Bioactive Substances and Skin Health: An Integrative Review from a Pharmacy and Nutrition Perspective
Abstract
:1. Introduction
2. Method
2.1. Type of Review: Design
2.2. Data Sources and Search Strategy
2.3. Eligibility Criteria and Data Synthesis
2.4. Study Selection Processes
2.5. Data Extraction
3. Results and Discussion
3.1. The Skin as an Active Biological Structure
- Biological factors. These factors include [6]:
- -
- Physical condition of the skin. It can be affected by acids, alkalis, wounds, and various diseases that cause a defective stratum corneum, leading to an increase in percutaneous absorption.
- -
- Skin age. As the skin ages (Table 2), a reduction in blood flow to the adipose tissue in the hypodermis is observed, which causes flaccidity. Also, there is a reduction in fibroblasts, glycosaminoglycans, oxygen consumption, and the genesis of intracellular energy, which translates into a decrease in protein synthesis and a lower capacity for cell mobility between the different layers. As the skin ages, collagen replacement decreases due to the reduction in collagenase activity. In addition to all this, degradation of fibronectin is responsible for skin distension [5].
- -
- Cutaneous metabolism. The skin metabolizes steroid hormones, carcinogens, and some drugs. This metabolism can vary and determine the efficacy of certain cosmetic compounds applied topically.
- -
- Skin regions. Variations in skin permeability are related to the thickness and nature of the stratum corneum and the density of skin appendages. Thus, the permeability of cosmetic ingredients will depend on the intrinsic resistance to permeation per unit of overall tissue thickness.
- B.
- -
- Skin hydration. Hydration of the stratum corneum is one of the most important factors related to the penetration of substances through the skin. Specifically, the process of water retention in the stratum corneum depends mainly on the presence of hygroscopic components inside the corneocytes and the intercellular lipids, as well as their ability to form a protective barrier against water loss from the skin.
- -
- pH. The stratum corneum is very resistant to pH changes; in fact, only ionized molecules pass easily through lipid membranes.
- -
- Temperature. The diffusion coefficient decreases as body temperature decreases; therefore, anything that increases body temperature will affect the permeability of ingredients in cosmetic formulations.
- -
- Size and shape of molecules. Smaller molecules will permeate better than larger ones.
- (a)
- Transepidermal route, where molecules diffuse causing an accumulation of water that allows polar molecules to pass through the skin. However, an intercellular process can be used where the diffusion of the components is carried out through the lipid structures between the cells of the stratum corneum.
- (b)
- Transappendicular route, where the components of the cosmetic product use the skin appendages to migrate to the stratum corneum.
3.2. Bioactive Compounds of Interest for Skin Health
- Food-derived components
- -
- Vitamin A
- -
- Vitamin E
- -
- Vitamin C
- -
- Selenium
- -
- Zinc
- -
- Copper
- -
- Silicon
- -
- Polyunsaturated fatty acids
- -
- Carotenoids
- -
- Polyphenols
- B.
- Nutraceuticals
- -
- -
- -
- Glycosaminoglycans. Chemically speaking, these are non-branched polymers formed by repetitions of disaccharides, composed of an amino sugar and uronic acid. They have a moisturizing function, since they increase the levels of collagen and hyaluronic acid while reducing the activity of metalloproteinase, with the consequent inhibition of collagenase and elastase [57].
- -
- Collagen supplements. Useful for fighting sagging skin and wrinkles due to their wealth of amino acids such as proline, glycine, and hydroxyproline [58].
- -
- Coenzyme Q10. This acts as a lipophilic compound that eliminates free radicals and intervenes in activation of the inflammatory process, with an antioxidant action. Because skin aging leads to a reduction in the concentration of coenzyme Q10, its use has an important role in restoring skin functions [37].
- C.
- Symbiotics
- D.
- Active substances of marine origin
- Algae
- -
- Immunomodulatory function. Microalgae and cyanobacteria (Rythrospira/Spirulina spp., Chlorella vulgaris, Chlorella pyrenoidosa, I sochrysis, Pleurochrysis cartae, Dunaliella, Porphyridium purpureum, and Rhodosorus marinus) have amino acids with immunomodulatory activity. In cosmetics, algae ingredients are used for the treatment of a wide range of skin diseases. The immunomodulatory mechanisms whereby they exert their action would be on cytokines, interferons, interleukins, and tumor necrosis factors, which are secreted mainly by macrophages, lymphocytes, and keratinocytes in the epidermis [64].
- -
- Antioxidant function. Antioxidants obtained from microalgae are chlorophyll, vitamins, flavonoids, polyphenols, sterols, carotenoids, and vitamins A, B1, B2, B6, B12, C, and E that can be used as moisturizers and sunscreens, and to prevent and treat multiple skin conditions [65]. It has been observed that numerous components produced by algae such as chlorophyll, isoprenoids, tocopherols (ascorbic acid, ubiquinol, hydroxyanisole, fucosterol, and fucoxanthin), and algae carbohydrates prevent the formation of superoxide anion and hydrogen peroxide radicals that attack cell membranes and genetic material [66,67,68].
- -
- Photoprotective function. Microalgae have numerous mechanisms for repairing of genetic material as a result of photo/darkness, antioxidant systems, and protection from ultraviolet radiation that have been developed in their natural habitat [69].
- -
- Skin regeneration and hydration. Bioactive compounds obtained from microalgae are being incorporated into the cosmetic industry for their ability to stimulate collagen synthesis and as substitutes for hyaluronic acid. In this sense, hyaluronic acid provides an improvement of the extracellular matrix, internal skin homeostasis, skin hydration, and wound healing by promoting cell migration. It is highlighted that Kojic acid can be obtained from different types of mushrooms and is a by-product of fermented soy sauce and rice wine. It plays an important role as an antimicrobial, and in preventing sun damage, depigmenting, and age spots [69,70,71].
- -
- Wound healing activity and anti-inflammatory action. Numerous fatty acids from different marine algae, such as eicosapentaenoic acid, inhibit IL-8 and TNF-α [72], which has been shown in studies by Alipoor et al. [73] with respect to docosahexaenoic acid. Studies by Usoltseva et al. [74] and Luthuli et al. [75] on fucoidans, of a polysaccharide nature, have also shown a reduction in neutrophil adhesion and inhibition of proinflammatory proteins.
- -
- Anti-aging action. Zouboulis et al. [76] have shown how some species of cyanobacteria prevent photodamage, an aspect in line with that shown by the photoprotective action exerted by certain components of food and plant origin. Sophorolipids, used in cosmetic formulations to reduce skin thinning, also show an anti-aging action [77].
- -
- -
- Exopolysaccharides. Used for their role as emulsion and foam stabilizers and their moisturizing capacity [79].
- -
- Agar and carrageenan, obtained from Gelidium cartilagineum, Gracilaria confervoides, Chondrus crispus, and Gigartina mamillosa, are used for the manufacture of creams, body lotions, soaps, shampoos, hair conditioners, toothpastes, deodorants, shaving creams, perfumes, and makeup [80].
- Bacteria
- Fungi
- Sea sponges
- Marine corals
- E.
- Substances from plant extracts
3.3. Future Lines of Research
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bensa, T.; Tekkela, S.; Rognoni, E. Skin fibroblast functional heterogeneity in health and disease. J. Pathol. 2023, 260, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Pilkington, S.M.; Bulfone-Paus, S.; Griffiths, C.E.M.; Watson, R.E.B. Inflammaging and the Skin. J. Investig. Dermatol. 2021, 141, 1087–1095. Available online: https://jddonline.com/articles/supplement-article-retinol-the-ideal-retinoid-for-cosmetic-solutions-S1545961622S00s4X/ (accessed on 18 September 2024). [CrossRef] [PubMed]
- Ding, X.; Kakanj, P.; Leptin, M.; Eming, S.A. Regulation of the Wound Healing Response during Aging. J. Investig. Dermatol. 2021, 141, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.T.; Silva, M.D.; Carvalho, R. Revisão integrativa: O que é e como fazer. Einstein 2010, 8, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Schütz, R. Blue Light and the Skin. Curr. Probl. Dermatol. 2021, 55, 354–373. [Google Scholar] [CrossRef]
- Kim, Y.; Lim, K.-M. Skin barrier dysfunction and filaggrin. Arch. Pharmacal. Res. 2021, 44, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Kim, M. Skin Barrier Function and the Microbiome. Int. J. Mol. Sci. 2022, 23, 13071. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Orsmond, A.; Bereza-Malcolm, L.; Lynch, T.; March, L.; Xue, M. Skin Barrier Dysregulation in Psoriasis. Int. J. Mol. Sci. 2021, 22, 10841. [Google Scholar] [CrossRef]
- Choi, E.H. Aging of the skin barrier. Clin. Dermatol. 2019, 37, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, C.; Yang, Y.; Gong, X.; Qian, H. The stratum corneum barrier: Impaired function in relation to associated lipids and proteins. Tissue Barriers 2024, 2361197. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.; Napoli, J.; Enver, T.; Bernardino, L.; Ferreira, L. Advances and challenges in retinoid delivery systems in regenerative and therapeutic medicine. Nat. Commun. 2020, 11, 4265. [Google Scholar] [CrossRef] [PubMed]
- Quan, T. Human Skin Aging and the Anti-Aging Properties of Retinol. Biomolecules 2023, 13, 1614. [Google Scholar] [CrossRef]
- Farris, P. Retinol: The Ideal Retinoid for Cosmetic Solutions. J. Drugs Dermatol. 2022, 21, s4–s10. [Google Scholar] [CrossRef] [PubMed]
- Oge, L.K.; Broussard, A.; Marshall, M.D. Acne Vulgaris: Diagnosis and Treatment. Am. Fam. Physician. 2019, 100, 475–484. [Google Scholar]
- Callender, V.D.; Baldwin, H.; Cook-Bolden, F.E.; Alexis, A.F.; Gold, L.S.; Guenin, E. Effects of Topical Retinoids on Acne and Post-inflammatory Hyperpigmentation in Patients with Skin of Color: A Clinical Review and Implications for Practice. Am. J. Clin. Dermatol. 2022, 23, 69–81. [Google Scholar] [CrossRef]
- Rattanawiwatpong, P.; Wanitphakdeedecha, R.; Bumrungpert, A.; Maiprasert, M. Anti-aging and brightening effects of a topical treatment containing vitamin C, vitamin E, and raspberry leaf cell culture extract: A split-face, randomized controlled trial. J Cosmet Dermatol. 2020, 19, 671–676. [Google Scholar] [CrossRef]
- Na Takuathung, M.; Klinjan, P.; Sakuludomkan, W.; Dukaew, N.; Inpan, R.; Kongta, R.; Chaiyana, W.; Teekachunhatean, S.; Koonrungsesomboon, N. Efficacy and Safety of the Genistein Nutraceutical Product Containing Vitamin E, Vitamin B3, and Ceramide on Skin Health in Postmenopausal Women: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J. Clin. Med. 2023, 12, 1326. [Google Scholar] [CrossRef]
- Laing, S.; Bielfeldt, S.; Ehrenberg, C.; Wilhelm, K.-P. A Dermonutrient Containing Special Collagen Peptides Improves Skin Structure and Function: A Randomized, Placebo-Controlled, Triple-Blind Trial Using Confocal Laser Scanning Microscopy on the Cosmetic Effects and Tolerance of a Drinkable Collagen Supplement. J. Med. Food 2020, 23, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Praça, F.G.; Viegas, J.S.R.; Peh, H.Y.; Garbin, T.N.; Medina, W.S.G.; Bentley, M.V.L.B. Microemulsion co-delivering vitamin A and vitamin E as a new platform for topical treatment of acute skin inflammation. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 110, 110639. [Google Scholar] [CrossRef]
- Coerdt, K.M.; Goggins, C.A.; Khachemoune, A. Vitamins A, B, C, and D: A Short Review for the Dermatologist. Altern. Ther. Health Med. 2021, 27, 41–49. Available online: http://www.alternative-therapies.com/index.cfm/fuseaction/archives.main (accessed on 3 March 2025).
- Correia, G.; Magina, S. Efficacy of topical vitamin C in melasma and photoaging: A systematic review. J. Cosmet. Dermatol. 2023, 22, 1938–1945. [Google Scholar] [CrossRef]
- Ferrara, F.; Pecorelli, A.; Pambianchi, E.; White, S.; Choudhary, H.; Casoni, A.; Valacchi, G. Vitamin C compounds mixture prevents skin barrier alterations and inflammatory responses upon real life multi pollutant exposure. Exp. Dermatol. 2024, 33, e15000. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Guo, S.; Liu, H. Antioxidant activity and inhibition of ultraviolet radiation-induced skin damage of Selenium-rich peptide fraction from selenium-rich yeast protein hydrolysate. Bioorg. Chem. 2020, 105, 104431. [Google Scholar] [CrossRef]
- Alehagen, U.; Opstad, T.B.; Alexander, J.; Larsson, A.; Aaseth, J. Impact of Selenium on Biomarkers and Clinical Aspects Related to Ageing. A Review. Biomolecules 2021, 11, 1478. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Kinoshita, M.; Shimada, S.; Kambe, T.; Kawamura, T. Zinc transporters in the epidermis. J. Dermatol. 2019, 46, E243–E245. [Google Scholar] [CrossRef]
- Piquero-Casals, J.; La Rotta-Higuera, E.; Francisco Mir-Bonafé, J.; Rozas-Muñoz, E.; Granger, C. Non-Steroidal Topical Therapy for Facial Seborrheic Dermatitis. J. Drugs Dermatol. 2020, 19, 658–660. [Google Scholar] [CrossRef] [PubMed]
- Searle, T.; Ali, F.R.; Al-Niaimi, F. Zinc in dermatology. J. Dermatol. Treat. 2022, 33, 2455–2458. [Google Scholar] [CrossRef]
- Glass, G.F.; Goh, C.C.K.; Cheong, R.Q.; Ong, Z.L.; Khong, P.C.B.; Chan, E. Effectiveness of skin cleanser and protectant regimen on incontinence-associated dermatitis outcomes in acute care patients: A cluster randomised trial. Int. Wound J. 2021, 18, 862–873. [Google Scholar] [CrossRef]
- Kim, J.J.; Ha, S.; Kim, L.; Kato, Y.; Wang, Y.; Okutani, C.; Wang, H.; Wang, C.; Fukuda, K.; Lee, S.; et al. Antimicrobial second skin using copper nanomesh. Proc. Natl. Acad. Sci. USA 2022, 119, e2200830119. [Google Scholar] [CrossRef]
- Rajendiran, M.; Trivedi, H.M.; Chen, D.; Gajendrareddy, P.; Chen, L. Recent Development of Active Ingredients in Mouthwashes and Toothpastes for Periodontal Diseases. Molecules 2021, 26, 2001. [Google Scholar] [CrossRef]
- Xi, Y.; Ge, J.; Wang, M.; Chen, M.; Niu, W.; Cheng, W.; Xue, Y.; Lin, C.; Lei, B. Bioactive Anti-inflammatory, Antibacterial, Antioxidative Silicon-Based Nanofibrous Dressing Enables Cutaneous Tumor Photothermo-Chemo Therapy and Infection-Induced Wound Healing. ACS Nano 2020, 14, 2904–2916. [Google Scholar] [CrossRef] [PubMed]
- Green, L.J.; Bhatia, N.D.; Toledano, O.; Erlich, M.; Spizuoco, A.; Goodyear, B.C.; York, J.P.; Jakus, J. Silica-based microencapsulation used in topical dermatologic applications. Arch. Dermatol. Res. 2023, 315, 2787–2793. [Google Scholar] [CrossRef] [PubMed]
- Trompette, A.; Pernot, J.; Perdijk, O.; Alqahtani, R.A.A.; Domingo, J.S.; Camacho-Muñoz, D.; Wong, N.C.; Kendall, A.C.; Wiederkehr, A.; Nicod, L.P.; et al. Gut-derived short-chain fatty acids modulate skin barrier integrity by promoting keratinocyte metabolism and differentiation. Mucosal Immunol. 2022, 15, 908–926. [Google Scholar] [CrossRef]
- Thomsen, B.J.; Chow, E.Y.; Sapijaszko, M.J. The Potential Uses of Omega-3 Fatty Acids in Dermatology: A Review. J. Cutan. Med. Surg. 2020, 24, 481–494. [Google Scholar] [CrossRef] [PubMed]
- Nolan, J.M.; Power, R.; Howard, A.N.; Bergin, P.; Roche, W.; Prado-Cabrero, A.; Pope, G.; Cooke, J.; Power, T.; Mulcahy, R. Supplementation with Carotenoids, Omega-3 Fatty Acids, and Vitamin E Has a Positive Effect on the Symptoms and Progression of Alzheimer’s Disease. J. Alzheimer’s Dis. 2022, 90, 233–249. [Google Scholar] [CrossRef]
- Smith, T.J.; Wilson, M.; Whitney, C.; Fagnant, H.; Neumeier, W.H.; Smith, C.; Heaton, K.J.; Cho, E.; Spielmann, G.; Walsh, N.P.; et al. Supplemental Protein and a Multinutrient Beverage Speed Wound Healing after Acute Sleep Restriction in Healthy Adults. J. Nutr. 2022, 152, 1560–1573. [Google Scholar] [CrossRef]
- Michalak, M.; Pierzak, M.; Kręcisz, B.; Suliga, E. Bioactive Compounds for Skin Health: A Review. Nutrients 2021, 13, 203. [Google Scholar] [CrossRef]
- Gade, A.; Hwang, J.R.; Hoegler, K.; Khan, S.; Khachemoune, A. Therapeutic Use of Trace Elements in Dermatology. Altern. Ther. Health Med. 2023, 29, 246–252. Available online: http://www.alternative-therapies.com/abstract/index.html?id=12042 (accessed on 3 March 2025).
- Thompson, K.G.; Kim, N. Dietary supplements in dermatology: A review of the evidence for zinc, biotin, vitamin D, nicotinamide, and Polypodium. J. Am. Acad. Dermatol. 2021, 84, 1042–1050. [Google Scholar] [CrossRef]
- Rakuša, Z.T.; Škufca, P.; Kristl, A.; Roškar, R. Retinoid stability and degradation kinetics in commercial cosmetic products. J. Cosmet. Dermatol. 2020, 20, 2350–2358. [Google Scholar] [CrossRef]
- Baswan, S.M.; Klosner, A.E.; Weir, C.; Salter-Venzon, D.; Gellenbeck, K.W.; Leverett, J.; Krutmann, J. Role of ingestible carotenoids in skin protection: A review of clinical evidence. Photodermatol. Photoimmunol. Photomed. 2021, 37, 490–504. [Google Scholar] [CrossRef]
- Kohandel, Z.; Farkhondeh, T.; Aschner, M.; Pourbagher-Shahri, A.M.; Samarghandian, S. Anti-inflammatory action of astaxanthin and its use in the treatment of various diseases. Biomed. Pharmacother. 2022, 145, 112179. [Google Scholar] [CrossRef] [PubMed]
- Flieger, J.; Raszewska-Famielec, M.; Radzikowska-Büchner, E.; Flieger, W. Skin Protection by Carotenoid Pigments. Int. J. Mol. Sci. 2024, 25, 1431. [Google Scholar] [CrossRef] [PubMed]
- Fiedorowicz, J.; Dobrzynska, M.M. Lutein and zeaxanthin—Radio- and chemoprotective properties. Mechanism and possible use. Rocz. Panstw. Zakl. Hig. 2023, 74, 257–264. [Google Scholar] [CrossRef]
- Januszewski, J.; Forma, A.; Zembala, J.; Flieger, M.; Tyczyńska, M.; Dring, J.C.; Dudek, I.; Świątek, K.; Baj, J. Nutritional Supplements for Skin Health—A Review of What Should Be Chosen and Why. Medicina 2023, 60, 68. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef]
- Csekes, E.; Račková, L. Skin Aging, Cellular Senescence and Natural Polyphenols. Int. J. Mol. Sci. 2021, 22, 12641. [Google Scholar] [CrossRef]
- Bharadvaja, N.; Gautam, S.; Singh, H. Natural polyphenols: A promising bioactive compounds for skin care and cosmetics. Mol. Biol. Rep. 2023, 50, 1817–1828. [Google Scholar] [CrossRef]
- Criollo-Mendoza, M.S.; Contreras-Angulo, L.A.; Leyva-López, N.; Gutiérrez-Grijalva, E.P.; Jiménez-Ortega, L.A.; Heredia, J.B. Wound Healing Properties of Natural Products: Mechanisms of Action. Molecules 2023, 28, 598. [Google Scholar] [CrossRef]
- Calniquer, G.; Khanin, M.; Ovadia, H.; Linnewiel-Hermoni, K.; Stepensky, D.; Trachtenberg, A.; Sedlov, T.; Braverman, O.; Levy, J.; Sharoni, Y. Combined Effects of Carotenoids and Polyphenols in Balancing the Response of Skin Cells to UV Irradiation. Molecules 2021, 26, 1931. [Google Scholar] [CrossRef]
- Fernandes, A.; Rodrigues, P.; Pintado, M.; Tavaria, F. A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging. Phytomedicine 2023, 115, 154824. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Wu, Q.; Yun, Z.; Zhao, L. Advances in Antioxidative Bioactive Macromolecules. IOP Conf. Ser. Earth Environ. Sci. 2020, 512, 012094. [Google Scholar] [CrossRef]
- Michalak, M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int. J. Mol. Sci. 2022, 23, 585. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, R.; Akter, S.; Tamanna, S.K.; Mazumder, L.; Esti, I.Z.; Banerjee, S.; Akter, S.; Hasan, R.; Acharjee, M.; Hossain, S.; et al. Impact of gut microbiome on skin health: Gut-skin axis observed through the lenses of therapeutics and skin diseases. Gut Microbes 2022, 14, 2096995. [Google Scholar] [CrossRef]
- Shamloul, N.; Hashim, P.W.; Nia, J.K.; Farberg, A.S.; Goldenberg, G. The Role of Vitamins and Supplements on Skin Appearance. Cutis 2019, 104, 220–224. [Google Scholar] [PubMed]
- Nagae, M.; Nagata, M.; Teramoto, M.; Yamakawa, M.; Matsuki, T.; Ohnuki, K.; Shimizu, K. Effect of Porcine Placenta Extract Supplement on Skin Condition in Healthy Adult Women: A Randomized, Double-Blind Placebo-Controlled Study. Nutrients 2020, 12, 1671. [Google Scholar] [CrossRef]
- Kalman, D.S.; Hewlings, S. The effect of oral hydrolyzed eggshell membrane on the appearance of hair, skin, and nails in healthy middle-aged adults: A randomized double-blind placebo-controlled clinical trial. J. Cosmet. Dermatol. 2020, 19, 1463–1472. [Google Scholar] [CrossRef]
- Jhawar, N.; Wang, J.V.; Saedi, N. Oral collagen supplementation for skin aging: A fad or the future? J. Cosmet. Dermatol. 2020, 19, 910–912. [Google Scholar] [CrossRef]
- Yu, Y.; Dunaway, S.; Champer, J.; Kim, J.; Alikhan, A. Changing our microbiome: Probiotics in dermatology. Br. J. Dermatol. 2019, 182, 39–46. [Google Scholar] [CrossRef]
- Disamantiaji, A.P.; Izza, E.F.; Soelaeman, M.F.; Sembiring, T.; Louisa, M. Probiotics in the Management of Atopic Dermatitis for Children: A Case-Based Review. Dermatol. Res. Pract. 2020, 2020, 4587459. [Google Scholar] [CrossRef]
- Atabati, H.; Esmaeili, S.-A.; Saburi, E.; Akhlaghi, M.; Raoofi, A.; Rezaei, N.; Momtazi-Borojeni, A.A. Probiotics with ameliorating effects on the severity of skin inflammation in psoriasis: Evidence from experimental and clinical studies. J. Cell. Physiol. 2020, 235, 8925–8937. [Google Scholar] [CrossRef] [PubMed]
- Patra, V.; Sérézal, I.G.; Wolf, P. Potential of Skin Microbiome, Pro- and/or Pre-Biotics to Affect Local Cutaneous Responses to UV Exposure. Nutrients 2020, 12, 1795. [Google Scholar] [CrossRef]
- Gómez, A. Microbioma, salud y enfermedad: Probióticos, prebióticos y simbióticos. Biomedica 2019, 39, 617–621. (In Spanish) [Google Scholar] [PubMed]
- Yang, N.; Zhang, Q.; Chen, J.; Wu, S.; Chen, R.; Yao, L.; Li, B.; Liu, X.; Zhang, R.; Zhang, Z. Study on bioactive compounds of microalgae as antioxidants in a bibliometric analysis and visualization perspective. Front. Plant Sci. 2023, 14, 1144326. [Google Scholar] [CrossRef] [PubMed]
- Sansone, C.; Brunet, C. Promises and Challenges of Microalgal Antioxidant Production. Antioxidants 2019, 8, 199. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Rincón-Fontán, M.; Vecino, X.; Cruz, J.M.; Moldes, A.B. Preservative and Irritant Capacity of Biosurfactants from Different Sources: A Comparative Study. J. Pharm. Sci. 2019, 108, 2296–2304. [Google Scholar] [CrossRef]
- Sabotič, J.; Bayram, E.; Ezra, D.; Gaudêncio, S.P.; Haznedaroğlu, B.Z.; Janež, N.; Ktari, L.; Luganini, A.; Mandalakis, M.; Safarik, I.; et al. A guide to the use of bioassays in exploration of natural resources. Biotechnol. Adv. 2024, 71, 108307. [Google Scholar] [CrossRef]
- Kiran, B.R.; Mohan, S.V. Microalgal Cell Biofactory—Therapeutic, Nutraceutical and Functional Food Applications. Plants 2021, 10, 836. [Google Scholar] [CrossRef]
- Ekiert, H.M.; Szopa, A. Biological Activities of Natural Products. Molecules 2020, 25, 5769. [Google Scholar] [CrossRef]
- Liu, J.-K. Natural products in cosmetics. Nat. Prod. Bioprospect. 2022, 12, 40. [Google Scholar] [CrossRef]
- Hoang, H.T.; Van Tran, V.; Bui, V.K.H.; Kwon, O.-H.; Moon, J.-Y.; Lee, Y.-C. Novel moisturized and antimicrobial hand gel based on zinc-aminoclay and Opuntia humifusa extract. Sci. Rep. 2021, 11, 17821. [Google Scholar] [CrossRef]
- Ceesay, A.; Shamsudin, M.N.; Aliyu-Paiko, M.; Ismail, I.S.; Nazarudin, M.F.; Alipiah, N.M. Extraction and Characterization of Organ Components of the Malaysian Sea Cucumber Holothuria leucospilota Yielded Bioactives Exhibiting Diverse Properties. BioMed. Res. Int. 2019, 2019, 2640684. [Google Scholar] [CrossRef] [PubMed]
- Alipoor, E.; Jazayeri, S.; Dahmardehei, M.; Salehi, S.; Yaseri, M.; Emami, M.R.; Rezayat, S.M.; Hosseinzadeh-Attar, M.J. Effect of a collagen-enriched beverage with or without omega-3 fatty acids on wound healing, metabolic biomarkers, and adipokines in patients with major burns. Clin. Nutr. 2023, 42, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Usoltseva, R.V.; Shevchenko, N.M.; Malyarenko, O.S.; Anastyuk, S.D.; Kasprik, A.E.; Zvyagintsev, N.V.; Ermakova, S.P. Fucoidans from brown algae Laminaria longipes and Saccharina cichorioides: Structural characteristics, anticancer and radiosensitizing activity in vitro. Carbohydr. Polym. 2019, 221, 157–165. [Google Scholar] [CrossRef]
- Luthuli, S.; Wu, S.; Cheng, Y.; Zheng, X.; Wu, M.; Tong, H. Therapeutic Effects of Fucoidan: A Review on Recent Studies. Mar. Drugs 2019, 17, 487. [Google Scholar] [CrossRef]
- Fuentes-Tristan, S.; Parra-Saldivar, R.; Iqbal, H.M.; Carrillo-Nieves, D. Bioinspired biomolecules: Mycosporine-like amino acids and scytonemin from Lyngbya sp. with UV-protection potentialities. J. Photochem. Photobiol. B Biol. 2019, 201, 111684. [Google Scholar] [CrossRef] [PubMed]
- Adu, S.A.; Twigg, M.S.; Naughton, P.J.; Marchant, R.; Banat, I.M. Characterisation of cytotoxicity and immunomodulatory effects of glycolipid biosurfactants on human keratinocytes. Appl. Microbiol. Biotechnol. 2023, 107, 137–152. [Google Scholar] [CrossRef]
- Benhadda, F.; Zykwinska, A.; Colliec-Jouault, S.; Sinquin, C.; Thollas, B.; Courtois, A.; Fuzzati, N.; Toribio, A.; Delbarre-Ladrat, C. Marine versus Non-Marine Bacterial Exopolysaccharides and Their Skincare Applications. Mar. Drugs 2023, 21, 582. [Google Scholar] [CrossRef]
- Laubach, J.; Joseph, M.; Brenza, T.; Gadhamshetty, V.; Sani, R.K. Exopolysaccharide and biopolymer-derived films as tools for transdermal drug delivery. J. Control Release 2021, 329, 971–987. [Google Scholar] [CrossRef]
- Thiyagarasaiyar, K.; Goh, B.-H.; Jeon, Y.-J.; Yow, Y.-Y. Algae Metabolites in Cosmeceutical: An Overview of Current Applications and Challenges. Mar. Drugs 2020, 18, 323. [Google Scholar] [CrossRef]
- Beleneva, I.A.; Kharchenko, U.V.; Kukhlevsky, A.D.; Boroda, A.V.; Izotov, N.V.; Gnedenkov, A.S.; Egorkin, V.S. Biogenic synthesis of selenium and tellurium nanoparticles by marine bacteria and their biological activity. World J. Microbiol. Biotechnol. 2022, 38, 188. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Feng, Z.; Li, C.; Cai, X.; Long, H.; Zhang, X.; Huang, A.; Zeng, Y.; Ren, W.; Xie, Z. Analysis of the Antioxidant Composition of Low Molecular Weight Metabolites from the Agarolytic Bacterium Alteromonas macleodii QZ9-9: Possibilities for High-Added Value Utilization of Macroalgae. Antioxidants 2022, 11, 1977. [Google Scholar] [CrossRef] [PubMed]
- Gomes, P.W.P.; Mannochio-Russo, H.; Mao, J.; Zhao, H.N.; Ancira, J.; Tipton, C.D.; Dorrestein, P.C.; Li, M. Co-occurrence network analysis reveals the alterations of the skin microbiome and metabolome in adults with mild to moderate atopic dermatitis. mSystems 2024, 9, e0111923. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, J.; Qian, G.; Cheng, H. Effectiveness of Dietary Supplement for Skin Moisturizing in Healthy Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Nutr. 2022, 9, 895192. [Google Scholar] [CrossRef]
- Tomic-Canic, M.; Burgess, J.L.; O’Neill, K.E.; Strbo, N.; Pastar, I. Skin Microbiota and its Interplay with Wound Healing. Am. J. Clin. Dermatol. 2020, 21 (Suppl. S1), 36–43. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Wu, B.; Chen, L. Application of Marine Microbial Natural Products in Cosmetics. Front. Microbiol. 2022, 13, 892505. [Google Scholar] [CrossRef]
- Wijaya, M.; Delicia, D.; Waturangi, D.E. Control of pathogenic bacteria using marine actinobacterial extract with antiquorum sensing and antibiofilm activity. BMC Res. Notes 2023, 16, 305. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Virués-Segovia, J.R.; Muñoz-Mira, S.; Durán-Patrón, R.; Aleu, J. Marine-derived fungi as biocatalysts. Front. Microbiol. 2023, 14, 1125639. [Google Scholar] [CrossRef]
- Barzkar, N.; Sohail, M. An overview on marine cellulolytic enzymes and their potential applications. Appl. Microbiol. Biotechnol. 2020, 104, 6873–6892. [Google Scholar] [CrossRef]
- Geahchan, S.; Baharlouei, P.; Rahman, A. Marine Collagen: A Promising Biomaterial for Wound Healing, Skin Anti-Aging, and Bone Regeneration. Mar. Drugs 2022, 20, 61. [Google Scholar] [CrossRef]
- Bejenaru, C.; Radu, A.; Segneanu, A.-E.; Biţă, A.; Ciocîlteu, M.V.; Mogoşanu, G.D.; Bradu, I.A.; Vlase, T.; Vlase, G.; Bejenaru, L.E. Pharmaceutical Applications of Biomass Polymers: Review of Current Research and Perspectives. Polymers 2024, 16, 1182. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.; Sousa, E.; Kijjoa, A.; Pinto, M. Marine-Derived Compounds with Potential Use as Cosmeceuticals and Nutricosmetics. Molecules 2020, 25, 2536. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Griffiths, T.W.; Watson, R.E.B.; Langton, A.K. Skin ageing and topical rejuvenation strategies. Br. J. Dermatol. 2023, 189 (Suppl. S1), i17–i23. [Google Scholar] [CrossRef] [PubMed]
- Deen, A.; Visvanathan, R.; Wickramarachchi, D.; Marikkar, N.; Nammi, S.; Jayawardana, B.C.; Liyanage, R. Chemical composition and health benefits of coconut oil: An overview. J. Sci. Food Agric. 2020, 101, 2182–2193. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Sharma, A.; Kaur, J.; Kumari, S.; Garg, M.; Sindhu, R.K.; Rahman, H.; Akhtar, M.F.; Tagde, P.; Najda, A.; et al. Bioactive-Based Cosmeceuticals: An Update on Emerging Trends. Molecules 2022, 27, 828. [Google Scholar] [CrossRef]
- Sutton, A.; Clowes, M.; Preston, L.; Booth, A. Meeting the review family: Exploring review types and associated information retrieval requirements. Health Inf. Libr. J. 2019, 36, 202–222. [Google Scholar] [CrossRef]
(“Nutrients” [Title/Abstract] OR “Skin” [MeSH Terms]) |
(“Nutrients” [Title/Abstract] AND “Skin” [MeSH Terms]) |
(“Skin” [Title/Abstract] AND “Nutrition” [MeSH Terms]) |
(“Skin care” [Title/Abstract] AND “Pharmacy” [MeSH Terms]) |
(“Skin care” [Title/Abstract] AND “Nutrition” [MeSH Terms]) |
(“Skin” [Title/Abstract] OR “Nutrition” [MeSH Terms]) AND “Cosmeceuticals” [MeSH Terms]) |
(“Skin care” [Title/Abstract] AND “Pharmacy” [MeSH Terms]) AND “Nutrients” [MeSH Terms]) |
(“Skin care” [Title/Abstract] AND “Prebiotics” [MeSH Terms]) AND “Nutrients” [MeSH Terms]) |
(“Skin health” [Title/Abstract] AND “cosmeceuticals” [MeSH Terms]) OR “Nutrients” [MeSH Terms]) |
(“Diet” [Title/Abstract] OR “Skin” [MeSH Terms]) |
(“Skin health” [Title/Abstract] AND “Marine compounds” [MeSH Terms]) |
(“Nutrition” [Title/Abstract] AND “Skin health” [MeSH Terms]) |
(“Diet” [Title/Abstract] AND “Bioactive substances” [MeSH Terms]) AND “Skin health” [MeSH Terms]) |
Structure | Modifications |
---|---|
Epidermis | Reduction of ceramides, vitamin D, sebaceous secretions, as well as cell differentiation and regeneration [1,3] Decreased mechanoreceptor and baroreceptor capacity [2] |
Epidermis-hypodermis interface | Fibronectin degradation [2] |
Dermis | Decreased thermoreceptors and skin turgor [1,2] |
Stratum Corneum Layers | Components |
---|---|
Upper portion | Vegetable and animal oils, butters, fatty esters, paraffins, petrolatum, silicones, waxes, and alcohols (cetyl and stearyl) |
Lower portion (before dermis) | Ethanol, propylene glycol, glycerol esters, vitamins, urea, and amino acids |
Skin Condition | Vegetable Extracts |
---|---|
Dryness | Castor oil, Mango, Coconut oil, Sunflower oil, Olive oil, Aloe Vera, Oats [56,57] |
Eczema | Turmeric [50] |
Acne, pigmentation, and pimples | Artemisia, Basil, Pea, Pumpkin, Onion [57] |
Distressed skins | Red Clover, Chamomile, Jojoba Oil [53] |
Aging | Ginseng [57] |
Skin Conditions | Symbiotic Action |
---|---|
Atopic dermatitis | Bifidobacterium spp., Propionibacterium spp., Coprococcus spp., Blautia spp., Bifidobacterium longum and Eubacterium spp.: increase production of short-chain fatty acids (decreased in this condition) [61] |
Acne | Lactobacillus acidophilus, Lactobacillus delbrueckii subspecies bulgaricus and Bifidobacterium bifidum L, rhamnosus, Lactibacillus delbrueckii: reduce inflammation, improve or prevent skin lesions [62] |
Psoriasis | Streptococcus aureus and Streptococcus pyogenes: modulation of the inflammatory response by modification of the m-TOR pathway that improves the intestinal microbiome [63] |
Seborrheic dermatitis | Lactobacillus spp.: useful for reducing erythema, scaling, and seborrhea of lesions on the scalp [60] |
Skin cancer | Lactobacillus jonhsonii: photoprotective effect [61] |
Bioactive Compounds from Algae | Functions on the Skin |
---|---|
Polysaccharides | |
Fatty acids |
|
Collagen | |
Amino acids |
|
Mycosporine 2-glycine |
|
Vegetables Extracts | Major Components | Functions |
---|---|---|
Coconut oil | Lauric, myristic, picric acid | Moisturizing, hair protector [94] |
Almond oil | Gadoleic and margaric acid | Emollient [94] |
Olive oil | Tocopherols and sterols | Emollient, hair conditioner [95] |
Sesame oil | Myristic acid | Antioxidant [95] |
Castor oil | Ricinoleic acid | Facial cleanser, moisturizer, hair strengthening [94] |
Beeswax | Ricinoleyl alcohol, myricin | Antioxidant, antibacterial, anti-inflammatory [95] |
Carnauba wax | Fatty acid esters | Moisturizing [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giménez Martínez, R.J.; Rivas García, F.; March Cerdá, J.C.; Hernández-Ruíz, Á.; González Castro, M.I.; Valverde-Merino, M.-I.; Huertas Camarasa, F.J.; Lloris Meseguer, F.; López-Viota Gallardo, M. Bioactive Substances and Skin Health: An Integrative Review from a Pharmacy and Nutrition Perspective. Pharmaceuticals 2025, 18, 373. https://doi.org/10.3390/ph18030373
Giménez Martínez RJ, Rivas García F, March Cerdá JC, Hernández-Ruíz Á, González Castro MI, Valverde-Merino M-I, Huertas Camarasa FJ, Lloris Meseguer F, López-Viota Gallardo M. Bioactive Substances and Skin Health: An Integrative Review from a Pharmacy and Nutrition Perspective. Pharmaceuticals. 2025; 18(3):373. https://doi.org/10.3390/ph18030373
Chicago/Turabian StyleGiménez Martínez, Rafael Jesús, Francisco Rivas García, Joan Carles March Cerdá, Ángela Hernández-Ruíz, Martha Irene González Castro, María-Isabel Valverde-Merino, Felipe José Huertas Camarasa, Fuensanta Lloris Meseguer, and Margarita López-Viota Gallardo. 2025. "Bioactive Substances and Skin Health: An Integrative Review from a Pharmacy and Nutrition Perspective" Pharmaceuticals 18, no. 3: 373. https://doi.org/10.3390/ph18030373
APA StyleGiménez Martínez, R. J., Rivas García, F., March Cerdá, J. C., Hernández-Ruíz, Á., González Castro, M. I., Valverde-Merino, M.-I., Huertas Camarasa, F. J., Lloris Meseguer, F., & López-Viota Gallardo, M. (2025). Bioactive Substances and Skin Health: An Integrative Review from a Pharmacy and Nutrition Perspective. Pharmaceuticals, 18(3), 373. https://doi.org/10.3390/ph18030373