An Efficacy- and In Vivo Exposure-Oriented Integrated Study to Investigate the Effective Components of Qishen Granule
Abstract
1. Introduction
2. Results
2.1. Exploring the Absorbed Components of QSG in Rat Plasma
2.1.1. Identification of Prototype Components
2.1.2. Identification of Metabolites
2.2. Anti-CHF Screening and Experimental Verification
2.2.1. Molecular Docking Assessments
2.2.2. Experimental Verification by Oxygen Glucose Deprivation/Re-Oxygenation (OGD/R)-Induced H9c2 Cells
2.3. In Vivo Exposure Determination of Screened Active Components by Pharmacokinetic Study
2.3.1. Method Validation
2.3.2. Pharmacokinetic Analysis
2.4. Exploration of the Effective Components by the Efficacy- and In Vivo Exposure-Oriented Integrated Method
3. Discussion
4. Materials and Methods
4.1. Chemicals and Materials
4.2. Instrument and Conditions
4.2.1. UHPLC-Q TOF-MS Conditions
4.2.2. HPLC-QQQ-MS Conditions
4.3. Experimental Animals
4.4. Identification of the Absorbed Components of QSG in Rat Plasma
4.4.1. Preparations of Standard Solutions and Plasma Samples
4.4.2. Metabolite Identification
4.5. Screening of the Anti-CHF Active Components
4.5.1. Molecular Docking Screening
4.5.2. Bioassay Screening
4.6. In Vivo Exposure Determination of Screened Active Components by Pharmacokinetic Study
4.6.1. Preparations of Standard Solutions and Plasma Samples
4.6.2. Method Development
4.6.3. Pharmacokinetic Study
4.7. ECI Establishment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUC | Area under the curve |
CE | Collision energy |
CHF | Chronic heart failure |
DS | Danshen |
ECI | Effect–constituent index |
EC50 | Median effective concentration |
HSP | Heishunpian |
IS | Internal standard |
JYH | Jinyinhua |
LOD | Limit of detection |
MRT | Mean residence time |
OGD/R | Oxygen glucose deprivation/re-oxygenation |
QC | Quality control |
QSG | Qishen granule |
RSD | Relative standard deviation |
S/N | Signal-to-noise ratio |
TCMs | Traditional Chinese medicines |
XS | Xuanshen |
ZGC | Zhigancao |
ZHQ | Zhihuangqi |
References
- Wang, J.P.; Shi, J.; Wei, J.W.; Wang, J.; Gao, K.; Li, X.L.; Chen, J.X.; Li, S.J.; Zhao, H.H.; Wang, W. Safety and efficacy of Qishen granules in patients with chronic heart failure: Study protocol for a randomized controlled trial. Trials 2017, 18, 468. [Google Scholar] [CrossRef]
- Guo, S.Z.; Li, P.; Fu, B.Z.; Chuo, W.J.; Gao, K.; Zhang, W.X.; Wang, J.Y.; Chen, J.X.; Wang, W. Systems-biology dissection of mechanisms and chemical basis of herbal formula in treating chronic myocardial ischemia. Pharmacol. Res. 2016, 114, 196–208. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Wang, Q.Y.; Zhang, Y.; Zhang, N.; Lu, L.H.; Wu, Y.; Zhang, Q.; Wang, W.; Wang, Y.; et al. Qishen granules inhibit myocardial inflammation injury through regulating arachidonic acid metabolism. Sci. Rep. 2016, 6, 36949. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Ouyang, Y.L.; Yu, J.D.; Guo, S.Z.; Liu, Z.Y.; Li, D.; Han, J.; Wang, W. Cardioprotective effects of Qishenyiqi mediated by angiotensin II type 1 receptor blockade and enhancing angiotensin-converting enzyme 2. Evid.-Based Complement. Altern. Med. 2012, 2012, 978127. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.Y.; Li, C.; Li, D.; Ouyang, Y.L.; Yu, J.D.; Guo, S.Z.; He, F.C.; Wang, W. Drug Target prediction based on the herbs components: The study on the multitargets pharmacological mechanism of Qishenkeli acting on the coronary heart disease. Evid.-Based Complement Altern. Med. 2012, 2012, 698531. [Google Scholar] [CrossRef]
- Xia, K.; Wang, Q.Y.; Li, C.; Zeng, Z.F.; Wang, Y.; Wang, W. Effect of QSKL on MAPK and RhoA pathways in a rat model of heart failure. Evid.-Based Complement Altern. Med. 2017, 2017, 3903898. [Google Scholar] [CrossRef]
- Lu, W.J.; Wang, Q.Y.; Sun, X.Q.; He, H.; Wang, Q.X.; Wu, Y.; Liu, Y.; Wang, Y.; Li, C. Qishen Granule improved cardiac remodeling via balancing M1 and M2 macrophages. Front. Pharmacol. 2019, 10, 1399. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Wang, Q.; Yang, X.; Ren, Y.; Jiao, S.; Zhu, Q.; Guo, D.; Xia, K.; Wang, Y.; Li, C.; et al. Qishen granule attenuates cardiac fibrosis by regulating TGF-β/Smad3 and GSK-3β pathway. Phytomedicine 2019, 62, 152949. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.T.; Liu, J.; Su, R.B.; Li, Q.; Chen, Y.J.; Yang, J.; Zhao, S.J.; Jia, Z.X.; Xiao, H.B. Pseudotargeted screening and determination of constituents in Qishen granule based on compound biosynthetic correlation using UHPLC coupled with high-resolution MS. J. Sep. Sci. 2020, 43, 1032–1042. [Google Scholar] [CrossRef]
- Zhou, H.; He, Y.; Zheng, Z.; Liu, Z.; Song, F.; Liu, S. Quantitative analysis and pharmacokinetic comparison of multiple bioactive components in rat plasma after oral administration of Qi-Shen-Ke-Li formula and its single-herb extracts using ultra-high-performance liquid chromatography-tandem mass spectrometry. Biomed. Chromatogr. 2020, 34, e4959. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; He, Y.; Zheng, Z.; Xing, J.; Liu, Z.; Pi, Z.; Liu, S. Pharmacokinetics and tissue distribution study of 18 bioactive components in healthy and chronic heart failure rats after oral administration of Qi-Shen-Ke-Li formula using ultra-high-performance liquid chromatography/triple quadrupole mass spectrometry. Rapid Commun. Mass Spectrom. 2021, 35, e9060. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Y.; Sun, J.; Li, C.; Song, Y.; Li, J.; Tu, P.; Zhao, Y. Simultaneous determination of twenty-five compounds in rat plasma using ultra-high performance liquid chromatography-polarity switching tandem mass spectrometry and its application to a pharmacokinetic study. Molecules 2017, 22, 1853. [Google Scholar] [CrossRef]
- Jia, Z.; Liu, L.; Fang, C.; Pan, M.; Cong, S.; Guo, Z.; Yang, X.; Liu, J.; Li, Y.; Xiao, H. A network-pharmacology-combined integrated pharmacokinetic strategy to investigate the mechanism of potential liver injury due to polygonum multiflorum. Molecules 2022, 27, 8592. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, C.; Qi, J. Identification of active markers of Chinese formula yupingfeng san by network pharmacology and HPLC-Q-TOF-MS/MS analysis in experimental allergic rhinitis models of mice and isolated basophilic leukemia cell line RBL-2H3. Pharmaceuticals 2025, 18, 540. [Google Scholar] [CrossRef]
- Xiong, Y.; Hu, Y.; Li, F.; Chen, L.; Dong, Q.; Wang, J.; Gullen, E.A.; Cheng, Y.C.; Xiao, X. Promotion of quality standard of Chinese herbal medicine by the integrated and efficacy-oriented quality marker of Effect-constituent Index. Phytomedicine 2018, 45, 26–35. [Google Scholar] [CrossRef]
- Zhang, D.K.; Li, R.S.; Han, X.; Li, C.Y.; Zhao, Z.H.; Zhang, H.Z.; Yang, M.; Wang, J.B.; Xiao, X.H. Toxic constituents index: A toxicity-calibrated quantitative evaluation approach for the precise toxicity prediction of the hypertoxic phytomedicine-aconite. Front. Pharmacol. 2016, 7, 164. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Song, W.; Ji, S.; Wang, Q.; Guo, D.A.; Ye, M. Separation and characterization of phenolic compounds and triterpenoid saponins in licorice (Glycyrrhiza uralensis) using mobile phase-dependent reversed-phase×reversed-phase comprehensive two-dimensional liquid chromatography coupled with mass spectrometry. J. Chromatogr. A 2015, 1402, 36–45. [Google Scholar]
- Hu, L.F.; Yao, Z.H.; Qin, Z.F.; Liu, L.Y.; Song, X.J.; Dai, Y.; Kiyohara, H.; Yamada, H.; Yao, X.S. In vivo metabolic profiles of Bu-Zhong-Yi-Qi-Tang, a famous traditional Chinese medicine prescription, in rats by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. J. Pharm. Biomed. Anal. 2019, 171, 81–98. [Google Scholar] [CrossRef]
- Miao, W.J.; Wang, Q.; Bo, T.; Ye, M.; Qiao, X.; Yang, W.Z.; Xiang, C.; Guan, X.Y.; Guo, D.A. Rapid characterization of chemical constituents and rats metabolites of the traditional Chinese patent medicine Gegen-Qinlian-Wan by UHPLC/DAD/qTOF-MS. J. Pharm. Biomed. Anal. 2013, 72, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Wang, Q.; Wang, S.; Miao, W.J.; Li, Y.J.; Xiang, C.; Guo, D.A.; Ye, M. Compound to extract to formulation: A knowledge-transmitting approach for metabolites identification of Gegen-Qinlian Decoction, a traditional Chinese medicine formula. Sci. Rep. 2016, 6, 39534. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, Q.; Tian, C.; Li, C.; Lin, Y.Z.; Gao, W.X.; Wu, D.F.; Jiao, N.; Zhu, L.X.; Li, W.Z.; et al. The roles of Qishen granules recipes, Qingre Jiedu, Wenyang Yiqi and Huo Xue, in the treatment of heart failure. J. Ethnopharmacol. 2020, 249, 112372. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Zhao, P.; Xu, M.; Zhang, C.; Guo, W.; Chen, H.; Tian, J.; Wei, H.; Lu, R.; Cao, T. Astragaloside IV alleviates heart failure via activating PPARα to switch glycolysis to fatty acid β-oxidation. Sci. Rep. 2017, 7, 2691. [Google Scholar] [CrossRef] [PubMed]
- Sui, Y.B.; Wang, Y.; Liu, L.; Liu, F.; Zhang, Y.Q. Astragaloside IV alleviates heart failure by promoting angiogenesis through the JAK-STAT3 pathway. Pharm. Biol. 2019, 57, 48–54. [Google Scholar] [CrossRef]
- Tang, S.; Ye, J.X.; Li, R.Y.; Wang, J.L.; Xie, H.C.; Zhang, Y.Q.; Wang, M.; Sun, G.B. Formononetin attenuates myocardial ischemia/reperfusion injury by regulating neutrophil extracellular traps formation and platelet activation via platelet CD36. Phytomedicine 2025, 141, 156736. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Chen, J.; Xu, L.; Gao, Z.; Deng, Y.; Wang, Y.; Xu, F.; Shen, X.; Guo, D.A. Salvianolic acid B functioned as a competitive inhibitor of matrix metalloproteinase-9 and efficiently prevented cardiac remodeling. BMC Pharmacol. 2010, 10, 10. [Google Scholar] [CrossRef]
- Li, Y.; Shen, D.; Tang, X.; Li, X.; Wo, D.; Yan, H.; Song, R.; Feng, J.; Li, P.; Zhang, J.; et al. Chlorogenic acid prevents isoproterenol-induced hypertrophy in neonatal rat myocytes. Toxicol. Lett. 2014, 226, 257–263. [Google Scholar] [CrossRef]
- Tian, L.; Su, C.P.; Wang, Q.; Wu, F.J.; Bai, R.; Zhang, H.M.; Liu, J.Y.; Lu, W.J.; Wang, W.; Lan, F.; et al. Chlorogenic acid: A potent molecule that protects cardiomyocytes from TNF-α-induced injury via inhibiting NF-κB and JNK signals. J. Cell. Mol. Med. 2019, 23, 4666–4678. [Google Scholar] [CrossRef]
- Tong, Y.; Li, G.; Shi, X.; Wang, L.; Zhou, J.; Chu, M.; Wang, Z.; Abd El-Aty, A.M.; Dang, J. Protection against myocardial ischemia/reperfusion injury in mice by 3-caffeoylquinic acid isomers isolated from Saxifraga tangutica. RSC Adv. 2024, 14, 6642–6655. [Google Scholar] [CrossRef]
- Chen, X.Y.; Chen, X.H.; Li, L.; Su, C.P.; Zhang, Y.L.; Jiang, Y.Y.; Guo, S.Z.; Liu, B. Deciphering the effective combinatorial components from Si-Miao-Yong-An decoction regarding the intervention on myocardial hypertrophy. J. Ethnopharmacol. 2021, 271, 113833. [Google Scholar] [CrossRef]
- Luo, Y.; Shang, P.; Li, D. Luteolin: A flavonoid that has multiple cardio-protective effects and its molecular mechanisms. Front. Pharmacol. 2017, 8, 692. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, L.; Huang, J.; Xu, P.; Zhang, Z.; Yin, D.; Liu, J.; He, H.; He, M. Luteoloside attenuates anoxia/reoxygenation-induced cardiomyocytes injury via mitochondrial pathway mediated by 14-3-3η protein. Phytother. Res. 2018, 32, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.J.; Li, R.J.; Zhang, Z.H.; Yang, C.; Liu, S.X.; Li, Y.L.; Chen, M.W.; Wang, W.W.; Zhang, G.Y.; Song, G.; et al. Loganin inhibits angiotensin II-induced cardiac hypertrophy through the JAK2/STAT3 and NF-κB signaling pathways. Front. Pharmacol. 2021, 12, 678886. [Google Scholar] [CrossRef]
- Gu, W.L.; Chen, C.X.; Huang, X.Y.; Gao, J.P. The effect of angoroside C on pressure overload-induced ventricular remodeling in rats. Phytomedicine 2015, 22, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Liu, T.; Chen, M.; Sun, F.; Fei, Y.; Chen, Y.; Tian, X.; Wu, Z.; Zhu, Z.; Zheng, W.; et al. Morroniside induces cardiomyocyte cell cycle activity and promotes cardiac repair after myocardial infarction in adult rats. Front. Pharmacol. 2023, 14, 1260674. [Google Scholar] [CrossRef]
- Zhang, L.; Luan, Y.; Ding, X.; Yang, C.; Xing, L.; Zhang, H.; Liu, Z. Integration of network pharmacology and transcriptomics to explore the mechanism of isoliquiritigenin in treating heart failure induced by myocardial infarction. Toxicol. Appl. Pharmacol. 2024, 492, 117114. [Google Scholar] [CrossRef]
- Qiao, X.; Ye, M.; Xiang, C.; Wang, Q.; Liu, C.F.; Miao, W.J.; Guo, D.A. Analytical strategy to reveal the in vivo process of multi-component herbal medicine: A pharmacokinetic study of licorice using liquid chromatography coupled with triple quadrupole mass spectrometry. J. Chromatogr. A 2012, 1258, 84–93. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Ouyang, Y.; Shi, T.; Yang, X.; Yu, J.; Qiu, Q.; Han, J.; Wu, Y.; Tang, B.; et al. QSYQ attenuates oxidative stress and apoptosis induced heart remodeling rats through different subtypes of NADPH-Oxidase. Evid.-Based Complement Altern. Med. 2013, 2013, 824960. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Qiu, Q.; Shi, T.; Wu, Y.; Han, J.; Chai, X.; Wang, W. Qishenyiqi protects ligation-induced left ventricular remodeling by attenuating inflammation and fibrosis via STAT3 and NF-κB signaling pathway. PLoS ONE 2014, 9, e104255. [Google Scholar] [CrossRef]
- Chang, H.; Li, C.; Wang, Q.; Lu, L.; Zhang, Q.; Zhang, Y.; Zhang, N.; Wang, Y.; Wang, W. QSKL protects against myocardial apoptosis on heart failure via PI3K/Akt-p53 signaling pathway. Sci. Rep. 2017, 7, 16986. [Google Scholar] [CrossRef]
- Guan, H.R.; Li, B.; Zhang, Z.H.; Wu, H.S.; He, X.L.; Dong, Y.J.; Su, J.; Lv, G.Y.; Chen, S.H. Integrated bioinformatics and network pharmacology to explore the therapeutic target and molecular mechanisms of Bailing capsule on polycystic ovary syndrome. BMC Complement. Med. Ther. 2023, 23, 458. [Google Scholar] [CrossRef] [PubMed]
- FDA. FDA Guidance for Industry: Bioanalytical Method; Validation US Department of Health and Human Services: Washington, DC, USA; Food and Drug Administration: Silver Spring, MD, USA; Center for Drug Evaluation and Research: Silver Spring, MD, USA; Center for Veterinary Medicine: Rockville, MD, USA, 2001.
No. | tR (min) | Precursor Ion | Meas. m/z | Error (ppm) | Molecular Formula | MS2 Fragments | Plausible Identification a | Type b |
---|---|---|---|---|---|---|---|---|
1 | 0.80 | [M−H]− | 191.0211 | 7.33 | C6H8O7 | 173.0097, 129.0195, 111.0095 | Citric acid | M |
2 | 2.05 | [M−H]− | 232.9771 | 4.21 | C7H6O7S | 153.0202, 109.0298 | Protocatechuic acid-3-O-SO3 | M |
3 | 2.07 | [M−H]− | 277.0032 | 3.14 | C9H10O8S | 197.0452, 179.0355, 135.0452 | Danshensu-3-O-SO3, Danshensu-4-O-SO3, or Danshensu-8-O-SO3 | M |
4 | 2.21 | [M−H]− | 232.9771 | 4.21 | C7H6O7S | 153.0203, 109.0298 | Protocatechuic acid-4-O-SO3 | M |
5 | 2.68 | [M−H]− | 246.9924 | 2.55 | C8H8O7S | 167.0353, 152.0122, 123.0457, 108.0216 | Vanillic acid-4-O-SO3 or isomer | M |
6 | 3.02 | [M−H]− | 353.0861 | −4.81 | C16H18O9 | 191.0560, 179.0355 | Chlorogenic acid # | P |
7 | 3.48 | [M−H]− | 246.9923 | 2.15 | C8H8O7S | 167.0353, 152.0121, 123.0459, 108.0216 | Vanillic acid-4-O-SO3 or isomer | M |
8 | 3.91 | [M+HCOO]− | 209.0466 | 5.26 | C9H8O3 | 165.0554, 132.0452, 121.0657, 108.0538 | Coumaric acid isomer | M |
9 | 4.05 | [M−H]− | 375.1303 | 1.60 | C16H24O10 | 341.9968, 308.1165, 213.0759, 169.0872 | 10-methoxyl catalpol # | P |
10 | 4.31 | [M+HCOO]− | 209.0467 | 5.74 | C9H8O3 | 165.0558, 121.0657, 108.0537 | Coumaric acid | P |
11 | 4.39 | [M−H]− | 355.0668 | −0.84 | C15H16O10 | 179.0357, 135.0450 | Caffeic acid-3-O-GluA or Caffeic acid-4-O-GluA | M |
12 | 4.55 | [M+HCOO]− | 451.1464 | 1.55 | C17H26O11 | 405.1398 | Morroniside # | P |
13 | 4.64 | [M−H]− | 353.0884 | 1.70 | C16H18O9 | 191.0661 | Neochlorogenic acid # | P |
14 | 4.65 | [M−H]− | 389.1097 | 2.06 | C16H22O11 | 212.0023 | Secologanoside # | P |
15 | 4.93 | [M−H]− | 258.9927 | 3.59 | C9H8O7S | 179.0359, 135.0450 | Caffeic acid-3-O-SO3 or Caffeic acid-4-O-SO3 | M |
16 | 5.10 | [M−H]− | 353.0865 | −3.58 | C16H18O9 | 173.0455 | Cryptochlorogenic acid # | P |
17 | 5.80 | [M−H]− | 369.0830 | 0.81 | C16H18O10 | 193.0514, 178.0276 | (E)-Ferulic acid-4-O-GluA | M |
18 | 5.86 | [M−H]− | 593.1512 | 0.00 | C27H30O15 | 417.1189, 255.0671, 135.009 | Liquiritin-7-O-GluA | M |
19 | 6.12 | [M−H]− | 369.0829 | 0.54 | C16H18O10 | 193.0513 | (Z)-Ferulic acid-4-O-GluA | M |
20 | 6.24 | [M−H]− | 725.1923 | −1.65 | C32H38O19 | 549.1615, 255.067 | Liquiritin apioside-7-O-GluA | M |
21 | 6.34 | [M−H]− | 273.0079 | 1.76 | C10H10O7S | 193.0513, 178.0277, 149.0613, 134.0380 | (E)-Ferulic acid-4-O-SO3 | M |
22 | 6.34 | [M+HCOO]− | 403.1254 | 1.98 | C16H22O9 | 357.1197, 195.0644, 125.0260 | Sweroside # | P |
23 | 6.42 | [M+HCOO]− | 435.1516 | 1.84 | C17H26O10 | 389.1442, 227.0933 | 7-epi-loganin # | P |
24 | 6.93 | [M−H]− | 621.1467 | 0.97 | C28H30O16 | 459.0932, 283.0587, 268.0373 | Calycosin-7-O-D-glucoside-3′-O-GluA | M |
25 | 7.23 | [M−H]− | 367.1034 | −0.27 | C17H20O9 | 191.0565, 173.0457 | 5-FQA | P |
26 | 7.41 | [M−H]− | 403.1256 | 2.48 | C16H22O9 | 371.0970, 223.0606 | Secoxyloganin # | P |
27 | 7.59 | [M−H]− | 511.0557 | 0.98 | C21H20O13S | 431.0980, 335.0214, 255.0676 | Liquiritigenin-7-O-GluA-4′-O-SO3 or Liquiritigenin-7-O-SO3-4′-O-GluA | M |
28 | 7.65 | [M−H]− | 273.0079 | 1.76 | C10H10O7S | 193.051 | (Z)-Ferulic acid-4-O-SO3 | M |
29 | 8.70 | [M−H]− | 593.1501 | −1.85 | C27H30O15 | 417.1184, 255.0677 | Isoliquiritin-7-O-GluA | M |
30 | 8.86 | [M+HCOO]− | 491.1207 | −1.15 | C22H22O10 | 283.0612, 135.0460 | Calycosin-7-O-D-glucoside # | P |
31 | 8.86 | [M−H]− | 431.1000 | 3.71 | C21H20O10 | 255.0671, 135.0084, 119.0502 | Liquiritigenin-7-O-GluA | M |
32 | 9.04 | [M−H]− | 549.1618 | 0.73 | C26H30O13 | 255.0662, 148, 0144, 135.0085 | Liquiritin apioside # | P |
33 | 9.10 | [M−H]− | 431.1001 | 3.94 | C21H20O10 | 255.0673, 135.0091, 119.0504 | Liquiritigenin-4′-O-GluA | M |
34 | 10.25 | [M−H]− | 513.0717 | 1.75 | C21H22O13S | 433.1129 | Liquiritigenin + H2 + GluA + SO3 | M |
35 | 10.61 | [M−H]− | 187.0987 | 5.88 | C9H16O4 | 169.0885, 143.1077, 125.0978, 102.9495 | Azelaic acid | M |
36 | 10.70 | [M−H]− | 459.0957 | 5.23 | C22H20O11 | 283.0609, 268.0378, 239.0355 | Calycosin-3′-O-GluA or Calycosin-7-O-GluA | M |
37 | 10.78 | [M−H]− | 187.0986 | 5.34 | C9H16O4 | 169.0880, 143.1075, 125.0968, 102.9483 | Azelaic acid isomer | M |
38 | 10.86 | [M−H]− | 417.1213 | 5.21 | C21H22O9 | 255.0663, 135.0085, 119.0506 | Liquiritin # | P, M |
39 | 10.94 | [M−H]− | 187.0986 | 5.34 | C9H16O4 | 169.0886, 125.0967, 102.9483 | Azelaic acid isomer | M |
40 | 10.95 | [M−H]− | 447.0938 | 1.12 | C21H20O11 | 285.0395, 151.0035, 133.0300 | Luteoloside # | P |
41 | 10.96 | [M−H]− | 447.0938 | 1.12 | C21H20O11 | 271.0617, 151.0046 | Naringenin-5-O-GluA | M |
42 | 11.02 | [M−H]− | 513.0718 | 1.95 | C21H22O13S | 433.1128 | Isoliquiritigenin + H2-7-O-GluA-4′-SO3 | M |
43 | 11.26 | [M−H]− | 363.0183 | 0.88 | C16H12O8S | 283.0609, 268.0375, 239.0353, 211.0405 | Calycosin + SO3 | M |
44 | 11.30 | [M−H]− | 515.1213 | 3.49 | C25H24O12 | 353.0875, 173.0512, 179.0375 | Isochlorogenic acid C # | P |
45 | 11.62 | [M−H]− | 549.1252 | 0.36 | C25H26O14 | 373.0929 | Methyl rosmarinic acid-4-O-GluA | M |
46 | 11.64 | [M−H]− | 513.0718 | 1.95 | C21H22O13S | 433.1132 | Isoliquiritigenin + H2-4′-O-GluA-7-SO3 | M |
47 | 11.80 | [M−H]− | 783.2711 | −0.77 | C36H48O19 | 607.2211, 461.1642, 193.0512, 175.0396 | Angoroside C # | P |
48 | 11.98 | [M−H]− | 447.0936 | 0.67 | C21H20O11 | 271.0617, 243.0662 | Naringenin-7-O-GluA | M |
49 | 12.11 | [M+HCOO]− | 475.1258 | 2.53 | C22H22O9 | 267.0662, 151.0031 | Formononetin-7-O-D-glucoside # | P |
50 | 12.31 | [M−H]− | 417.1197 | 1.44 | C21H22O9 | 255.0660, 135.0075, 119.0506 | Isoliquiritin # | P, M |
51 | 12.33 | [M−H]− | 563.1403 | −0.53 | C26H28O14 | 387.1085 | 3,3′-dimethyl rosmarinic acid-4′-O-GluA or 3,3′-dimethyl rosmarinic acid-4-O-GluA | M |
52 | 12.49 | [M−H]− | 443.0990 | 1.35 | C22H20O10 | 267.0659, 252.0426 | Formononetin-7-O-GluA | M |
53 | 12.83 | [M−H]− | 717.1450 | −1.53 | C36H30O16 | 519.0924, 321.04 | Salvianolic acid B # | P |
54 | 12.93 | [M−H]− | 433.1140 | 0.00 | C21H22O10 | 371.1105, 337.0386, 257.0818, 175.0252, 151.0414, 113.0251 | Liquiritigenin + H2 + GluA | M |
55 | 13.31 | [M−H]− | 431.0997 | 3.02 | C21H20O11 | 255.0668 | Isoliquiritigenin-4′-O-GluA or Isoliquiritigenin-7-O-GluA | M |
56 | 13.66 | [M−H]− | 447.0937 | 0.89 | C21H20O11 | 271.0625 | Naringenin-4′-O-GluA | M |
57 | 13.73 | [M−H]− | 475.0880 | −0.42 | C22H20O12 | 433.1134, 421.2078, 267.0668, 252.0428, 223.0399 | 3′-methoxy-luteolin-7-O-GluA or 3′-methoxy-luteolin-4′-O-GluA | M |
58 | 13.92 | [M−H]− | 475.1258 | 2.53 | C23H24O11 | 299.0975 | C17H16O5 + GluA | M |
59 | 14.15 | [M−H]− | 255.0662 | −0.39 | C15H12O4 | 135.0085, 119.0499 | Liquiritigenin # | P, M |
60 | 14.46 | [M−H]− | 475.1254 | 1.68 | C23H24O11 | 299.0969, 284.0694, 269.0454, 175.0250, 113.0252 | C17H16O5 + GluA | M |
61 | 15.15 | [M−H]− | 283.0610 | −0.71 | C16H12O5 | 135.0075 | Calycosin # | P, M |
62 | 16.50 | [M−H]− | 271.0610 | −0.74 | C15H12O5 | 151.0045 | Luteolin # | P, M |
63 | 17.82 | [M−H]− | 255.0662 | −0.39 | C15H12O4 | 135.0085, 119.0495 | Isoliquiritigenin # | P, M |
64 | 18.64 | [M+HCOO]− | 829.4589 | −0.24 | C41H68O14 | 783.4516 | Astragaloside IV # | P |
65 | 18.92 | [M−H]− | 267.0662 | −0.37 | C16H12O4 | 135.0075 | Formononetin # | P, M |
66 | 20.16 | [M−H]− | 821.3964 | −0.12 | C42H62O16 | 645.3636, 471.2415, 351.0569, 193.0360 | Glycyrrhizic Acid # | P |
67 | 20.85 | [M+HCOO]− | 871.4682 | −1.72 | C43H70O15 | 825.4606 | Astragaloside II # | P |
68 | 20.97 | [M−H]− | 469.3320 | −0.64 | C30H46O4 | 351.0565 | Glycyrrhetic Acid # | P |
69 | 22.18 | [M+HCOO]− | 871.4697 | 0.00 | C43H70O15 | 825.4595 | Isoastragaloside II | P |
No. | tR (min) | Precursor Ion | Meas. m/z | Error (ppm) | Molecular Formula | MS2 Fragments | Plausible Identification a | Type b |
---|---|---|---|---|---|---|---|---|
70 | 2.25 | [M+H]+ | 394.2580 | −1.52 | C22H35NO5 | 376.2469, 358.2359 | Chuanfumine | P |
71 | 2.79 | [M+H]+ | 424.2691 | −0.71 | C23H37NO6 | 406.2570, 388.2478, 374.2310 | Senbusine B isomer | M |
72 | 3.00 | [M+H]+ | 394.2584 | −1.01 | C22H35NO5 | 376.2465 | Chuanfumine isomer | M |
73 | 3.88 | [M+H]+ | 486.2681 | −3.50 | C24H39NO9 | 468.2590, 454.2426, 436.2304, 422.2171, 404.2058 | Mesaconine | P |
74 | 3.90 | [M+H]+ | 364.2470 | −3.29 | C21H33NO4 | 346.2377, 328.2262 | 16β-hydroxycardiopetaline | P |
75 | 4.49 | [M+H]+ | 408.2738 | −1.47 | C23H37NO5 | 390.2614, 358.2389 | Isotalatizidine | P |
76 | 4.84 | [M+H]+ | 500.2845 | −1.80 | C25H41NO9 | 468.2583, 450.2482, 436.2389 | Aconine | P |
77 | 5.01 | [M+H]+ | 408.2740 | −0.98 | C23H37NO5 | 376.2461, 358.2343 | Isotalatizidine isomer | M |
78 | 5.11 | [M+H]+ | 360.2526 | −1.94 | C22H33NO3 | 342.2417, 324.2311 | Napelline | P |
79 | 5.65 | [M+H]+ | 424.2692 | −0.47 | C23H37NO6 | 406.2577, 388.2478, 374.2310 | Senbusine A isomer | M |
80 | 5.70 | [M+H]+ | 470.2744 | −0.85 | C24H39NO8 | 438.2503, 406.2244 | Hypaconine | P |
81 | 5.80 | [M+H]+ | 454.2783 | −3.52 | C24H39NO7 | 436.2703, 404.2486, 386.2265 | Fuziline | P |
82 | 5.98 | [M+H]+ | 408.2743 | −0.24 | C23H37NO5 | 376.2475, 358.2372 | Isotalatizidine isomer | M |
83 | 6.30 | [M+H]+ | 438.2847 | −0.68 | C24H39NO6 | 420.2732, 402.2577, 388.2467, 370.2377, 356.2208 | Neoline | P |
84 | 6.76 | [M+H]+ | 484.2878 | −5.58 | C25H41NO8 | 452.2619 | Pseudaconine | P |
85 | 7.41 | [M+H]+ | 422.2901 | 0.00 | C24H39NO5 | 390.2628, 372.2449, 358.2387 | Talatizamine | P |
86 | 8.55 | [M+H]+ | 452.2996 | −1.55 | C25H41NO6 | 420.2705, 388.2461, 356.2184 | Chasmanine | P |
87 | 12.01 | [M+H]+ | 590.2932 | −4.74 | C31H43NO10 | 572.2855, 105.0355 | Benzoylmesaconine # | P |
88 | 13.12 | [M+H]+ | 604.3092 | −3.97 | C32H45NO10 | 585.2990, 105.0375 | Benzoylaconine # | P |
89 | 14.02 | [M+H]+ | 574.3018 | 1.22 | C31H43NO9 | 105.0335 | Benzoylhypacoitine # | P |
90 | 15.71 | [M+H]+ | 616.3116 | 0.00 | C33H45NO10 | 584.2872, 105.0334 | Hypaconitine # | P |
91 | 17.68 | [M+H]+ | 313.1430 | −1.28 | C19H20O4 | 269.1520, 253.0848 | Tanshinone IIA + H2O | M |
92 | 18.23 | [M+H]+ | 283.0956 | −3.18 | C17H14O4 | 265.0860, 255.0635, 237.0912, 209.0958 | Dihydronortanshinone | P |
93 | 18.45 | [M+H]+ | 297.1488 | 1.01 | C19H20O3 | 253.1589, 211.1124 | Tanshinone IIA + H2 | M |
94 | 18.45 | [M+H]+ | 315.1589 | −0.63 | C19H22O4 | 297.1494, 253.1595, 237.0934 | Tanshinone IIA + H2O + H2 * | M |
95 | 19.70 | [M+H]+ | 279.1015 | −0.36 | C18H14O3 | 261.0906, 251.1060 | Dihydrotanshinone I # | P |
96 | 21.10 | [M+H]+ | 301.1439 | 1.66 | C18H20O4 | 283.1325, 265.1208 | Tanshinone IIA + H2O + H2 − CH3 * | M |
97 | 21.95 | [M+H]+ | 295.1320 | −3.05 | C19H18O3 | 277.1215 | Tanshinone IIA # | P |
98 | 22.71 | [M+H]+ | 297.1115 | −2.02 | C18H16O4 | 279.1008, 261.0904, 233.0964 | Tanshinone IIA + O − CH3 | M |
99 | 22.79 | [M+H]+ | 327.1229 | 0.61 | C19H18O5 | 265.1223 | Tanshinone IIA + O | M |
100 | 23.57 | [M+H]+ | 297.1491 | 2.02 | C19H20O3 | 253.1592, 211.1125 | Tanshinone IIA + H2 | M |
101 | 23.57 | [M+H]+ | 315.1592 | 0.32 | C19H22O4 | 297.1497, 279.1393 | Tanshinone IIA + H2O + H2 * | M |
Compound | Tmax (h) | Cmax (ng/mL) | AUC0→t (ng h/mL) | AUC0→∞ (ng h/mL) | T1/2 (h) | MRT (h) |
---|---|---|---|---|---|---|
Chlorogenic acid | 0.563 ± 0.125 | 394.1 ± 6.271 | 1278 ± 171.4 | 1418 ± 243.1 | 9.224 ± 3.268 | 7.185 ± 0.9780 |
Neochlorogenic acid | 0.398 ± 0.093 | 68.12 ± 4.044 | 167.1 ± 68.93 | 175.7 ± 70.81 | 4.584 ± 3.300 | 6.104 ± 2.911 |
Cryptochlorogenic acid | 0.364 ± 0.076 | 184.1 ± 57.43 | 532.2 ± 41.45 | 576.2 ± 58.15 | 10.84 ± 2.625 | 8.933 ± 0.5290 |
Liquiritin apioside | 0.432 ± 0.093 | 50.54 ± 10.68 | 176.2 ± 22.47 | 185.7 ± 23.88 | 7.037 ± 2.092 | 7.322 ± 0.9520 |
Luteoloside | 0.466 ± 0.076 | 1.702 ± 0.5580 | 12.39 ± 2.708 | 20.86 ± 6.586 | 21.76 ± 16.85 | 16.01 ± 1.728 |
Isochlorogenic acid C | 0.334 ± 0.165 | 33.95 ± 8.980 | 116.3 ± 39.63 | 170.5 ± 80.02 | 16.43 ± 14.14 | 8.361 ± 4.800 |
Salvianolic acid B | 0.566 ± 0.182 | 205.3 ± 65.50 | 1475 ± 187.4 | 2176 ± 842.3 | 10.83 ± 5.740 | 11.08 ± 1.809 |
Luteolin | 0.170 ± 0 | 12.85 ± 4.120 | 10.29 ± 0.9300 | 10.88 ± 0.8670 | 2.595 ± 1.222 | 1.839 ± 0.448 |
Isoliquiritigenin | 0.170 ± 0 | 1.648 ± 0.5850 | 3.173 ± 0.8430 | 4.891 ± 2.768 | 12.37 ± 10.51 | 7.681 ± 2.173 |
Formononetin | 0.516 ± 0.150 | 4.310 ± 0.9520 | 18.51 ± 5.014 | 27.66 ± 12.24 | 10.90 ± 9.190 | 6.795 ± 4.768 |
Astragaloside IV | 0.250 ± 0.0920 | 12.06 ± 2.010 | 55.94 ± 26.16 | 144.9 ± 101.2 | 14.87 ± 9.060 | 6.104 ± 3.716 |
Compound | EC50 (μM) | Wi | AUCi | ECI |
---|---|---|---|---|
Cryptochlorogenic acid | 1.13 | 0.3627 | 576.2 | 208.98 |
Chlorogenic acid | 8.6 | 0.0477 | 1418 | 67.58 |
Isochlorogenic acid C | 1.09 | 0.3760 | 170.5 | 64.11 |
Salvianolic acid B | 35.15 | 0.0117 | 2176 | 25.37 |
Neochlorogenic acid | 8.81 | 0.0465 | 175.7 | 8.17 |
Liquiritin apioside | 33.16 | 0.0124 | 185.7 | 2.30 |
Astragaloside IV | 76.10 | 0.0131 | 144.9 | 0.78 |
Luteolin | 11.26 | 0.0364 | 10.88 | 0.40 |
Luteoloside | 24.21 | 0.0169 | 20.86 | 0.35 |
Isoliquiritigenin | 10.26 | 0.0399 | 4.891 | 0.20 |
Formononetin | 64.95 | 0.0063 | 27.66 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, T.; Cheng, C.; Huo, Y.; Tan, Y.; Xu, Y.; Gao, J.; Liu, J.; Xiao, H. An Efficacy- and In Vivo Exposure-Oriented Integrated Study to Investigate the Effective Components of Qishen Granule. Pharmaceuticals 2025, 18, 1584. https://doi.org/10.3390/ph18101584
Li Y, Wang T, Cheng C, Huo Y, Tan Y, Xu Y, Gao J, Liu J, Xiao H. An Efficacy- and In Vivo Exposure-Oriented Integrated Study to Investigate the Effective Components of Qishen Granule. Pharmaceuticals. 2025; 18(10):1584. https://doi.org/10.3390/ph18101584
Chicago/Turabian StyleLi, Yueting, Tengteng Wang, Chao Cheng, Yingying Huo, Ying Tan, Yifan Xu, Jiale Gao, Jie Liu, and Hongbin Xiao. 2025. "An Efficacy- and In Vivo Exposure-Oriented Integrated Study to Investigate the Effective Components of Qishen Granule" Pharmaceuticals 18, no. 10: 1584. https://doi.org/10.3390/ph18101584
APA StyleLi, Y., Wang, T., Cheng, C., Huo, Y., Tan, Y., Xu, Y., Gao, J., Liu, J., & Xiao, H. (2025). An Efficacy- and In Vivo Exposure-Oriented Integrated Study to Investigate the Effective Components of Qishen Granule. Pharmaceuticals, 18(10), 1584. https://doi.org/10.3390/ph18101584