Environmentally Friendly Synthesis of New Mono- and Bis-Pyrazole Derivatives; In Vitro Antimicrobial, Antifungal, and Antioxidant Activity; and In Silico Studies: DFT, ADMETox, and Molecular Docking
Abstract
:1. Introduction
2. Results and Discussion
2.1. General Synthesis of the Novel Compounds
2.2. Global Reactivity Analysis Using the DFT Method
2.3. Local Reactivity: Fukui Indices
2.4. Assessment of the Antimicrobial and Antioxidant Activity of the New Pyrazole Derivatives
2.4.1. Antioxidant Activity
2.4.2. Antibacterial and Antifungal Activity
2.5. In Silico Physicochemical Features and Drug-likeness Properties
2.6. Prediction of Computational ADMET
2.7. Analysis of Molecular Docking
3. Materials and Methods
3.1. Items and Materials
3.2. Synthesis of Pyrazole Drug Candidate Derivatives
3.2.1. N4,N4-bis((3,5-Dimethyl-1H-pyrazol-1-yl)methyl)-N1,N1-diethylpentane-1,4-diamine (O1)
3.2.2. N4-((3,5-Dimethyl-1H-pyrazol-1-yl)methyl)-N1,N1-diethylpentane-1,4-diamine (O2)
3.2.3. N,N-bis((3,5-Dimethyl-1H-pyrazol-1-yl)methyl)propan-2-amine (O3)
3.2.4. 1-(3,5-Dimethyl-1H-pyrazol-1-yl)-N-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-N-(3-methoxybenzyl)methanamine (O4)
3.2.5. N,N-bis((3,5-Dimethyl-1H-pyrazol-1-yl)methyl)-2-phenylethanamine (O5)
3.3. DFT Methodology
3.4. Biological Activities
3.4.1. Inspection of Antioxidant Activity
Test of Free Radical Scavenging
Ferric-Reducing Power (FRAP) Assay
3.4.2. Inspection of Antibacterial Activity
Microbial and Fungal Strains Tested
Evaluation of Antibacterial and Antifungal Activity
Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Determination
Statistical Analysis
3.5. Drug-likeness Properties and Physicochemical Features
3.6. In Silico ADMET Profile Prediction
3.7. Molecular Docking Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Helw, E.A.E.; Gado, M.M.; El-Ziaty, A.K. Synthesis and antirotavirus activity of some nitrogen heterocycles integrated with pyrazole scafold. J. Iran. Chem. Soc. 2020, 17, 1479. [Google Scholar] [CrossRef]
- Xu, Z.; Gao, C.; Ren, Q.C.; Song, X.F.; Feng, L.S.; Lv, Z.S. Recent advances of pyrazole- containing derivatives as anti-tubercular agents. Eur. J. Med. Chem. 2017, 139, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Santos, N.E.; Carreira, A.R.F.; Silva, V.L.M.; Braga, S.S. Natural and biomimetic antitumor pyrazoles, a perspective. Molecules 2020, 25, 1364. [Google Scholar] [CrossRef] [PubMed]
- Bennani, F.E.; Doudach, L.; Cherrah, Y.; Ramli, Y.; Karrouchi, K.; Ansar, M.; Faouzi, M.E.A. Overview of recent developments of pyrazole derivatives as an anticancer agent in different cell line. Bioorg. Chem. 2020, 97, 103470. [Google Scholar] [CrossRef]
- Nitulescu, G.M.; Stancov, G.; Seremet, O.C.; Nitulescu, G.; Mihai, D.P.; Duta-Bratu, C.G.; Barbuceanu, S.F.; Olaru, O.T. The Importance of the Pyrazole Scaffold in the Design of Protein Kinases Inhibitors as Targeted Anticancer Therapies. Molecules 2023, 28, 5359. [Google Scholar] [CrossRef]
- Karrouchi, K.; Mortada, S.; Issaoui, N.; El-guourrami, O.; Arshad, S.; Bouatia, M.; Sagaama, A.; Benzeid, H.; Karbane, M.E.; Faouzi, M.E.A. Synthesis, crystal structure, spectroscopic, antidiabetic, antioxidant and computational investigations of Ethyl 5-hydroxy-1-isonicotinoyl-3-methyl-4,5-dihydro-1H-pyrazole-5-carboxylate. J. Mol. Struct. 2022, 1251, 131977. [Google Scholar] [CrossRef]
- Naim, M.J.; Alam, O.; Alam, M.J.; Shaquiquzzaman, M.; Alam, M.M.; Naidu, V.G.M. Synthesis, docking, in vitro and in vivo antidiabetic activity of pyrazole-based 2, 4-thiazolidinedione derivatives as PPAR- γ modulators. Arch. Pharm. 2018, 351, 1700223. [Google Scholar] [CrossRef]
- Mert, S.; Kasımoğulları, R.; Iça, T.; Çolak, F.; Altun, A.; Ok, S. Synthesis, structureeactivity relationships, and in vitro antibacterial and antifungal activity evaluations of novel pyrazole carboxylic and dicarboxylic acid derivatives. Eur. J. Med. Chem. 2014, 78, 86–96. [Google Scholar] [CrossRef]
- Kumar, G.; Krishna, V.S.; Sriram, D.; Jachak, S.M. Pyrazole-coumarin and pyrazole-quinoline chalcones as potential antitubercular agents. Arch. Pharm. 2020, 353, 2000077. [Google Scholar] [CrossRef]
- El-Sabbagh, O.I.; Baraka, M.M.; Ibrahim, S.M.; Pannecouque, C.; Andrei, G.; Snoeck, R.; Balzarini, J.; Rashad, A.A. Synthesis and antiviral activity of new pyrazole and thiazole derivatives. Eur. J. Med. Chem. 2009, 44, 3746–3753. [Google Scholar] [CrossRef]
- Abdelazeem, N.M.; Aboulthana, W.M.; Hassan, A.S.; Almehizia, A.A.; Naglah, A.M.; Alkahtani, H.M. Synthesis, in silico ADMET prediction analysis, and pharmacological evaluation of sulfonamide derivatives tethered with pyrazole or pyridine as anti-diabetic and anti-Alzheimer’s agents. Saudi Pharm. J. 2024, 32, 102025. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.S.; Arif, I.A.; Ahamed, A.; Idhayadhulla, A. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues. Saudi J. Biol. Sci. 2016, 23, 614–620. [Google Scholar] [CrossRef]
- Lusardi, M.; Spallarossa, A.; Brullo, C. Amino-pyrazoles in medicinal chemistry: A review. Int. J. Mol. Sci. 2023, 24, 7834. [Google Scholar] [CrossRef] [PubMed]
- Haider, K.; Shafeeque, M.; Yahya, S.; Yar, M.S. A comprehensive review on pyrazoline based heterocyclic hybrids as potent anticancer agents. Eur. J. Med. Chem. Rep. 2022, 5, 100042. [Google Scholar] [CrossRef]
- Muhammad, Z.A.; Alshehrei, F.; Zayed, M.E.; Farghaly, T.A.; Abdallah, M.A. Synthesis of novel bis-pyrazole derivatives as antimicrobial agents. Mini Rev. Med. Chem. 2019, 19, 1276–1290. [Google Scholar] [CrossRef]
- Kaddouri, Y.; Abrigach, F.; Yousfi, E.B.; El Kodadi, M.; Touzani, R. New thiazole, pyridine and pyrazole derivatives as antioxidant candidates: Synthesis, DFT calculations and molecular docking study. Heliyon 2020, 6, e03185. [Google Scholar] [CrossRef]
- Nayak, P.S.; Narayana, B.; Sarojini, B.K.; Fernades, J.; Bharath, B.R.; Madhu, L.N. Synthesis, molecular docking and biological evaluation of novel bis-pyrazole derivatives for analgesic, anti-inflammatory and antimicrobial activities. Med. Chem. Res. 2015, 24, 4191–4206. [Google Scholar] [CrossRef]
- Mithuna, R.; Tharanyalakshmi, R.; Jain, I.; Singhal, S.; Sikarwar, D.; Das, S.; Ranjitha, J.; Ghosh, D.; Rahman, M.M.; Das, B. Emergence of antibiotic resistance due to the excessive use of antibiotics in medicines and feed additives: A global scenario with emphasis on the Indian perspective. Emerg. Contam. 2024, 10, 100389. [Google Scholar] [CrossRef]
- de Lastours, V.; Laouénan, C.; Royer, G.; Carbonnelle, E.; Lepeule, R.; Esposito-Farèse, M.; Clermont, O.; Duval, X.; Fantin, B.; Mentré, F.; et al. Mortality in Escherichia coli bloodstream infections: Antibiotic resistance still does not make it. J. Antimicrob. Chemother. 2020, 75, 2334–2343. [Google Scholar] [CrossRef]
- Singh, S.; Tahlan, S.; Singh, K.; Verma, P.K. Design, synthesis, and biological evaluation of novel bis-pyrazole derivatives: A unified in silico and experimental methodology. J. Mol. Struct. 2025, 1321, 140169. [Google Scholar] [CrossRef]
- Omar, A.Z.; Nabil, S.I.; Hamed, E.A.; Alharbi, H.Y.; Aljohani, M.S.; El-Atawy, M.A. Synthesis, characterization, and color performance of bis-azo and bis-pyrazole derivatives for dyeing of polyester. J. Mol. Struct. 2025, 1322, 140474. [Google Scholar] [CrossRef]
- Barrasa-Villar, J.I.; Aibar-Remón, C.; Prieto-Andrés, P.; Mareca-Doñate, R.; Moliner-Lahoz, J. Impact on Morbidity, Mortality, and Length of Stay of Hospital-Acquired Infections by Resistant Microorganisms. Clin. Infect. Dis. 2017, 65, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative stress: Concept and some practical aspects. Antioxidants 2020, 9, 852. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Jauniaux, E. Oxidative stress. Best Pract. Res. Clin. Obstet. Gynaecol. 2011, 25, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Avery, S.V. Molecular targets of oxidative stress. Biochem. J. 2011, 434, 201–210. [Google Scholar] [CrossRef]
- Çalışkan, N.; Usta, A.; Beriş, F.Ş.; Baltaş, N.; Çelik, E. Synthesis, antibacterial and antioxidant activities of some new nsubstituted azachalcone, schiff base and pyrazole derivatives. Lett. Org. Chem. 2020, 17, 631–638. [Google Scholar] [CrossRef]
- Rekharani, D.; DC, V.K.; Chethan, B.S.; Urs, D.; Sathisha, K.R.; Lokanath, N.K.; Naveen, S. Exploration of crystal structure, supramolecular organization, and computational studies of a novel pyrazole derivative: A structural and theoretical perspectives. J. Mol. Struct. 2025, 1321, 140265. [Google Scholar] [CrossRef]
- Ganesan, M.; Sekar, J.; Kandasamy, S.P.; Srinivasan, P. Design, synthesis, spectral characterization, in silico ADMET studies, molecular docking, antimicrobial activity, and anti breast cancer activity of 5, 6-dihydrobenzo [H] quinazolines. J. Mol. Struct. 2024, 1296, 136771. [Google Scholar] [CrossRef]
- Mushtaq, A.; Naseer, M.M. Novel s-triazine derivatives as potential anticancer agents: Synthesis, DFT, DNA binding, molecular docking, MD simulation and in silico ADMET profiling. J. Mol. Struct. 2025, 1322, 140558. [Google Scholar] [CrossRef]
- Elangovan, N.; Sowrirajan, S.; Arumugam, N.; Rajeswari, B.; Mathew, S.; Priya, C.G.; Venkatraman, B.R.; Mahalingam, S.M. Theoretical investigation on solvents effect in molecular structure (TD-DFT, MEP, HOMO-LUMO), topological analysis and molecular docking studies of n-(5-((4-ethylpiperazin-1-yl) methyl) pyridin-2-yl)-5-fluoro-4-(4-fluoro-1-isopropyl-2-methyl-1H-benzo [d] imidazol-6-yl) pyrimidin-2-amine. Polycycl. Aromat. Compd. 2024, 44, 4467–4490. [Google Scholar] [CrossRef]
- Silva, V.L.M.; Elguero, J.; Silva, A.M.S. Current progress on antioxidants incorporating the pyrazole core. Eur. J. Med. Chem. 2018, 156, 394–429. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Z. Dendritic antioxidants with pyrazole as the core: Ability to scavenge radicals and to protect DNA. Free Radic. Biol. Med. 2012, 52, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.K.; Chandak, N.; Kumar, P.; Sharma, C.; Aneja, K.R. Synthesis and biological evaluation of some 4-functionalized-pyrazoles as antimicrobial agents. Eur. J. Med. Chem. 2011, 46, 1425–1432. [Google Scholar] [CrossRef] [PubMed]
- Nandurkar, Y.; Bhoye, M.R.; Maliwal, D.; Pissurlenkar, R.R.; Chavan, A.; Katade, S.; Mhaske, P.C. Synthesis, biological screening and in silico studies of new N-phenyl-4-(1, 3-diaryl-1H-pyrazol-4-yl) thiazol-2-amine derivatives as potential antifungal and antitubercular agents. Eur. J. Med. Chem. 2023, 258, 115548. [Google Scholar] [CrossRef]
- Gangurde, K.B.; More, R.A.; Adole, V.A.; Ghotekar, D.S. Design, synthesis and biological evaluation of new series of benzotriazole-pyrazole clubbed thiazole hybrids as bioactive heterocycles: Antibacterial, antifungal, antioxidant, cytotoxicity study. J. Mol. Struct. 2024, 1299, 136760. [Google Scholar] [CrossRef]
- Anjali, S.; Sangeetha, M.; Nithya, M.; Krishnan, G.V.; Varughese, S.; Kumar, B.S.D.; Srikantamurthy, N.; Shridevi, D.; Somappa, S.B. Pyrazole appended hetero-hybrids: Bioisosteric design, synthesis, in silico and in vitro antibacterial and anti-inflammatory evaluations. J. Mol. Struct. 2023, 1289, 135780. [Google Scholar] [CrossRef]
- Faria, J.V.; Vegi, P.F.; Miguita, A.G.C.; Santos, M.S.D.; Boechat, N.; Bernardino, M.R. Recently reported biological activities of pyrazole compounds. Bioorg. Chem. 2017, 25, 5891–5903. [Google Scholar] [CrossRef]
- Merzouki, O.; Arrousse, N.; El Barnossi, A.; Ech-Chihbi, E.; Fernine, Y.; Housseini, A.I.; Rais, Z.; Taleb, M. Eco-friendly synthesis, characterization, in-silico ADMET and molecular docking analysis of novel carbazole derivatives as antibacterial and antifungal agents. J. Mol. Struct. 2023, 1271, 133966. [Google Scholar] [CrossRef]
- Kalantzi, L.; Goumas, K.; Kalioras, V.; Abrahamsson, B.; Dressman, J.B.; Reppas, C. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm. Res. 2006, 23, 165–176. [Google Scholar] [CrossRef]
- Vardhan, S.; Sahoo, S.K. In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Comput. Biol. Med. 2020, 124, 103936. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, J.; Hu, C.Q.; Zhang, X.; Ma, B.; Zhang, P. In silico ADME and toxicity prediction of ceftazidime and its impurities. Front. Pharmacol. 2019, 10, 434. [Google Scholar] [CrossRef] [PubMed]
- Ouassaf, M.; Belaidi, S.; Khamouli, S.; Belaidi, H.; Chtita, S. Combined 3D-QSAR and molecular docking analysis of thienopyrimidine derivatives as Staphylo- coccus aureus inhibitors. Acta Chim. Slov. 2021, 68, 289–303. [Google Scholar] [CrossRef] [PubMed]
- Gouet, P.; Jouve, H.M.; Williams, P.A.; Andersson, I.; Andreoletti, P.; Nussaume, L.; Hajdu, J. Ferryl intermediates of catalase captured by time-resolved Weissenberg crystallography and UV-VIS spectroscopy. Nat. Struct. Biol. 1996, 3, 951–956. [Google Scholar] [CrossRef] [PubMed]
- Ettahiri, W.; Salim, R.; Adardour, M.; Ech-Chihbi, E.; Yunusa, I.; Alanazi, M.M.; Lahmidi, S.; Barnossi, A.E.; Merzouki, O.; Iraqi Housseini, A.; et al. Synthesis, Characterization, Antibacterial, Antifungal and Anticorrosion Activities of 1,2,4-Triazolo[1,5-a]quinazolinone. Molecules 2023, 28, 5340. [Google Scholar] [CrossRef]
- Arrousse, N.; Harras, M.F.; El Kadiri, S.; Haldhar, R.; Ichou, H.; Bousta, D.; Grafov, A.; Rais, Z.; Taleb, M. New anthraquinone drugs and their anticancer activities: Cytotoxicity, DFT, docking and ADMET properties. Results Chem. 2023, 6, 100996. [Google Scholar] [CrossRef]
- Rolta, R.; Salaria, D.; Fadare, O.A.; Fadare, R.Y.; Masih, G.D.; Prakash, A.; Medhi, B. Identification of novel inhibitor phytoconstituents for Influenza A H3N2: An in silico approach. J. Biomol. Struct. Dyn. 2024, 1–10. [Google Scholar] [CrossRef]
- Kaddouri, Y.; Abrigach, F.; Ouahhoud, S.; Benabbes, R.; El Kodadi, M.; Alsalme, A.; Al-Zaqri, N.; Warad, I.; Touzani, R. Synthesis, characterization, reaction mechanism prediction and biological study of mono, bis and tetrakis pyrazole derivatives against Fusarium oxysporum f. sp. Albedinis with conceptual DFT and ligand-protein docking studies. Bioorg. Chem. 2021, 110, 104696. [Google Scholar] [CrossRef]
- Domingo, L.R.; Aurell, M.J.; Pérez, P.; Contreras, R. Quantitative characterization of the local electrophilicity of organic molecules. Understanding the regioselectivity on Diels− Alder reactions. J. Phys. Chem. A 2002, 106, 6871–6875. [Google Scholar] [CrossRef]
- Lakbaibi, Z.; El Makarim, H.A.; Tabyaoui, M.; El Hajbi, A. Theoretical study of the formation of α-bromoglycidic esters in aliphatic series using the DFT quantum mechanical method with B3LYP/6-311G (d, p). Mor. J. Chem. 2016, 4, 437–453. [Google Scholar] [CrossRef]
- Fernine, Y.; Arrousse, N.; Haldhar, R.; Merzouki, O.; Dalbouha, S.; Mabrouk, E.H.; Hajjaji, F.E.L.; Touhami, M.E.; Kim, S.-C.; Taleb, M. Economical, efficient, and environmentally friendly synthesis strategy of O-Alkylation strategy based on phenolphthalein reactions with electrophiles: Characterization, DFT study, and molecular docking. J. Mol. Struct. 2022, 1265, 133424. [Google Scholar] [CrossRef]
- Scherer, R.; Godoy, H.T. Antioxidant activity index (AAI) by the 2,2-diphenyl-1- picrylhydrazyl method. Food Chem. 2009, 112, 654–658. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing (antioxidant) power as a measure of antioxidant capacity: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- El Barnossi, A.; Moussaid, F.; Housseini, A.I. Antifungal activity of Bacillussp. Gn-A11-18isolated from decomposing solid green household waste in water and soil against Candida albicans and Aspergillus niger. E3S Web Conf. EDP Sci. 2020, 150, 02003. [Google Scholar] [CrossRef]
- Lafraxo, S.; El Moussaoui, A.; Jardan, Y.A.B.; El Barnossi, A.; Chebaibi, M.; Baammi, S.; Bari, A. GC-MS Profiling, In Vitro Antioxidant, Antimicrobial, and In Silico NADPH Oxidase Inhibition Studies of Essential Oil of Juniperus thurifera Bark. Evid.-Based Complement. Altern. Med. 2022, 2022, 6305672. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef]
- Agour, A.; Mssillou, I.; Es-Safi, I.; Conte, R.; Mechchate, H.; Slighoua, M.; Amrati, F.E.; Parvez, M.K.; Numan, O.; Bari, A.; et al. The antioxidant, analgesic, anti-inflammatory, and wound healing activities of Haplophyllum tuberculatum (Forsskal) A. Juss aqueous and ethanolic extract. Life 2022, 12, 1553. [Google Scholar] [CrossRef]
- El Barnossi, A.; Housseini, A.I. Characterization of the microbiological effects of pomegranate, banana, and mandarin peels on water under laboratory conditions. Heliyon 2023, 9, e13402. [Google Scholar] [CrossRef]
- Katariya, K.D.; Reddy, D.V. Oxazolyl-pyrimidines as antibacterial and antituber-cular agents: Synthesis, biological evaluation, in-silico ADMET and molecular docking study. J. Mol. Struct. 2022, 1253, 132240. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. Swiss ADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef]
- Basharat, Z.; Jahanzeb, M.; Yasmin, A.; Khan, I.A. Pan-genomics, drug candidate mining and ADMET profiling of natural product inhibitors screened against Yersinia pseudotuberculosis. Genomics 2021, 113, 238–244. [Google Scholar] [CrossRef]
- Feng, D.; Sun, H.; Feng, M.Q. Simultaneous identification of bridge structural parameters and vehicle loads. Comput. Struct. 2015, 157, 76–88. [Google Scholar] [CrossRef]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Schapin, N.; Majewski, M.; Varela-Rial, A.; Arroniz, C.; De Fabritiis, G. Machine learning small molecule properties in drug discovery. Artif. Intell. Chem. 2023, 1, 100020. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef]
- Shaw, D.E.; Grossman, J.P.; Bank, J.A.; Batson, B.; Butts, J.A.; Chao, J.C.; Deneroff, M.M.; Dror, R.O.; Even, A.; Fenton, C.H.; et al. Anton 2: Raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, New Orleans, LA, USA, 16–21 November 2014; pp. 41–53. [Google Scholar] [CrossRef]
Molecule | HOMO (eV) | LUMO (eV) | μ (eV) | N | η (eV) | ω | E Gap I | E Gap II |
---|---|---|---|---|---|---|---|---|
R1 | −6.437 | 2.214 | −2.111 | 2.312 | 8.651 | 0.258 | ---- | ---- |
R2 | −5.662 | 2.286 | −1.688 | 3.087 | 7.948 | 0.179 | −7.876 | −8.723 |
R3 | −6.422 | 2.216 | −2.103 | 2.327 | 8.638 | 0.256 | −8.636 | −8.653 |
R4 | −5.986 | 2.317 | −1.834 | 2.763 | 8.303 | 0.203 | −8.200 | −8.754 |
R5 | −6.038 | 2.304 | −1.867 | 2.711 | 8.342 | 0.209 | −8.252 | −8.741 |
O1 | O2 | O3 | O4 | O5 | BHT | |
---|---|---|---|---|---|---|
Concentrations (µg/mL) | % | |||||
50 | 0.4690 ± 0.0343 | 0.1782 ± 0.0764 | 0.1090 ± 0.0604 | 0.1840 ± 0.0507 | 0.2030 ± 0.0184 | 0.1290 ± 0.0184 |
150 | 0.5810 ± 0.0312 | 0.2880 ± 0.0702 | 0.2490 ± 0.0509 | 0.4580 ± 0.0587 | 0.3070 ± 0.0085 | 0.4210 ± 0.0778 |
300 | 0.6510 ± 0.0678 | 0.3400 ± 0.0225 | 0.3840 ± 0.0203 | 0.5790 ± 0.0204 | 0.4280 ± 0.0292 | 0.5430 ± 0.0453 |
600 | 0.6920 ± 0.0385 | 0.4420 ± 0.0283 | 0.4910 ± 0.0517 | 0.6170 ± 0.0172 | 0.5670 ± 0.0283 | 0.6340 ± 0.0337 |
O1 | O2 | O3 | O4 | O5 | BHT | |
---|---|---|---|---|---|---|
Concentrations (µg/mL) | % | |||||
62.5 | 55.80 ± 2.92 | 63.62 ± 4.19 | 57.54 ± 3.71 | 65.36 ± 3.42 | 62.17 ± 2.44 | 73.19 ± 2.44 |
125 | 57.39 ± 2.23 | 62.90 ± 4.01 | 60.72 ± 3.42 | 66.96 ± 3.66 | 65.80 ± 2.15 | 77.97 ± 4.23 |
250 | 59.86 ± 3.93 | 63.19 ± 2.57 | 67.68 ± 2.50 | 75.22 ± 2.50 | 67.97 ± 2.77 | 81.45 ± 3.25 |
500 | 60.14 ± 3.05 | 63.33 ± 2.74 | 69.71 ± 3.45 | 80.14 ± 2.41 | 68.84 ± 2.74 | 82.75 ± 2.91 |
1000 | 61.74 ± 3.10 | 73.77 ± 3.83 | 67.68 ± 2.54 | 80.72 ± 3.23 | 72.90 ± 3.40 | 83.04 ± 2.20 |
BHT | O1 | O2 | O3 | O4 | O5 | |
---|---|---|---|---|---|---|
DPPH EC-50 (µg/mL) | 22.98 ± 0.46 | 20.62 ± 0.46 | 171.85 ± 3.70 | 66.84 ± 2.55 | 40.91 ± 0.68 | 50.64 ± 3.06 |
FRAP EC-50(µg/mL) | 362.04 ± 6.16 | 115.84 ± 2.25 | 978.62 ± 19.6 | 920.59 ± 27.94 | 289.11 ± 15.4 | 572.84 ± 23.78 |
P. aeruginosa CIP82.114 | S. aureus ATCC6633 | E. coli K12 | B. subtilis DSM6333 | C. albicans ATCC10231 | Aspergillus niger MTCC9913 | ||
---|---|---|---|---|---|---|---|
O1 | MIC | 0.191 ± 0.020 a | 0.048 ± 0.004 a | 0.024 ± 0.006 a | 0.024 ± 0.002 a | 0.048 ± 0.005 a | 0.024 ± 0.006 a |
MBC | 0.191 ± 0.033 A | 0.048 ± 0.004 A | 0.191 ± 0.005 A | 0.048 ± 0.011 A | 0.048 ± 0.007 A | 0.024 ± 0.003 A | |
O2 | MIC | 0.237 ± 0.028 b | 0.059 ± 0.005 a | 0.059 ± 0.010 b | 0.059 ± 0.006 b | 0.118 ± 0.014 b | 0.059 ± 0.012 b |
MBC | 0.237 ± 0.025 B | 0.059 ± 0.006 A | 0.059 ± 0.007 B | 0.059 ± 0.012 A | 0.118 ± 0.012 B | 0.059 ± 0.015 B | |
O3 | MIC | 0.133 ± 0.015 c | 0.033 ± 0.005 c | 0.033 ± 0.006 c | 0.033 ± 0.007 c | 0.067 ± 0.010 b | 0.008 ± 0.002 |
MBC | 0.267 ± 0.015 D | 0.033 ± 0.004 C | 0.033 ± 0.008 C | 0.033 ± 0.005 C | 0.067 ± 0.008 B | 0.008 ± 0.001 | |
O4 | MIC | 0.129 ± 0.013 c | 0.032 ± 0.006 c | 0.016 ± 0.004 b | 0.016 ± 0.003 a | 0.032 ± 0.006 c | 0.016 ± 0.004 b |
MBC | 0.129 ± 0.031 C | 0.032 ± 0.003 C | 0.032 ± 0.003 B | 0.032 ± 0.005 A | 0.032 ± 0.009 C | 0.016 ± 0.002 B | |
O5 | MIC | 0.140 ± 0.025 c | 0.017 ± 0.004 a | 0.035 ± 0.008 b | 0.017 ± 0.002 b | 0.035 ± 0.008 a | 0.009 ± 0.004 b |
MBC | 0.280 ± 0.028 D | 0.035 ± 0.005 A | 0.035 ± 0.006 B | 0.035 ± 0.003 B | 0.035 ± 0.007 A | 0.009 ± 0.002 B | |
Streptomycine | MIC | 0.243 ± 0.012 a | 1.560 ± 0.045 b | 3.125 ± 0.012 a | 7.125 ± 0.046 c | - | - |
MBC | 0.243 ± 0.034 A | 1.560 ± 0.028 B | 3.125 ± 0.009 A | 7.125 ± 0.025 C | - | - | |
Fluconazole | MIC | - | - | - | - | 0.0156 ± 0.005 | 7.1250 ± 0.004 |
MBC | - | - | - | - | 0.0156 ± 0.019 | 7.1250 ± 0.002 |
Compound | MW | TPSA | N-Atoms | Volume | nON | nOHNH | Nviolations | Nrotb | milogP |
---|---|---|---|---|---|---|---|---|---|
O1 | 374.58 | 42.13 | 27 | 393.81 | 6 | 0 | 0 | 11 | 3 |
O2 | 266.43 | 33.09 | 19 | 290.88 | 4 | 1 | 0 | 9 | 2.25 |
O3 | 275.40 | 38.89 | 20 | 280.45 | 5 | 0 | 0 | 5 | 2.02 |
O4 | 353.47 | 48.12 | 26 | 344.26 | 6 | 0 | 0 | 7 | 2.78 |
O5 | 337.47 | 38.89 | 25 | 335.52 | 5 | 0 | 0 | 7 | 3.16 |
Compound | Drug-likeness | |||||||
---|---|---|---|---|---|---|---|---|
Veber 1 | Muegge 1 | Egan 1 | Ghose 1 | Lipinski 1 | Pfizer Rule 2 | GSK Rule 2 | Golden Triangle 2 | |
O1 | No | Yes | Yes | Yes | Yes | Accepted | Accepted | Accepted |
O2 | Yes | Yes | Yes | Yes | Yes | Accepted | Accepted | Accepted |
O3 | Yes | Yes | Yes | Yes | Yes | Accepted | Accepted | Accepted |
O4 | Yes | Yes | Yes | Yes | Yes | Accepted | Accepted | Accepted |
O5 | Yes | Yes | Yes | Yes | Yes | Accepted | Accepted | Accepted |
O1 | O2 | O3 | O4 | O5 | Unit | ||
---|---|---|---|---|---|---|---|
Absorption | |||||||
Intestinal absorption (human) | 97.46 | 92.945 | 95.017 | 97.389 | 95.77 | Numeric (% absorbed) | |
Distribution | |||||||
VDss (human) | 1.294 | 1.156 | 0.569 | 0.735 | 0.688 | Numeric (log L/kg) | |
BBB permeability | −0.042 | 0.137 | 0.109 | −0.044 | 0.192 | Numeric (log BB) | |
CNS permeability | −4.031 | −3.457 | −3.309 | −1.891 | −1.736 | Numeric (log PS) | |
Metabolism | |||||||
CYP | 2D6 substrate | No | No | No | No | No | Categorical (yes/no) |
3A4 substrate | Yes | No | No | Yes | Yes | Categorical (yes/no) | |
2C19 inhibitor | No | No | No | No | No | Categorical (yes/no) | |
2C9 inhibitor | No | No | No | Yes | No | Categorical (yes/no) | |
1A2 inhibitor | No | No | No | Yes | Yes | Categorical (yes/no) | |
3A4 inhibitor | No | No | No | No | No | Categorical (yes/no) | |
2D6 inhibitor | Yes | No | Yes | No | Yes | Categorical (yes/no) | |
Excretion | |||||||
Total clearance | 1.035 | 1.161 | 0.886 | 0.885 | 0.971 | Numeric (log mL/min/kg) | |
Toxicity | |||||||
AMES toxicity | No | No | No | No | No | Categorical (yes/no) |
Ligand | Binding Energy (kcal/mol) | Ligand–Protein Key Amino Acid Interactions | Predominant Type of Interaction | Number of Conventional Hydrogen Bonds |
---|---|---|---|---|
O1 | −7.6 | ARG52 SER336 PHE140 ARG333 TYR337 | Hydrophobic | 3 |
O2 | −6.5 | TYR337 VAL125 ALA112 HIS54 | Hydrophobic | 0 |
O3 | −8.1 | PHE140 TYR337 ALA340 HIS54 ALA112 VAL125 | Hydrophobic | 0 |
O4 | −8.4 | ARG52 ALA340 ARG51 VAL125 ALA112 ARG91 SER93 ARG333 PHE140 TYR337 | Hydrophobic | 1 |
O5 | −8.7 | ARG333 PHE140 TYR337 ARG52 ARG344 ALA340 ARG51 ALA112 VAL125 HIS54 | Hydrophobic | 0 |
BHT | −7.3 | VAL125 HIS341 ALA340 ARG51 PHE140 TYR337 HIS54 | Hydrophobic | 0 |
Ligand | Binding Energy (kcal/mol) | Ligand–Protein Key Amino Acid Interactions | Predominant Type of Interaction | Number of Conventional Hydrogen Bonds |
---|---|---|---|---|
O1 | −5.0 | ARG72 PRO75 MET74 ALA86 ILE90 | Hydrophobic | 0 |
O2 | −4.3 | ASN42 MET74 ILE90 GLU46 ARG72 | Hydrophobic | 1 |
O3 | −5.3 | ALA49 ARG72 GLU46 MET74 ASN42 SER43 | Hydrophobic | 0 |
O4 | −6.0 | PRO75 MET74 ASP69 ASN42 GLU46 ALA49 ARG72 | Hydrophobic | 0 |
O5 | −5.3 | ALA49 ASP45 MET74 ASN42 | Hydrophobic | 0 |
Streptomicyne | −5.4 | HIS51 ARG72 ASN42 | Hydrogen bonds | 3 |
Ligand | Binding Energy (kcal/mol) | Ligand–Protein Key Amino Acid Interactions | Predominant Type of Interaction | Number of Conventional Hydrogen Bonds |
---|---|---|---|---|
O1 | −6.4 | LEU321 TYR76 PHE78 ARG96 ALA256 LEU100 CYS394 | Hydrophobic | 1 |
O2 | −5.6 | TYR76 CYS394 LEU324 LEU321 PHE78 HIS259 VAL434 | Hydrophobic | 0 |
O3 | −6.7 | ALA256 ARG96 LEU100 PHE83 LEU321 MET79 PHE78 TYR76 | Hydrophobic | 0 |
O4 | −8.5 | TYR76 PHE78 MET79 ILE323 LEU321 MET433 CYS394 LEU324 | Hydrophobic | 0 |
O5 | −8.4 | ARG96 LEU100 ALA256 PHE78 LEU321 VAL434 | Hydrophobic | 1 |
Fluconazole | −7.0 | SER507 MET508 HIS377 ALA61 LEU88 LEU87 TYR64 PHE233 PRO230 | Hydrophobic | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merzouki, O.; Arrousse, N.; Ech-chihbi, E.; Alanazi, A.S.; Mabrouk, E.H.; Hefnawy, M.; El Moussaoui, A.; Touijer, H.; El Barnossi, A.; Taleb, M. Environmentally Friendly Synthesis of New Mono- and Bis-Pyrazole Derivatives; In Vitro Antimicrobial, Antifungal, and Antioxidant Activity; and In Silico Studies: DFT, ADMETox, and Molecular Docking. Pharmaceuticals 2025, 18, 167. https://doi.org/10.3390/ph18020167
Merzouki O, Arrousse N, Ech-chihbi E, Alanazi AS, Mabrouk EH, Hefnawy M, El Moussaoui A, Touijer H, El Barnossi A, Taleb M. Environmentally Friendly Synthesis of New Mono- and Bis-Pyrazole Derivatives; In Vitro Antimicrobial, Antifungal, and Antioxidant Activity; and In Silico Studies: DFT, ADMETox, and Molecular Docking. Pharmaceuticals. 2025; 18(2):167. https://doi.org/10.3390/ph18020167
Chicago/Turabian StyleMerzouki, Oussama, Nadia Arrousse, Elhachmia Ech-chihbi, Ashwag S. Alanazi, El Houssine Mabrouk, Mohamed Hefnawy, Abdelfattah El Moussaoui, Hanane Touijer, Azeddin El Barnossi, and Mustapha Taleb. 2025. "Environmentally Friendly Synthesis of New Mono- and Bis-Pyrazole Derivatives; In Vitro Antimicrobial, Antifungal, and Antioxidant Activity; and In Silico Studies: DFT, ADMETox, and Molecular Docking" Pharmaceuticals 18, no. 2: 167. https://doi.org/10.3390/ph18020167
APA StyleMerzouki, O., Arrousse, N., Ech-chihbi, E., Alanazi, A. S., Mabrouk, E. H., Hefnawy, M., El Moussaoui, A., Touijer, H., El Barnossi, A., & Taleb, M. (2025). Environmentally Friendly Synthesis of New Mono- and Bis-Pyrazole Derivatives; In Vitro Antimicrobial, Antifungal, and Antioxidant Activity; and In Silico Studies: DFT, ADMETox, and Molecular Docking. Pharmaceuticals, 18(2), 167. https://doi.org/10.3390/ph18020167