NA | NA | tablet | NA | NA | two compartments Yes |
Korell J et al. (2017) [52] | MC | 133 | 3051 | RS | NA | NA | NA | NA | IM injection | NA | NA | one compartment No |
Wang W et al. (2024) [53] | MC | 102 (77/25) | 2216 | RS | 46.8 ± 9.6 | 28.8 ± 4.7 | 87.5 ± 15.7 | NA | IM injection c (weekly) | [12.5–50] | LC–MS/MS (0.05) | one compartment No |
Wang W et al. (2024) [53] | MC | 69 (51/18) | 1766 | RS | 47.1 ± 9.9 | 28.7 ± 4.6 | 87.9 ± 16.4 | NA | IM injection c (weekly) | [25–50] | LC–MS/MS (0.05) | one compartment No |
Laveille C et al. (2024) [54] | MC | 447 (316/131) | 6288 | RS | 42.0 ±11.8 * | 29.3 ± 6.4 * | NA | 140 ± 57 * | IM injection (monthly) | [25–100] | NA | one compartment No |
Gomeni R et al. (2021) [55] | NA | 26 (16/10) | NA | RS | 45.0 ± 10.0 | NA | NA | NA | IM injection (weekly) | 50 | RIA (0.2) | one compartment No |
Gomeni R et al. (2021) [55] | NA | NA | NA | NA | NA | NA | NA | NA | SC injection (monthly) | [60–120] | NA (NA) | two compartments No |
Perlstein I et al. (2022) [56] | MC | 99 (79/20) | NA | RS | 44.4 ± 8.8 | 28.6 ± 4.4 | NA | 116 ± 22 | SC injection of (monthly) | [75–225] | LC–MS/MS (risperidone: 0.10; paliperidone: 0.292) | two compartments No |
Paliperidone | ||||||||||||
Samtani M et al. (2009) [57] | NA | 1401 (919/482) | 15754 | NA | 44.5 ± 14.8 * | 34.3 ± 13.5 * | NA | 182 ± 114 * | IM injection PP1M | [25–150] | LC–MS/MS (NA) | one compartment No |
Pilla V et al. (2013) [46] | MC | 948 (NA) | NA | SS | NA | NA | NA | NA | tablet | [3–15] | NA | |
Magnusson M et al. (2017) [58] | MC | 651 (463/188) | 8990 | RS | 40.3 ± 12.5 * | 27.3 ± 5.8 * | NA | 124 ± 47 * | IM injection of PP3M | [175–525] | LC-MS/MS (0.1) | one compartment No |
Korell J et al. (2017) [52] | MC | 327 (NA) | NA | RS | NA | NA | NA | NA | table | NA | NA | two compartments No |
T’jollyn H et al. (2024) [59] | MC | 477 (326/151) | 10,784 | RS | 41.2 ± 11.8 | 27.9 ± 5.0 | 81.9 ± 16.9 | NA | IM injection of PP6M | [700–1000] | LC–MS/MS (0.2) | one compartment No |
Gomeni R et al. (2021) [55] | MC | 51 ((36/15) | NA | RS | 40.3 ± 11.5 | 28.4 ± 4.0 | 86.4 ± 14.4 | NA | IM injection of PP1M | [25–150] | LC–MS/MS (0.1) | one compartment No |
Gomeni R et al. (2023) [60] | MC | NA | NA | RS | NA | NA | NA | NA | tablet | [3–15] | LC–MS/MS (NA) | one compartment No |
Gomeni R et al. (2023) [60] | MC | NA | NA | RS | NA | NA | NA | NA | IM injection of PP1M | [25–150] | LC–MS/MS (0.2) | one compartment No |
Gomeni R et al. (2023) [60] | MC | NA | NA | RS | NA | NA | NA | NA | PP3M | [175–525] | LC–MS/MS (0.1) | one compartment No |
Authors (Year) | Estimation Method | Fixed Effect Parameters | Between-Subject Variability | Residual Unexplained Variability | Internal Validation | Simulation Target |
---|---|---|---|---|---|---|
Risperidone | ||||||
Vermeulen A et al. (2007) [42] | FO | ka = 2.34 h−1; CLRISP = 2.84 L/h; CLRISP_CBZ = 6.22 L/h; CLPAL = 5.99 L/h; CLPAL_CBZ = 6.22 L/h; CLf,PM = 1.18 L/h; CLf,IM = 4.37 L/h; CLf,EM = 19.6 L/h; QRISP = 3.65 L/h; QPAL = 1.67 L/h; VC,RISP = 137 L; VP,RISP = 100 L; VC,PAL = 137 L; VP,PAL = 91.8 L; tlag = 0.165 h; D = 0.458 h; F = 100%; FPPM = 1.75%; FPIM = 10.9%; FPEM = 41.3% | ka = 149% CLRISP = 184% CLf = 33.3% QRISP = 215% CLPAL = 20.4% VC,RISP = 30% VP,RISP = 53.9% VC,PAL = 30% VP,PAL = 80.7% tlag = 41% D = 113% FP = 117% | RISP: 54.9% PAL: 60.2% | VPC, GOF diagnostic plots | No |
Feng Y et al. (2008) [43] | FO | ka (fx) = 1.7 h−1; CLRISP,PM = 12.9 L/h; CLRISP,EM = 65.4 L/h; CLRISP,IM = 36 L/h; CLPAL = 8.83 × L/h; VC,RISP//PAL = 444 L; krCONV,PM = h−1; krCONV,EM = h−1; krCONV,IM = h.1 | ka = 53.7% CLRISP,PM = 95.9% CLRISP,EM = 56.6% VC, RISP//PAL = 36.1% | RISP: 63.9%/4.29 mg/mL PAL: 37.9%/0.88 mg/mL | GOF diagnostic plots | No |
Thyssen A et al. (2010) [44] | FOCE | Active moiety: ka = 2.39 h−1; CL = (4.66 × + 0.00831 × CLcr + 0.862 (if race black) × L/h; Q = 1.35 L/h; tlag = 0.235 h; VC = (137 − 40.3 (if study 3,6,7,8)) × () L; VP = 86.8 × () L; F = 100–46.7% (if coadministered with P-gp inducer) RISP: kastudy1–5,9 = 0.84 h−1; kastudy6–8 = 2.53 h−1; CL = 32.2 × × (if PM) L/h; Q = 3.24 L/h; VC = 142 × () L; VP = 175 × () L; tlag = 0.223 h; FPM = 123%; FEM (fx) = 100% | CL = 24.2% F = 32.4% CL = 13.7% Vp = 29.9% F = 70.5% | Study6–8: 0.270 mg/mL Study1–5,9: 0.186 mg/mL Study6–8: 0.714 mg/mL Study1–5,9: 0.301 mg/mL | GOF diagnostic plots | Monte-Carlo simulations of Cp-time for different dosing regimens in different age groups |
Locatelli I et al. (2010) [45] | FOCE | ka (fix) = 2.43 h−1; CLPAL = 8.45 × 0.466 × 0.648MZ × 1.47DZ L/h; CLf(−) = 9.74 × 0.118PM × 0.301IM × 0.713EM1 × 0.902EM2 × 1.19UM × 0.432MZ L/h; CLf(+) = 15.5 × 0.0813PM × 0.285IM × 0.554EM1 × 0.941EM2 × 0.942UM L/h; QPAL(+) − (−) = 6.01 L/h; V = 2.05 × WT L; FP = %; FP(+) = FP × %; FP(−) = FP × % | CLPAL = 21.1% CLf(−) = 49.5% CLf(+) = 43.5% | RISP: 35.9% PAL (−): 18.5% PAL (+): 27.4% | bootstrap, NPC, GOF diagnostic criteria | Cp-time grouped by status CYP2D6 of RISP, active moiety, and enantiomers in a typical patient (70 kg and 120 mL/min creatinine clearance) with 2 mg twice daily |
Pilla V et al. (2013) [46] | NA | ka = 2.37 h−1; CL = 2.57 L/h; CLPM = 0.44 L/h; CLIM = 2.81 L/h; CLEM = 18.4 L/h; Q = 3.8 L/h; Vc = 144 L; Vp = 101 L; tlag = 0.16 h; D = 0.47 h | CL = 169% VC = 54% | RISP: 54.8% PAL: 63.3% | Bootstrap, Monte-Carlo simulations and VPC | No |
Gomeni R et al. (2013) [47] | FOCE-I | karapid = 0.60 × h−1; kaslow = 0.24 × h−1; ktr = 0.03 h−1; krC-P = 0.59 h−1; krP-C = 0.01 h−1; krCONV = 0.10 h−1; VRISP = 1780 × L; VPAL = 190 × L; kel,RISP = 0.03 h−1; kel,PAL = 0.07 h−1 | karapid = 50% kaslow = 34.6% ktr = 40.0% krC-P = 72.1% krP-C = 49.0% krCONV = 75.5% kel,PAL = 33.2% VPAL = 26.5% kel,RISP = 42.4% | 0.34 mg/L 26.5% | Bootstrap, VPC and GOF criteria | Probability of gastrointestinal adverse events-Cpmax |
Laffont C et al. (2014) [48] | FOCE-I | Oral RISP: ka = 3.64 h−1; krCONV = 0.0990 h−1; VPAL = 63.8 L; VRISP = VPAL × 3.18 L; kel,RISP = 0.0344 h−1; kel,PAL = 0.0782 h−1 RISP monthly: karapid = 0.0266 × h−1; kaslow = 0.0185 h−1; ktr = 0.0247 h−1; krC-P = 0.572 h−1; krP-C = 0.0114 h−1; krCONV = 0.0474 h−1; VPAL = 171 L; VRISP = VPAL × 1.34 L; kel,RISP = 0.011 h−1; kel,PAL = 0.0484 h−1 | kel,RISP = 64% krCONV = 87% VPAL = 37% krel,PAL = 15% karapid = 31% kaslow = 58% ktr = 40% krC-P = 49% krP-C = 89% krCONV = 63% kel,PAL = 14% VPAL = 35% | 64.0% 0.089 mg/L 57.4% | GOF diagnostic plots and VPC | Dopamine D2 receptor occupancy-time of different doses, Cp-time profiles of different doses |
Laffont C et al. (2015) [49] | FOCE-I | karapid = 0.0151 × h−1; kaslow blacks = 0. 0513 h−1; kaslow = 0.0258 h−1; ktr = 0.0283 h−1; krC-P = 0.537 h−1; krP-C = 0.0226 h−1; krCONV = 0.0474 h−1; VPAL = 125 L; VRISP = VPAL × 3.65 L; kel,RISP = 0.0092 h−1; kel,PAL = 0.0620 h−1 | karapid = 44% kaslow blacks = 43% kaslow = 43% kel,RISP = 91% ktr = 46% krC-P = 57% krP-C = 59% krCONV = 66% kel,PAL = 27% VPAL = 27% | 0.0774 ng/L 57.9% | GOF diagnostic plots and VPC | Cp-time profiles of different doses of RISP and PP1M; dopamine D2 receptor occupancy-time of different doses of RISP and PP1M |
Vandenberghe F et al. (2015) [50] | FOCE-I | ka1 = 3.1 × (1-FP) h−1; ka2 = 3.1 × FP h−1; ka (fix) = 3.1 h−1; CLRISP = 4.6 L/h; CLPAL = 6.1 × (1 − 0.26 × ) L/h; krCONV = 4.9 h−1; V = 250 L; FP = 93.1; FPPM = 88.1%; FPIM = 92.25% FPMI = 92.59%; FPSI = 91.6% | CLRISP = 41% CLPAL = 32% LogitFP = 132% | RISP: 41.0% PAL: 37.0% | goodness-of-fit plots, bootstrap, NPDE y VPC | AUC-status CYP2D6 for RISP, PAL, and the active moiety |
Ivaturi V et al. (2017) [51] | FOCE-I | karapid = 0.005 h−1; kaslow = 0.016 h−1; VRISP, VPAL = 129 L; ktr = 0.023 h−1; krC-P = 0.841 h−1; krP-C = 0.006 h−1; krCONV = 0.221 × (1 − 0.76 (if IM)) × (1–0.942 (if PM)) h−1; kel,RISP = 0.043 h−1; kel,PAL = 0.069 h−1 | karapid = 42% kaslow = 32% ktr = 42% krC-P = 45% krP-C = 68% krCONV = 49% kel,PAL = 19% VRISP, VPAL = 39% | 0.137 mg/L 29.7% | Bootstrap and pcVPC | No |
Korell J et al. (2017) a [52] | FO | ka = 2.01 h−1; CLRISP = 5.95 × (−0.769 L/h; CLRISP_KNOWN_CBZ = 12.1 L/h; CLRISP_UNKNOWN_CBZ = 5.63 L/h; CLf,PM = 1.47 L/h; CLf,IM = 9.01 L/h; CLf,EM = 17.5 L/h; QRISP = 2.67 L/h; QPAL = 1.54 L/h; CLPAL_KNOWN_CBZ = 5.50 L/h; CLPAL_UNKNOWN_CBZ = 4.94 L/h; VC,PAL, VC,RISP = 113 L; VP,RISP = 71.9 L; VP,PAL = 83.3 L; tlag = 0.168 h; D = 0.447 h; FP_PM = 3.69%; FP_IM = 7.10%; FP_EM = 42.7% | ka = 91.4% CLf = 42.9 QRISP = 78% QPAL = 0 (fix) CLPAL = 16.5% VC,PAL&RISP = 21% VP,RISP = 50% VP,PAL = 56.7% tlag = 38.1% D = 71.3% FP = 102% | RISP: 29.5% PAL: 31.1% | GOF, VPC | Range of reference |
Korell J et al. (2017) a [52] | FOCE | CL = 4.27 × 0.725 L/h; Vc = 351 L; ktr1 (fix) = 100 h−1; ktr2 = 0.0073 h−1; ktr3 = 0.0177 h−1; F1 = 3.21%; F2 = 21.7 × 3.56 (if B3)%; F3 = 75.09%; tlag2 (fix) = 0; tlag3 = 613 h | CL = 39.1% ktr2 = 66.7% F1 = 32.1% (B3) F2 = 82.4% (B1), 46.4% (B3) | B1: 28.4% B3: 47.4% | GOF, VPC | Range of reference |
Wang W et al. (2024) [53] | FOCE-I | RISP weekly c ka1study 1S01 and 104 = 0.012 h−1; ka1study 102 = 0.016 h−1; CLmale = 7.78 L/h; ka2 = 0.0049 h−1; CLfemale = 6.39 L/h; D2 = 18.336 h; D3 = 52.32 h; F1 = 43%; F2 = 14.8%; F3 = 42.2%; tlag = 319.2 h; tlag3 = 83.28 h RISP weekly c: kastudy 104 = 0.0075 h−1; kastudy 102 = 0.011 h−1; ka2 = 0.0035 L/h; CLmale = 4.5 L/h; D2 = 1.12 h; D3 = 573.6 h; F1 = 75.5%; F2 = 11.9%; F3 = 12.6%; tlag = 648 h; tlag3 = 1.0008 h | ka1study 1S01 and 104 = 27% CLmale = 35% D2 = 52% F1 = 52% F2 = 57% ka1 = 26% CLmale = 34% tlag = 93.2% | 26.0% 0.636 mg/L 3.3% 74.2 mg/L | VPC, goodness-of-fit diagnostics plots, bootstrap | Cp-time profiles at steady state for active moiety, for formulation switch, for dosing windows, and for oral supplementary treatment |
Laveille C et al. (2024) [54] | FOCE-I | ka1 = 0.00583 h−1; ka2 = 0.000691 h−1; ka3 = 0.00763 h−1; ka5 = 2 h−1 CL = 4.67 × −0.267 × (1–0.188 (if female)) L/h; V = 248 L; tlag2, tlag3 = 255 h; D = 308 h; F1 = 0.431 × (if deltoid injection) × (1–0.0725) × 100%; F2 = 0.0873 × (1–0.431 × (if deltoid injection)) × 100%; F3 = (1–0.431 × (if deltoid injection)) × (1–0.0873) × 100%; F4 = 0.431 × (if deltoid injection) × 0.0725 × 100%; F5_studyBORIS = 0.585; F5_studyPRISMA-3 = 1.31 | CL = 32.7% V = 34.2% ka1 = 16.8% ka2 = 109% ka3 = 25.1% D = 15.1% F5_BORIS = 25.8% F5_PRISMA-3 = 159% | 18.2% | GOF and pcVPC | Cp-time profiles of different doses at different INSJ |
Gomeni R et al. (2021) b [55] | FOCE-I | krC-P Monthly = 0.02 h−1; krP-C Monthly = 0.133 h−1; kel Monthly = 0.053 h−1; kel two weekly = 0.165 h−1 | NA | RISP two weekly: 31.3% RISP monthly: 21.9% 0.355 mg/L | GOF criteria | Cp-time of different dosing regimens, for a lead-in oral dosing period and for a discontinuation treatment; %available dose absorbed-time |
Perlstein I et al. (2022) [56] | SAEM | CL = 2.1 × L/h; V = 374 × L; krC-P = 0.008 h−1; krP-C = 0.14 h.1 | CL = 34.2% V = 38.3% krC-P = 118.7% krP-C = 137.8% | 38.9% 1.58 mg/L | GOF plots, VPC | Dopamine D2 receptor occupancy-time of different dosing regimens; Cp-time of active moiety for formulation switch and for different dosing regimens |
Paliperidone | ||||||
Samtani M et al. (2009) [57] | FOCE | ka = 0.488 × 10−3 × 0.765 (if female) × 1.23 (if deltoid injection) × × IVOL−0.359; CL = 4.95 × ; VC = 391 × 0.726 (if female) × h−1; tlag/D = 319 h; F1 = 16.8 × 0.781 (if female) × 1.37 (if deltoid injection) × 1.54 (if deltoid muscle 1.5-inch needle) × × IVOL−0.228%; F2 = 1 − F1% | ka = 59% CL = 40% VC = 69% F1 = 25.3% | 0.22 mg/L | VPC, GOF diagnostic plots | No |
Pilla V et al. (2013) [46] | NA | ka = 0.57 × h−1; CL = 14.1 L/h; VC = 475 L; tlag = 0.67 h; D = 23.6 h | CL = 51% | 61.6% | Bootstrap, Monte-Carlo simulations and VPC | No |
Magnusson et al. (2017) [58] | FOCE | kaslow = 0.746 (if deltoid injection) × 0.794 (if female) × 90.4 × 10−3 × × h−1; karapid = 164 × 100.3 × × h−1; CL = 3.84 × L/h; V = 1960 × L; F1 = 20.9%; F2 = 1 − F1 = 79.1% | Kaslow max 82.7% kamt1,50 50% kamt3,50 86.7% CL = 35.7% V = 62.8% F = 85.4% | 30.6% | GOF criteria, pcVPC and VPC | No |
Korell J et al. (2017) a [52] | FO | ka = 0.630 h−1; CL = 10.9 × )0.727 + CLcr × 0.024 L/h; Q = 22.0 L/h; VC = 198 L; VP = 224 L; F (fix) = 100%; tlag = 0.761 h; D = 25 h | ka = 59.9% CL = 44.4% VC = 34.5% VP = 28.6% | 20.5% | VPC | Range of reference |
T’jollyn H et al. (2024) [59] | FOCE | karapid = 149 × ( × h−1; kaslow (fx) = 90.4 × ( × 0.746 (if gluteal injection) × 0.794 (if women) × h−1; CL = 3.90 × ( L/h; V (fix) = 1960 × ( L; F (fix) = 20.9% | kamt3.50 88.1% Kaslow max 81.0% kamt1.50 50% CL = 33.5% V = 62.8% F = 85.4% | 28.6% | GOF criteria, VPC, NPC | Cp-time profiles compared across sex groups, BMI, RI, age; Cp-time profiles of missed doses, INSJ, different dosing regimens, different transition of formulations, dosing window |
Gomeni R et al. (2021) b [55] | FOCE-I | kel PP1M = 0.022 h−1 | NA | 28.8% | GOF criteria | Cp-time of different dosing regimens, for loading dose and discontinuation treatment; %available dose absorbed-time |
Gomeni R et al. (2023) [60] | FOCE-I | CLPAL ER = 15.13 L/h; CLPP1M = 5.04 L/h; CL PP3M = 4.38 L/h; VPAL ER = 446; VPP1M = 6080 L; VPP3M = 11,700 L | NA | NA | No | Cp-time for different dosing regimens (switching of formulations, different doses) fraction of dose released-time |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrascosa-Arteaga, A.; Nalda-Molina, R.; Más-Serrano, P.; Ramon-Lopez, A. Population Pharmacokinetics of Risperidone and Paliperidone in Schizophrenia: A Systematic Review. Pharmaceuticals 2025, 18, 698. https://doi.org/10.3390/ph18050698
Carrascosa-Arteaga A, Nalda-Molina R, Más-Serrano P, Ramon-Lopez A. Population Pharmacokinetics of Risperidone and Paliperidone in Schizophrenia: A Systematic Review. Pharmaceuticals. 2025; 18(5):698. https://doi.org/10.3390/ph18050698
Chicago/Turabian StyleCarrascosa-Arteaga, Ana, Ricardo Nalda-Molina, Patricio Más-Serrano, and Amelia Ramon-Lopez. 2025. "Population Pharmacokinetics of Risperidone and Paliperidone in Schizophrenia: A Systematic Review" Pharmaceuticals 18, no. 5: 698. https://doi.org/10.3390/ph18050698
APA StyleCarrascosa-Arteaga, A., Nalda-Molina, R., Más-Serrano, P., & Ramon-Lopez, A. (2025). Population Pharmacokinetics of Risperidone and Paliperidone in Schizophrenia: A Systematic Review. Pharmaceuticals, 18(5), 698. https://doi.org/10.3390/ph18050698