Gambogenic Acid Suppresses Malignant Progression of Non-Small Cell Lung Cancer via GCH1-Mediated Ferroptosis
Abstract
:1. Introduction
2. Results
2.1. GNA Inhibited Proliferation and Migration of NSCLC Cells
2.2. GNA Can Regulate the Cell Cycle and Apoptosis
2.3. GNA Suppressed Tumor Growth and Lung Metastasis
2.4. GNA Inhibited GCH1 Expression
2.5. GCH1 Is the Downstream Target of GNA
2.6. GNA Suppressed Malignant Progression of NSCLC by Enhancing Ferroptosis
2.7. GCH1 Overexpression Reversed the Inhibitory Effects of GNA Against Malignant Progression of NSCLC by Regulating Ferroptosis
2.8. GCH1 Overexpression Reversed GNA Inhibitory Effects
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Experimental Mice
4.3. Cell Culture
4.4. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
4.5. Molecular Docking Analysis
4.6. Liquid Chromatography-Mass Spectrometry (LiP-SMap)
4.7. Ethynyl Deoxyuridine (EdU) Assay
4.8. Plate Colony Formation Assay
4.9. Cell Counting Kit-8 (CCK-8) Assay
4.10. Apoptosis Assay
4.11. Cell Cycle Assay
4.12. Wound Healing (WH) Assay
4.13. Transwell Migration Assay
4.14. Reactive Oxygen Species (ROS) Measurement
4.14.1. Total ROS Measurement
4.14.2. Lipid ROS Measurement
4.15. JC-1 Measurement
4.16. TMRE Measurement
4.17. In Vivo Experiments
4.18. Western Blot (WB) Analysis
4.19. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Frankell, A.M.; Dietzen, M.; Al Bakir, M.; Lim, E.L.; Karasaki, T.; Ward, S.; Veeriah, S.; Colliver, E.; Huebner, A.; Bunkum, A.; et al. The Evolution of Lung Cancer and Impact of Subclonal Selection in TRACERx. Nature 2023, 616, 525–533, Erratum in Nature 2024, 631, E15. [Google Scholar] [CrossRef] [PubMed]
- Memon, D.; Schoenfeld, A.J.; Ye, D.; Fromm, G.; Rizvi, H.; Zhang, X.; Keddar, M.R.; Mathew, D.; Yoo, K.J.; Qiu, J.; et al. Clinical and Molecular Features of Acquired Resistance to Immunotherapy in Non-Small Cell Lung Cancer. Cancer Cell 2024, 42, 209–224.e9. [Google Scholar] [CrossRef]
- Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R.; D’Amico, T.A.; et al. Non-Small Cell Lung Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 497–530. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Li, J.; Yang, X.; Huang, J.; Ji, C.; Li, X.; Li, L.; Zhou, J.; Hu, Y. Gambogenic Acid Induces Cell Death in Human Osteosarcoma through Altering Iron Metabolism, Disturbing the Redox Balance, and Activating the P53 Signaling Pathway. Chem. Biol. Interact. 2023, 382, 110602. [Google Scholar] [CrossRef]
- Lei, G.; Zhuang, L.; Gan, B. Targeting Ferroptosis as a Vulnerability in Cancer. Nat. Rev. Cancer 2022, 22, 381–396. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, X.; Jin, S.; Chen, Y.; Guo, R. Ferroptosis in Cancer Therapy: A Novel Approach to Reversing Drug Resistance. Mol. Cancer 2022, 21, 47. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhou, X.; Xie, F.; Zhang, L.; Yan, H.; Huang, J.; Zhang, C.; Zhou, F.; Chen, J.; Zhang, L. Ferroptosis in Cancer and Cancer Immunotherapy. Cancer Commun. 2022, 42, 88–116. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liang, W.; Huo, D.; Wang, H.; Wang, Y.; Cong, C.; Zhang, C.; Yan, S.; Gao, M.; Su, X.; et al. SPY1 Inhibits Neuronal Ferroptosis in Amyotrophic Lateral Sclerosis by Reducing Lipid Peroxidation through Regulation of GCH1 and TFR1. Cell Death Differ. 2023, 30, 369–382. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, Z.; Jiang, X.; Lu, Z.; Ding, L.; Li, C.; Tian, X.; Wang, Q. Ferroptosis Increases Obesity: Crosstalk between Adipocytes and the Neuroimmune System. Front. Immunol. 2022, 13, 1049936. [Google Scholar] [CrossRef]
- Dos Santos, A.F.; Fazeli, G.; Xavier da Silva, T.N.; Friedmann Angeli, J.P. Ferroptosis: Mechanisms and Implications for Cancer Development and Therapy Response. Trends Cell Biol. 2023, 33, 1062–1076. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, X.; Yang, M.; Dong, X. Recent Progress in Ferroptosis Inducers for Cancer Therapy. Adv. Mater. 2019, 31, e1904197. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.; Zhan, X.; Yu, H.; Xie, G.; Wang, Z.; Xiao, W.; Wang, Y.; Xiong, F.; Hu, J.; Yang, L.; et al. An Open-Labeled, Randomized, Multicenter Phase IIa Study of Gambogic Acid Injection for Advanced Malignant Tumors. Chin. Med. J. 2013, 126, 1642–1646. [Google Scholar] [CrossRef]
- Li, F.; Wang, Y.; Yan, Y. Gambogenic Acid Induces Cell Growth Inhibition, Cell Cycle Arrest and Metastasis Inhibition in Choroidal Melanoma in a Dose-Dependent Manner. Exp. Ther. Med. 2017, 13, 2456–2462. [Google Scholar] [CrossRef]
- Wang, M.; Cheng, H.; Wu, H.; Liu, C.; Li, S.; Li, B.; Su, J.; Luo, S.; Li, Q. Gambogenic Acid Antagonizes the Expression and Effects of Long Non-Coding RNA NEAT1 and Triggers Autophagy and Ferroptosis in Melanoma. Biomed. Pharmacother. 2022, 154, 113636. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, X.; Cai, H.; Yang, W.; Lei, H.; Xu, H.; Wang, W.; Zhu, Q.; Kang, J.; Yin, T.; et al. Targeting USP9x/SOX2 Axis Contributes to the Anti-Osteosarcoma Effect of Neogambogic Acid. Cancer Lett. 2020, 469, 277–286. [Google Scholar] [CrossRef]
- Wang, F.; Dong, L.; Liang, S.; Wei, X.; Wang, Y.; Chang, L.; Guo, K.; Wu, H.; Chang, Y.; Yin, Y.; et al. Ultrasound-Triggered Drug Delivery for Glioma Therapy through Gambogic Acid-Loaded Nanobubble-Microbubble Complexes. Biomed. Pharmacother. 2022, 150, 113042. [Google Scholar] [CrossRef]
- Ma, X.; Xu, M.; Zhang, X.; Wang, X.; Su, K.; Xu, Z.; Wang, X.; Yang, Y. Gambogenic Acid Inhibits Proliferation and Ferroptosis by Targeting the MiR-1291/FOXA2 and AMPKα/SLC7A11/GPX4 Axis in Colorectal Cancer. Cell Biol. Int. 2023, 47, 1813–1824. [Google Scholar] [CrossRef] [PubMed]
- Hatami, E.; Jaggi, M.; Chauhan, S.C.; Yallapu, M.M. Gambogic Acid: A Shining Natural Compound to Nanomedicine for Cancer Therapeutics. Biochim. Biophys. Acta Rev. Cancer 2020, 1874, 188381. [Google Scholar] [CrossRef]
- Liu, Z.; Kang, R.; Yang, N.; Pan, X.; Yang, J.; Yu, H.; Deng, W.; Jia, Z.; Zhang, J.; Shen, Q. Tetrahydrobiopterin Inhibitor-Based Antioxidant Metabolic Strategy for Enhanced Cancer Ferroptosis-Immunotherapy. J. Colloid Interface Sci. 2024, 658, 100–113. [Google Scholar] [CrossRef]
- Starkl, P.; Jonsson, G.; Artner, T.; Turnes, B.L.; Gail, L.-M.; Oliveira, T.; Jain, A.; Serhan, N.; Stejskal, K.; Lakovits, K.; et al. Mast Cell-Derived BH4 and Serotonin Are Critical Mediators of Postoperative Pain. Sci. Immunol. 2024, 9, eadh0545. [Google Scholar] [CrossRef]
- Kraft, V.A.N.; Bezjian, C.T.; Pfeiffer, S.; Ringelstetter, L.; Müller, C.; Zandkarimi, F.; Merl-Pham, J.; Bao, X.; Anastasov, N.; Kössl, J.; et al. GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling. ACS Cent. Sci. 2020, 6, 41–53. [Google Scholar] [CrossRef]
- Li, Y.; Lu, Y.; Wu, M.; Wang, H.; Gong, Y.; Gu, Y. Neogambogic Acid Suppresses Characteristics and Growth of Colorectal Cancer Stem Cells by Inhibition of DLK1 and Wnt/β-Catenin Pathway. Eur. J. Pharmacol. 2022, 929, 175112. [Google Scholar] [CrossRef] [PubMed]
- Xia, G.; Wang, H.; Song, Z.; Meng, Q.; Huang, X.; Huang, X. Gambogic Acid Sensitizes Gemcitabine Efficacy in Pancreatic Cancer by Reducing the Expression of Ribonucleotide Reductase Subunit-M2 (RRM2). J. Exp. Clin. Cancer Res. 2017, 36, 107. [Google Scholar] [CrossRef]
- Cronin, S.J.F.; Rao, S.; Tejada, M.A.; Turnes, B.L.; Licht-Mayer, S.; Omura, T.; Brenneis, C.; Jacobs, E.; Barrett, L.; Latremoliere, A.; et al. Phenotypic Drug Screen Uncovers the Metabolic GCH1/BH4 Pathway as Key Regulator of EGFR/KRAS-Mediated Neuropathic Pain and Lung Cancer. Sci. Transl. Med. 2022, 14, eabj1531. [Google Scholar] [CrossRef] [PubMed]
- Cronin, S.J.F.; Seehus, C.; Weidinger, A.; Talbot, S.; Reissig, S.; Seifert, M.; Pierson, Y.; McNeill, E.; Longhi, M.S.; Turnes, B.L.; et al. The Metabolite BH4 Controls T Cell Proliferation in Autoimmunity and Cancer. Nature 2018, 563, 564–568. [Google Scholar] [CrossRef]
- Feng, Y.; Feng, Y.; Gu, L.; Mo, W.; Wang, X.; Song, B.; Hong, M.; Geng, F.; Huang, P.; Yang, H.; et al. Tetrahydrobiopterin Metabolism Attenuates ROS Generation and Radiosensitivity through LDHA S-Nitrosylation: Novel Insight into Radiogenic Lung Injury. Exp. Mol. Med. 2024, 56, 1107–1122. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.-L.; Wu, S.-Y.; Yang, Y.-S.; Xiao, Y.; Jin, X.; Xu, X.-E.; Hu, X.; Li, D.-Q.; Jiang, Y.-Z.; Shao, Z.-M. GCH1 Induces Immunosuppression through Metabolic Reprogramming and IDO1 Upregulation in Triple-Negative Breast Cancer. J. Immunother. Cancer 2021, 9, e002383. [Google Scholar] [CrossRef]
- Hu, Q.; Wei, W.; Wu, D.; Huang, F.; Li, M.; Li, W.; Yin, J.; Peng, Y.; Lu, Y.; Zhao, Q.; et al. Blockade of GCH1/BH4 Axis Activates Ferritinophagy to Mitigate the Resistance of Colorectal Cancer to Erastin-Induced Ferroptosis. Front. Cell Dev. Biol. 2022, 10, 810327. [Google Scholar] [CrossRef]
- Chen, G.-H.; Song, C.-C.; Pantopoulos, K.; Wei, X.-L.; Zheng, H.; Luo, Z. Mitochondrial Oxidative Stress Mediated Fe-Induced Ferroptosis via the NRF2-ARE Pathway. Free Radic. Biol. Med. 2022, 180, 95–107. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, J.; Li, R.; Liu, Y.; Zhou, L.; Wang, C.; Lv, C.; Gao, L.; Cui, D. CircLRFN5 Inhibits the Progression of Glioblastoma via PRRX2/GCH1 Mediated Ferroptosis. J. Exp. Clin. Cancer Res. 2022, 41, 307. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, R.; Chen, B.; Sun, D.; Hu, Y.; Xu, P. Daunorubicin and Gambogic Acid Coloaded Cysteamine-CdTe Quantum Dots Minimizing the Multidrug Resistance of Lymphoma In Vitro and In Vivo. Int. J. Nanomed. 2016, 11, 5429–5442. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Lin, B.; Sun, Q.; Zhang, X.; Wang, T.; Yang, J.; Liu, X.; Lu, H.; Lu, N.; Zhao, K. Gambogic Acid Impairs the Maintenance and Therapeutic Resistance of Glioma Stem Cells by Targeting B-Cell-Specific Moloney Leukemia Virus Insert Site 1. Phytomedicine 2024, 135, 156070. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Liu, J.; Yu, W.; Shao, J.; Bao, Y.; Jin, M.; Huang, Q.; Huang, G. Gambogenic Acid Suppresses Malignant Progression of Non-Small Cell Lung Cancer via GCH1-Mediated Ferroptosis. Pharmaceuticals 2025, 18, 374. https://doi.org/10.3390/ph18030374
Wang M, Liu J, Yu W, Shao J, Bao Y, Jin M, Huang Q, Huang G. Gambogenic Acid Suppresses Malignant Progression of Non-Small Cell Lung Cancer via GCH1-Mediated Ferroptosis. Pharmaceuticals. 2025; 18(3):374. https://doi.org/10.3390/ph18030374
Chicago/Turabian StyleWang, Menghan, Jiao Liu, Wenxi Yu, Jiancang Shao, Yang Bao, Mingming Jin, Qingqing Huang, and Gang Huang. 2025. "Gambogenic Acid Suppresses Malignant Progression of Non-Small Cell Lung Cancer via GCH1-Mediated Ferroptosis" Pharmaceuticals 18, no. 3: 374. https://doi.org/10.3390/ph18030374
APA StyleWang, M., Liu, J., Yu, W., Shao, J., Bao, Y., Jin, M., Huang, Q., & Huang, G. (2025). Gambogenic Acid Suppresses Malignant Progression of Non-Small Cell Lung Cancer via GCH1-Mediated Ferroptosis. Pharmaceuticals, 18(3), 374. https://doi.org/10.3390/ph18030374