In Vitro Evidence for the Efficacy of Manuka Honey and Its Components Against the Major Human Pathogenic Sporothrix Species
Abstract
:1. Introduction
2. Results
2.1. Manuka Honey Has Antifungal Activity Against Sporothrix spp.
2.2. Manuka Honey Is Active Against the Two Morphotypes of Sporothrix spp.
2.3. The Antifungal Activity of the Manuka Honey Against Sporothrix spp. Is Stable
2.4. Manuka Honey Is Active Against Non-Wild Type Sporothrix spp.
2.5. Manuka Honey Effects on Sporothrix spp.
2.6. Bioactive Manuka Honey Composition
3. Discussion
4. Materials and Methods
4.1. Honey Samples
4.2. Fungal Strains
4.3. Culture Conditions
4.4. Antifungal Activity of Honey Samples
4.5. Filtration Impact on the Honey Antifungal Activity
4.6. MGO Activity Against Sporothrix spp.
4.7. Catalase Influence on the Honey Antifungal Activity
4.8. Honey Composition Analysis
4.8.1. Sample Preparation and Extraction
4.8.2. Volatile Compounds Analysis by Gas Chromatography Mass Spectrometry
4.8.3. Identification of the Compounds
4.9. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ESI | Electrospray ionization |
GC | Gas chromatography |
HRMS | High-resolution mass spectrometry |
IL | Interleukin |
LC-MS | Liquid chromatography |
MGO | Methylglyoxal |
MH | Manuka honey |
MIC | Minimal inhibitory concentration |
MS | Mass spectrometry |
nWT | Non-wild-type |
OAV | Odor activity value |
QTOF | Quadrupole time-of-flight |
SC | Sterility control |
SPME | Solid-phase microextraction |
TNF | Tumor necrosis factor |
UMF | Unique manuka factor |
VOC | Volatile organic compound |
WT | Wild-type |
References
- Mandal, M.D.; Mandal, S. Honey: Its Medicinal Property and Antibacterial Activity. Asian Pac. J. Trop. Biomed. 2011, 1, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Nolan, V.C.; Harrison, J.; Cox, J.A.G. Dissecting the Antimicrobial Composition of Honey. Antibiotics 2019, 8, 251. [Google Scholar] [CrossRef]
- Kwakman, P.H.S.; te Velde, A.A.; de Boer, L.; Speijer, D.; Vandenbroucke-Grauls, C.M.J.E.; Zaat, S.A.J. How Honey Kills Bacteria. FASEB J. 2010, 24, 2576–2582. [Google Scholar] [CrossRef] [PubMed]
- Kwakman, P.H.S.; Zaat, S.A.J. Antibacterial Components of Honey. IUBMB Life 2012, 64, 48–55. [Google Scholar] [CrossRef]
- Johnston, M.; McBride, M.; Dahiya, D.; Owusu-Apenten, R.; Nigam, P.S. Antibacterial Activity of Manuka Honey and Its Components: An Overview. AIMS Microbiol. 2018, 4, 655–664. [Google Scholar] [CrossRef]
- Kamaratos, A.V.; Tzirogiannis, K.N.; Iraklianou, S.A.; Panoutsopoulos, G.I.; Kanellos, I.E.; Melidonis, A.I. Manuka Honey-Impregnated Dressings in the Treatment of Neuropathic Diabetic Foot Ulcers. Int. Wound J. 2014, 11, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Suarez, J.M.; Gasparrini, M.; Forbes-Hernández, T.Y.; Mazzoni, L.; Giampieri, F. The Composition and Biological Activity of Honey: A Focus on Manuka Honey. Foods 2014, 3, 420–432. [Google Scholar] [CrossRef]
- Girma, A.; Seo, W.; She, R.C. Antibacterial Activity of Varying UMF-Graded Manuka Honeys. PLoS ONE 2019, 14, e0224495. [Google Scholar] [CrossRef]
- Lin, B.; Daniels, B.J.; Middleditch, M.J.; Furkert, D.P.; Brimble, M.A.; Bong, J.; Stephens, J.M.; Loomes, K.M. Utility of the Leptospermum scoparium Compound Lepteridine as a Chemical Marker for Manuka Honey Authenticity. ACS Omega 2020, 5, 8858–8866. [Google Scholar] [CrossRef]
- Unique Manuka Factor Honey Association. Unique Mānuka Factor: The Golden Standard in Mānuka Honey. Available online: https://www.umf.org.nz/unique-manuka-factor/ (accessed on 14 March 2025).
- Kulyar, M.F.-E.-A.; Ashfaq, K.; Aqib, A.I.; Duan, K.; Asif, M.; Bhutta, Z.A.; Shoaib, M.; Shabbir, S.; Nawaz, S.; Naseer, M.A.; et al. Enhanced Healing Activity of Manuka Honey and Nitrofurazone Composite in Full-Thickness Burn Wounds in the Rabbit Model. Front. Vet. Sci. 2022, 9, 875629. [Google Scholar] [CrossRef]
- Nolan, V.C.; Harrison, J.; Wright, J.E.E.; Cox, J.A.G. Clinical Significance of Manuka and Medical-Grade Honey for Antibiotic-Resistant Infections: A Systematic Review. Antibiotics 2020, 9, 766. [Google Scholar] [CrossRef] [PubMed]
- Orofino-Costa, R.; Freitas, D.F.S.; Bernardes-Engemann, A.R.; Rodrigues, A.M.; Talhari, C.; Ferraz, C.E.; Veasey, J.V.; Quintella, L.; Sousa, M.S.L.A.d.; Vettorato, R.; et al. Human Sporotrichosis: Recommendations from the Brazilian Society of Dermatology for the Clinical, Diagnostic and Therapeutic Management. An. Bras. Dermatol. 2022, 97, 757–777. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, A.; Bonifaz, A.; Gutierrez-Galhardo, M.C.; Mochizuki, T.; Li, S. Global Epidemiology of Sporotrichosis. Med. Mycol. 2015, 53, 3–14. [Google Scholar] [CrossRef]
- Curtis, K.L.; Gold, J.A.W.; Ritter, J.M.; Rosen, T.; Santos, D.W.C.L.; Smith, D.J.; Lipner, S.R. Dermatologic Fungal Neglected Tropical Diseases-Part I. Epidemiology and Clinical Features. J. Am. Acad. Dermatol. 2024. [Google Scholar] [CrossRef]
- Xavier, M.O.; Poester, V.R.; Trápaga, M.R.; Stevens, D.A. Sporothrix brasiliensis: Epidemiology, Therapy, and Recent Developments. J. Fungi 2023, 9, 921. [Google Scholar] [CrossRef]
- Gremião, I.D.F.; Oliveira, M.M.E.; Monteiro de Miranda, L.H.; Saraiva Freitas, D.F.; Pereira, S.A. Geographic Expansion of Sporotrichosis, Brazil. Emerg. Infect. Dis. 2020, 26, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Nováková, I.; Donnelly, P.; de Witte, T.; de Pauw, B.; Boezeman, J.; Veltman, G. Itraconazole and Cyclosporin Nephrotoxicity. Lancet 1987, 2, 920–921. [Google Scholar] [CrossRef]
- Pilmis, B.; Jullien, V.; Sobel, J.; Lecuit, M.; Lortholary, O.; Charlier, C. Antifungal Drugs during Pregnancy: An Updated Review. J. Antimicrob. Chemother. 2015, 70, 14–22. [Google Scholar] [CrossRef]
- Nakasu, C.C.T.; Waller, S.B.; Ripoll, M.K.; Ferreira, M.R.A.; Conceição, F.R.; Gomes, A.D.R.; Osório, L.d.G.; de Faria, R.O.; Cleff, M.B. Feline Sporotrichosis: A Case Series of Itraconazole-Resistant Sporothrix brasiliensis Infection. Braz. J. Microbiol. 2021, 52, 163–171. [Google Scholar] [CrossRef]
- Belda, W.; Domingues Passero, L.F.; Stradioto Casolato, A.T. Lymphocutaneous Sporotrichosis Refractory to First-Line Treatment. Case Rep. Dermatol. Med. 2021, 2021, 9453701. [Google Scholar] [CrossRef]
- Almeida-Paes, R.; Oliveira, M.M.E.; Freitas, D.F.S.; Valle, A.C.F.d.; Gutierrez-Galhardo, M.C.; Zancopé-Oliveira, R.M. Refractory Sporotrichosis Due to Sporothrix brasiliensis in Humans Appears to Be Unrelated to in vivo Resistance. Med. Mycol. 2017, 55, 507–517. [Google Scholar] [CrossRef]
- Saikaly, S.K.; Khachemoune, A. Honey and Wound Healing: An Update. Am. J. Clin. Dermatol. 2017, 18, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Oryan, A.; Alemzadeh, E.; Moshiri, A. Biological Properties and Therapeutic Activities of Honey in Wound Healing: A Narrative Review and Meta-Analysis. J. Tissue Viability 2016, 25, 98–118. [Google Scholar] [CrossRef]
- Mundo, M.A.; Padilla-Zakour, O.I.; Worobo, R.W. Growth Inhibition of Foodborne Pathogens and Food Spoilage Organisms by Select Raw Honeys. Int. J. Food Microbiol. 2004, 97, 1–8. [Google Scholar] [CrossRef]
- Hegazi, N.M.; Elghani, G.E.A.; Farag, M.A. The Super-Food Manuka Honey, a Comprehensive Review of Its Analysis and Authenticity Approaches. J. Food Sci. Technol. 2022, 59, 2527–2534. [Google Scholar] [CrossRef] [PubMed]
- Gagini, T.; Borba-Santos, L.P.; Messias Rodrigues, A.; Pires de Camargo, Z.; Rozental, S. Clotrimazole Is Highly Effective in Vitro against Feline Sporothrix brasiliensis Isolates. J. Med. Microbiol. 2017, 66, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.S.; Compton, B.J.; Marshall, A.; Anderson, R.; Li, Y.; van der Woude, H.; Hermans, I.F.; Painter, G.F.; Gasser, O. Mānuka Honey-Derived Methylglyoxal Enhances Microbial Sensing by Mucosal-Associated Invariant T Cells. Food Funct. 2020, 11, 5782–5787. [Google Scholar] [CrossRef]
- Almeida-Paes, R.; Brito-Santos, F.; Figueiredo-Carvalho, M.H.G.; Machado, A.C.S.; Oliveira, M.M.E.; Pereira, S.A.; Gutierrez-Galhardo, M.C.; Zancopé-Oliveira, R.M. Minimal Inhibitory Concentration Distributions and Epidemiological Cutoff Values of Five Antifungal Agents against Sporothrix brasiliensis. Mem. Inst. Oswaldo Cruz 2017, 112, 376–381. [Google Scholar] [CrossRef]
- Espinel-Ingroff, A.; Abreu, D.P.B.; Almeida-Paes, R.; Brilhante, R.S.N.; Chakrabarti, A.; Chowdhary, A.; Hagen, F.; Córdoba, S.; Gonzalez, G.M.; Govender, N.P.; et al. Multicenter, International Study of MIC/MEC Distributions for Definition of Epidemiological Cutoff Values for Sporothrix Species Identified by Molecular Methods. Antimicrob. Agents Chemother. 2017, 61, e01057-17. [Google Scholar] [CrossRef]
- Bernardes-Engemann, A.R.; Tomki, G.F.; Rabello, V.B.d.S.; Almeida-Silva, F.; Freitas, D.F.S.; Gutierrez-Galhardo, M.C.; Almeida-Paes, R.; Zancopé-Oliveira, R.M. Sporotrichosis Caused by Non-Wild Type Sporothrix brasiliensis Strains. Front. Cell Infect. Microbiol. 2022, 12, 893501. [Google Scholar] [CrossRef]
- Hayes, G.; Wright, N.; Gardner, S.L.; Telzrow, C.L.; Wommack, A.J.; Vigueira, P.A. Manuka Honey and Methylglyoxal Increase the Sensitivity of Staphylococcus aureus to Linezolid. Lett. Appl. Microbiol. 2018, 66, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Maity, P.K.; Hemashettar, B.M.; Sharma, V.K.; Chakrabarti, A. Physiological Characters of Sporothrix schenckii Isolates. Mycoses 2002, 45, 449–454. [Google Scholar] [PubMed]
- Beitlich, N.; Koelling-Speer, I.; Oelschlaegel, S.; Speer, K. Differentiation of Manuka Honey from Kanuka Honey and from Jelly Bush Honey Using HS-SPME-GC/MS and UHPLC-PDA-MS/MS. J. Agric. Food Chem. 2014, 62, 6435–6444. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.; Eichelberger, K.; Rohm, H. New Zealand Mānuka Honey—A Review on Specific Properties and Possibilities to Distinguish Mānuka from Kānuka Honey. LWT 2021, 136, 110311. [Google Scholar] [CrossRef]
- Ross, A.B.; Braggins, T.J. The Rapid Evaporative Ionisation Mass Spectrometry Metabolite Fingerprint of Leptospermum Honey Is Strongly Associated with Geographic Origin. Food Chem. Adv. 2023, 3, 100414. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Hu, Y.; Zhou, J.; Chen, L.; Lu, X. Systematic Review of the Characteristic Markers in Honey of Various Botanical, Geographic, and Entomological Origins. ACS Food Sci. Technol. 2022, 2, 206–220. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, X.; Xie, Y.; Liang, J. Antifungal Properties and Mechanisms of Three Volatile Aldehydes (Octanal, Nonanal and Decanal) on Aspergillus flavus. Grain Oil Sci. Technol. 2021, 4, 131–140. [Google Scholar] [CrossRef]
- Satoh, M.; Kusumoto, N.; Matsui, N.; Makino, R.; Hashida, K.; Arai, D.; Iiduka, Y.; Ashitani, T. Antitermitic and Antifungal Properties of Enantiopure Linalool and Furanoid Linalool Oxide Confirmed in Lindera Umbellata var. Membranacea. J. Wood Chem. Technol. 2022, 42, 37–45. [Google Scholar] [CrossRef]
- Kamatou, G.P.P.; Vermaak, I.; Viljoen, A.M.; Lawrence, B.M. Menthol: A Simple Monoterpene with Remarkable Biological Properties. Phytochemistry 2013, 96, 15–25. [Google Scholar] [CrossRef]
- Norouzi, N.; Alizadeh, F.; Khodavandi, A.; Jahangiri, M. Antifungal Activity of Menthol Alone and in Combination on Growth Inhibition and Biofilm Formation of Candida albicans. J. Herbal. Med. 2021, 29, 100495. [Google Scholar] [CrossRef]
- Elamine, Y.; Lyoussi, B.; Miguel, M.G.; Anjos, O.; Estevinho, L.; Alaiz, M.; Girón-Calle, J.; Martín, J.; Vioque, J. Physicochemical Characteristics and Antiproliferative and Antioxidant Activities of Moroccan Zantaz Honey Rich in Methyl Syringate. Food Chem. 2021, 339, 128098. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhao, M.; Liu, F.; Zeng, S.; Hu, J. Identification of 2,3-Dihydro-3,5-Dihydroxy-6-Methyl-4H-Pyran-4-One as a Strong Antioxidant in Glucose–Histidine Maillard Reaction Products. Food Res. Int. 2013, 51, 397–403. [Google Scholar] [CrossRef]
- Combarros-Fuertes, P.; Estevinho, L.M.; Dias, L.G.; Castro, J.M.; Tomás-Barberán, F.A.; Tornadijo, M.E.; Fresno-Baro, J.M. Bioactive Components and Antioxidant and Antibacterial Activities of Different Varieties of Honey: A Screening Prior to Clinical Application. J. Agric. Food Chem. 2019, 67, 688–698. [Google Scholar] [CrossRef]
- Weston, R.J.; Brocklebank, L.K. The Oligosaccharide Composition of Some New Zealand Honeys. Food Chem. 1999, 64, 33–37. [Google Scholar] [CrossRef]
- Kato, Y.; Fujinaka, R.; Ishisaka, A.; Nitta, Y.; Kitamoto, N.; Takimoto, Y. Plausible Authentication of Manuka Honey and Related Products by Measuring Leptosperin with Methyl Syringate. J. Agric. Food Chem. 2014, 62, 6400–6407. [Google Scholar] [CrossRef]
- Hayashi, K.; Fukushima, A.; Hayashi-Nishino, M.; Nishino, K. Effect of Methylglyoxal on Multidrug-Resistant Pseudomonas aeruginosa. Front. Microbiol. 2014, 5, 180. [Google Scholar] [CrossRef] [PubMed]
- Cruz, I.L.R.; Freitas, D.F.S.; de Macedo, P.M.; Gutierrez-Galhardo, M.C.; do Valle, A.C.F.; Almeida, M.d.A.; Coelho, R.A.; Brito-Santos, F.; Figueiredo-Carvalho, M.H.G.; Zancopé-Oliveira, R.M.; et al. Evolution of Virulence-Related Phenotypes of Sporothrix brasiliensis Isolates from Patients with Chronic Sporotrichosis and Acquired Immunodeficiency Syndrome. Braz. J. Microbiol. 2021, 52, 5–18. [Google Scholar] [CrossRef]
- Román-Casiano, K.M.; Martínez-Rocha, A.L.; Romo-Lozano, Y.; López-Rodríguez, A.; Cervantes-García, D.; Sierra-Campos, E.; Cuéllar-Cruz, M.; Ruiz-Baca, E. Enzyme Activity and Expression of Catalases in Response to Oxidative Stress in Sporothrix schenckii. Microb. Pathog. 2021, 161, 105270. [Google Scholar] [CrossRef]
- Anand, S.; Deighton, M.; Livanos, G.; Morrison, P.D.; Pang, E.C.K.; Mantri, N. Antimicrobial Activity of Agastache Honey and Characterization of Its Bioactive Compounds in Comparison With Important Commercial Honeys. Front. Microbiol. 2019, 10, 263. [Google Scholar] [CrossRef]
- Burdock, G.A. Fenaroli’s Handbook of Flavor Ingredients; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Čiča, K.H.; Lukin, P.; Derewiaka, D.; Mrvčić, J.; Stanzer, D. Chemical Composition, Physical Properties, and Aroma Profile of Ethanol Macerates of Mistletoe (Viscum album). Beverages 2022, 8, 46. [Google Scholar] [CrossRef]
- Delgado, J.A.; Sánchez-Palomo, E.; Alises, M.O.; Viñas, M.G. Chemical and sensory aroma typicity of La Mancha Petit Verdot wines. Lwt 2022, 162, 113418. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, W.; Zhou, T.; Zhang, D.; Zhang, D.; Zhang, L.; Wang, G.; Cao, F. Discrimination of Malus Taxa with Different Scent Intensities Using Electronic Nose and Gas Chromatography-Mass Spectrometry. Sensors 2018, 18, 3429. [Google Scholar] [CrossRef] [PubMed]
- Gemert, B.V. Benzo and Naphthopyrans (Chromenes). In Organic Photochromic and Thermochromic Compounds; Crano, J.C., Guglielmetti, R., Eds.; Plenum Press: New York, 1999; Volume 1, Chapter 3. [Google Scholar]
- Guo, X.; Ho, C.T.; Wan, X.; Zhu, H.; Liu, Q.; Wen, Z. Changes of volatile compounds and odor profiles in Wuyi rock tea during processing. Food Chem. 2021, 341 Pt 1, 128230. [Google Scholar] [CrossRef]
- Ho, C.T.; Zheng, X.; Li, S. Tea aroma formation. Food Sci. Hum. Wellness 2015, 4, 9–27. [Google Scholar] [CrossRef]
- Kreck, M.; Mosandl, A. Synthesis, structure elucidation, and olfactometric analysis of lilac aldehyde and lilac alcohol stereoisomers. J. Agric. Food Chem. 2003, 51, 2722–2726. [Google Scholar] [CrossRef] [PubMed]
- Lasekan, O. Volatile constituents of roasted tigernut oil (Cyperus esculentus L.). J. Sci. Food Agric. 2013, 93, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Paravisini, L.; Prot, A.; Gouttefangeas, C.; Moretton, C.; Nigay, H.; Dacremont, C.; Guichard, E. Characterisation of the volatile fraction of aromatic caramel using heart-cutting multidimensional gas chromatography. Food Chem. 2015, 167, 281–289. [Google Scholar] [CrossRef]
- Pino, J.A.; Mesa, J. Contribution of volatile compounds to mango (Mangifera indica L.) aroma. Flavour. Fragr. J. 2006, 21, 207–213. [Google Scholar] [CrossRef]
- Pino, J.A. Analysis of odour-active compounds of black mangrove (Avicennia germinans L.) honey by solid-phase microextraction combined with gas chromatography–mass spectrometry and gas chromatography–olfactometry. Int. J. Food Sci. Technol. 2012, 47, 1688–1694. [Google Scholar] [CrossRef]
- Piornos, J.A.; Delgado, A.; de La Burgade, R.C.J.; Methven, L.; Balagiannis, D.P.; Koussissi, E.; Brouwer, E.; Parker, J.K. Orthonasal and retronasal detection thresholds of 26 aroma compounds in a model alcohol-free beer: Effect of threshold calculation method. Food Res. Int. 2019, 123, 317–326. [Google Scholar] [CrossRef]
- Söllner, K.; Schieberle, P. Decoding the key aroma compounds of a Hungarian-type salami by molecular sensory science approaches. J. Agric. Food Chem. 2009, 57, 4319–4327. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Shao, Y.; Yan, Y.; Li, X.; Peng, J.; Guo, L. Characterization of volatile profiles of three colored quinoas based on GC-IMS and PCA. LWT 2021, 146, 111292. [Google Scholar] [CrossRef]
- Sun, H.; Ni, H.; Yang, Y.; Wu, L.; Cai, H.N.; Xiao, A.F.; Chen, F. Investigation of sunlight-induced deterioration of aroma of pummelo (Citrus maxima) essential oil. J. Agric. Food Chem. 2014, 62, 11818–11830. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, J.; Jia, W.; Yu, X.; Chen, J.; Sun, Y.; Wei, Z.; Yang, S.; Tang, X.; Zeng, X.; et al. Aerobic oxidation of 5-[(formyloxy)methyl]furfural to 2,5-furandicarboxylic acid over MoCuOx catalyst. Mol. Catal. 2022, 517, 111986. [Google Scholar] [CrossRef]
- Yamamoto, T.; Shimada, A.; Ohmoto, T.; Matsuda, H.; Ogura, M.; Kanisawa, T. Olfactory study on optically active citronellyl derivatives. Flavour Fragr. J. 2004, 19, 121–133. [Google Scholar]
- Zhu, Y.; Chen, X.; Pan, N.; Liu, S.; Su, Y.; Xiao, M.; Shi, W.; Liu, Z.J.L. The effects of five different drying methods on the quality of semi-dried Takifugu obscurus fillets. LWT-Food Sci. Technol. 2022, 161, 113340. [Google Scholar] [CrossRef]
Strain | Minimal Inhibitory Concentration | |
---|---|---|
MH UMF 5+ | MH UMF 15+ | |
Sporothrix brasiliensis CFP 00722 | 10% v/v | <5% v/v |
Sporothrix schenckii CFP 00448 | 30% v/v | <5% v/v |
Sporothrix globosa CFP 01021 | 30% v/v | 15% v/v |
Strain | Minimal Inhibitory Concentration | |||
---|---|---|---|---|
Mycelial Morphotype | Yeast Morphotype | |||
Non-Filtered MH | Filtered MH | Non-Filtered MH | Filtered MH | |
Sporothrix brasiliensis CFP 00722 | 20% v/v | >40% v/v | <5% v/v | 15% v/v |
Sporothrix schenckii CFP 00448 | 15% v/v | >40% v/v | <5% v/v | 10% v/v |
Sporothrix globosa CFP 01021 | 10% v/v | 15% v/v | 15% v/v | 20% v/v |
Strain | Antifungal Drug MIC (µg/mL) | nWT Drug | ||||
---|---|---|---|---|---|---|
ITR | AMB | TRB | POS | KET | ||
52731 | 8.0 | 8.0 | 0.5 | 8.0 | 0.5 | ITR/AMB/TRB/POS |
52814 | 1.0 | 8.0 | 0.12 | 2.0 | 0.5 | AMB |
34180 | 4.0 | 8.0 | <0.015 | 0.25 | 0.25 | ITR/AMB |
17692 | 0.25 | 0.5 | <0.015 | 0.12 | 2.0 | KET |
18782 | 0.25 | 0.5 | <0.015 | 0.12 | 2.0 | KET |
17331 | 0.25 | 0.5 | 0.015 | 0.12 | 4.0 | KET |
25758 | 0.5 | 0.5 | 0.03 | 0.5 | 8.0 | KET |
30030 | 1.0 | 0.5 | <0.015 | 0.25 | 4.0 | KET |
28606 | 8.0 | 0.5 | 0.015 | 4.0 | 4.0 | ITR/POS/KET |
17608 | 0.5 | 8.0 | 0.12 | 0.5 | 4.0 | AMB/KET |
48605 | 4.0 | 0.5 | <0.015 | 0.25 | 0.12 | ITR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernardes-Engemann, A.R.; Almeida-Silva, F.; Cleare, L.G.; Cruz, J.D.d.; Silva, J.R.d.A.; Neto, W.S.M.F.; Zancopé-Oliveira, R.M.; Amaral, A.C.F.; Nosanchuk, J.D.; Almeida-Paes, R. In Vitro Evidence for the Efficacy of Manuka Honey and Its Components Against the Major Human Pathogenic Sporothrix Species. Pharmaceuticals 2025, 18, 534. https://doi.org/10.3390/ph18040534
Bernardes-Engemann AR, Almeida-Silva F, Cleare LG, Cruz JDd, Silva JRdA, Neto WSMF, Zancopé-Oliveira RM, Amaral ACF, Nosanchuk JD, Almeida-Paes R. In Vitro Evidence for the Efficacy of Manuka Honey and Its Components Against the Major Human Pathogenic Sporothrix Species. Pharmaceuticals. 2025; 18(4):534. https://doi.org/10.3390/ph18040534
Chicago/Turabian StyleBernardes-Engemann, Andrea Reis, Fernando Almeida-Silva, Levi G. Cleare, Jefferson D. da Cruz, Jefferson Rocha de A. Silva, Walter Sotto M. Fernandes Neto, Rosely Maria Zancopé-Oliveira, Ana Claudia Fernandes Amaral, Joshua D. Nosanchuk, and Rodrigo Almeida-Paes. 2025. "In Vitro Evidence for the Efficacy of Manuka Honey and Its Components Against the Major Human Pathogenic Sporothrix Species" Pharmaceuticals 18, no. 4: 534. https://doi.org/10.3390/ph18040534
APA StyleBernardes-Engemann, A. R., Almeida-Silva, F., Cleare, L. G., Cruz, J. D. d., Silva, J. R. d. A., Neto, W. S. M. F., Zancopé-Oliveira, R. M., Amaral, A. C. F., Nosanchuk, J. D., & Almeida-Paes, R. (2025). In Vitro Evidence for the Efficacy of Manuka Honey and Its Components Against the Major Human Pathogenic Sporothrix Species. Pharmaceuticals, 18(4), 534. https://doi.org/10.3390/ph18040534