Beyond Conventional Pharmacotherapy: Unraveling Mechanisms and Advancing Multi-Target Strategies in Alzheimer’s Disease
1. Pharmacological Management of Alzheimer’s Disease: Current Strategies and Limitations
2. Challenges in Translating Molecular Insights into Effective Therapies
3. Emerging Approaches and Innovative Directions
4. Future Perspectives—From Hope to Implementation
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AD | Alzheimer’s disease |
| AMPK | AMP-activated protein kinase |
| ARIA | amyloid-related imaging abnormalities |
| ATP | adenosine triphosphate |
| Aβ | amyloid-β |
| iPSCs | induced pluripotent stem cells |
| LTP | long-term potentiation |
| MTDLs | multi-target-directed ligands |
| mTOR | mechanistic (or mammalian) target of rapamycin |
| NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
| NMDA | N-Methyl-D-Aspartate |
| NSAIDs | non-steroidal anti-inflammatory drugs |
| PPAR | peroxisome proliferator-activated receptors |
| ROS | reactive oxygen species |
References
- Alzheimer’s Association. 2025 Alzheimer’s Disease Facts and Figures. Alzheimers Dement. 2025, 21, 1–152. [Google Scholar]
- Liu, C.; Wang, X.; Xu, W.; Yu, S.; Zhang, Y.; Xu, Q.; Tan, X. Study on the pharmacological efficacy and mechanism of dual-target liposome complex AD808 against Alzheimer’s disease. Pharmaceuticals 2025, 18, 977. [Google Scholar] [CrossRef] [PubMed]
- Steinfield, S.R.; Stenn, D.F.; Chen, H.; Kalisch, B.E. A review of the clinical progress of CT1812, a novel sigma-2 receptor antagonist for the treatment of Alzheimer’s disease. Pharmaceuticals 2025, 18, 659. [Google Scholar] [CrossRef]
- Sharma, K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol. Med. Rep. 2019, 20, 1479–1487. [Google Scholar] [CrossRef]
- Stanciu, G.D.; Ababei, D.-C.; Solcan, C.; Uritu, C.-M.; Craciun, V.-C.; Pricope, C.-V.; Szilagyi, A.; Tamba, B.-I. Exploring cannabinoids with enhanced binding affinity for targeting the expanded endocannabinoid system: A promising therapeutic strategy for Alzheimer’s disease treatment. Pharmaceuticals 2024, 17, 530. [Google Scholar] [CrossRef]
- Cummings, J.; Osse, A.M.L.; Cammann, D.; Powell, J.; Chen, J. Anti-amyloid monoclonal antibodies for the treatment of Alzheimer’s disease. BioDrugs 2024, 38, 5–22. [Google Scholar] [CrossRef]
- Kim, B.H.; Kim, S.; Nam, Y.; Park, Y.H.; Shin, S.M.; Moon, M. Second-generation anti-amyloid monoclonal antibodies for Alzheimer’s disease: Current landscape and future perspectives. Transl. Neurodegener. 2025, 14, 6. [Google Scholar] [CrossRef]
- Sevigny, J.; Chiao, P.; Bussiere, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature 2016, 537, 50–56. [Google Scholar] [CrossRef]
- Logovinsky, V.; Satlin, A.; Lai, R.; Swanson, C.; Kaplow, J.; Osswald, G.; Basun, H.; Lannfelt, L. Safety and tolerability of BAN2401—A clinical study in Alzheimer’s disease with a protofibril selective Abeta antibody. Alzheimers Res. Ther. 2016, 8, 14. [Google Scholar] [CrossRef]
- Lowe, S.L.; Willis, B.A.; Hawdon, A.; Natanegara, F.; Chua, L.; Foster, J.; Shcherbinin, S.; Ardayfio, P.; Sims, J.R. Donanemab (LY3002813) dose-escalation study in Alzheimer’s disease. Alzheimers Dement. 2021, 7, e12112. [Google Scholar] [CrossRef]
- Ross, E.L.; Weinberg, M.S.; Arnold, S.E. Cost-effectiveness of aducanumab and donanemab for early Alzheimer disease in the US. JAMA Neurol. 2022, 79, 478–487. [Google Scholar] [CrossRef]
- Congdon, E.E.; Ji, C.; Tetlow, A.M.; Jiang, Y.; Sigurdsson, E.M. Tau-targeting therapies for Alzheimer disease: Current status and future directions. Nat. Rev. Neurol. 2023, 19, 715–736. [Google Scholar] [CrossRef] [PubMed]
- Wójtowicz, S.; Strosznajder, A.K.; Jeżyna, M.; Strosznajder, J.B. The novel role of PPAR alpha in the brain: Promising target in therapy of Alzheimer’s disease and other neurodegenerative disorders. Neurochem. Res. 2020, 45, 972–988. [Google Scholar] [CrossRef] [PubMed]
- Watson, G.S.; Cholerton, B.A.; Reger, M.A.; Baker, L.D.; Plymate, S.R.; Asthana, S.; Fishel, M.A.; Kulstad, J.J.; Green, P.S.; Cook, D.G.; et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: A preliminary study. Am. J. Geriatr. Psychiatry 2005, 13, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.; Wang, J.; Xia, Y.; Zhang, J.; Chen, L. Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct. Target. Ther. 2024, 9, 211. [Google Scholar] [CrossRef]
- Zhang, J.; Kong, G.; Yang, J.; Pang, L.; Li, X. Pathological mechanisms and treatment progression of Alzheimer’s disease. Eur. J. Med. Res. 2025, 30, 625. [Google Scholar] [CrossRef]
- Huang, Y.; Mucke, L. Alzheimer mechanisms and therapeutic strategies. Cell 2012, 148, 1204–1222. [Google Scholar] [CrossRef]
- Kamatham, P.T.; Shukla, R.; Khatri, D.K.; Vora, L.K. Pathogenesis, diagnostics, and therapeutics for Alzheimer’s disease: Breaking the memory barrier. Ageing Res. Rev. 2024, 101, 102481. [Google Scholar] [CrossRef]
- Tudorancea, I.M.; Stanciu, G.D.; Solcan, C.; Ciorpac, M.; Szilagyi, A.; Ababei, D.C.; Gogu, R.M.; Tamba, B.I. Exploring the impact of chronic intermittent EU-GMP certified Cannabis sativa L. therapy and its relevance in a rat model of aging. J. Cannabis Res. 2025, 7, 53. [Google Scholar] [CrossRef]
- Papay, R.S.; Perez, D.M. Further In Vitro and Ex Vivo Pharmacological and Kinetic Characterizations of CCF219B: A Positive Allosteric Modulator of the α1A-Adrenergic Receptor. Pharmaceuticals 2025, 18, 476. [Google Scholar] [CrossRef]
- Perez, D.M. α1A-adrenergic receptor as a target for neurocognition: Cautionary tale from nicergoline and quinazoline non-selective blockers. Pharmaceuticals 2025, 18, 1425. [Google Scholar] [CrossRef]
- Adnan, M.; Siddiqui, A.J.; Bardakci, F.; Surti, M.; Badraoui, R.; Patel, M. NEU1-mediated extracellular vesicle glycosylation in Alzheimer’s disease: Mechanistic insights into intercellular communication and therapeutic targeting. Pharmaceuticals 2025, 18, 921. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.L.; Zhou, Y.; Van Stone, A.; Cammann, D.; Tonegawa-Kuji, R.; Fonseca, J.; Cheng, F. Drug repurposing for Alzheimer’s disease and other neurodegenerative disorders. Nat. Commun. 2025, 16, 1755. [Google Scholar] [CrossRef] [PubMed]
- Stanciu, G.D.; Rusu, R.N.; Bild, V.; Filipiuc, L.E.; Tamba, B.I.; Ababei, D.C. Systemic actions of SGLT2 inhibition on chronic mTOR activation as a shared pathogenic mechanism between Alzheimer’s disease and diabetes. Biomedicines 2021, 9, 576. [Google Scholar] [CrossRef] [PubMed]
- Almaghrabi, M. Multitarget-directed ligands for Alzheimer’s disease: Recent novel MTDLs and mechanistic insights. Pharmaceuticals 2025, 18, 1685. [Google Scholar] [CrossRef]
- Pathak, C.; Kabra, U.D. A comprehensive review of multi-target directed ligands in the treatment of Alzheimer’s disease. Bioorg. Chem. 2024, 144, 107152. [Google Scholar] [CrossRef]
- Hampel, H.; Vergallo, A.; Aguilar, L.F.; Benda, N.; Broich, K.; Cuello, A.C.; Cummings, J.; Dubois, B.; Federoff, H.J.; Fiandaca, M.; et al. Precision pharmacology for Alzheimer’s disease. Pharmacol. Res. 2018, 130, 331–365. [Google Scholar] [CrossRef]
- He, C.; Chen, B.; Yan, C.; Zhou, X. Stem cell and CRISPR/Cas9 gene editing technology in Alzheimer’s disease therapy: From basic research to clinical innovation. Front. Genome Ed. 2025, 7, 1612868. [Google Scholar] [CrossRef]
- Paul, J.K.; Malik, A.; Azmal, M.; Gulzar, T.; Afghan, M.T.R.; Talukder, O.F.; Shahzadi, S.; Ghosh, A. Advancing Alzheimer’s therapy: Computational strategies and treatment innovations. IBRO Neurosci. Rep. 2025, 18, 270–282. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanciu, G.-D. Beyond Conventional Pharmacotherapy: Unraveling Mechanisms and Advancing Multi-Target Strategies in Alzheimer’s Disease. Pharmaceuticals 2025, 18, 1797. https://doi.org/10.3390/ph18121797
Stanciu G-D. Beyond Conventional Pharmacotherapy: Unraveling Mechanisms and Advancing Multi-Target Strategies in Alzheimer’s Disease. Pharmaceuticals. 2025; 18(12):1797. https://doi.org/10.3390/ph18121797
Chicago/Turabian StyleStanciu, Gabriela-Dumitrita. 2025. "Beyond Conventional Pharmacotherapy: Unraveling Mechanisms and Advancing Multi-Target Strategies in Alzheimer’s Disease" Pharmaceuticals 18, no. 12: 1797. https://doi.org/10.3390/ph18121797
APA StyleStanciu, G.-D. (2025). Beyond Conventional Pharmacotherapy: Unraveling Mechanisms and Advancing Multi-Target Strategies in Alzheimer’s Disease. Pharmaceuticals, 18(12), 1797. https://doi.org/10.3390/ph18121797
