Investigating the Therapeutic Mechanisms of Shen-Ling-Bai-Zhu-San in Type 2 Diabetes and Ulcerative Colitis Comorbidity: A Network Pharmacology and Molecular Simulation Approach
Abstract
1. Introduction
2. Results
2.1. Screening of SLBZS and Disease-Related Targets
2.2. Pharmacokinetic Profiling of Bioactive Constituents
- Solubility: Predicted LogS values ranged from −3.67 to −5.93, consistent with adequate solubility across physiological conditions.
- Absorption: Caco-2 permeability (−4.62 to −5.81 logPaap) and high human intestinal absorption (88.1–99.8%) indicated strong potential for oral bioavailability.
- Distribution: All compounds showed limited blood–brain barrier penetration (logBB: −2.99 to −2.17) and moderate volume of distribution (VDss: 0.88–1.58 L/kg), suggesting restricted CNS exposure and balanced tissue distribution.
- Metabolism: The compounds were predicted to be non-substrates of CYP3A4 and showed no inhibition of P-glycoprotein, suggesting favorable metabolic stability and a potentially lower risk of efflux-mediated resistance.
- Toxicity: Low hepatotoxicity potential was observed, with drug-induced liver injury (DILI) probabilities ranging from 23% to 31%.
2.3. Functional Enrichment Analysis
2.3.1. Gene Ontology (GO) Enrichment Analysis
2.3.2. Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis
2.4. Core Pathway Prioritization and Gene Regulatory Mapping
2.5. Prediction of Binding Sites and Molecular Docking
2.6. Molecular Dynamics Simulation Validation
3. Disscusion
4. Materials and Methods
4.1. Bioactive Constituent Screening and Target Profiling
- Pharmacokinetic parameters: Caco-2 [53] (quantitative prediction of Caco-2 permeability, QPPCaco > 0.9); steady-state volume of distribution (VDss ≥ 0.45 L/kg).
- Metabolic stability: Cytochrome P450 3A4 (CYP3A4) substrate probability [54] (TopBank score ≥ 0.8); total clearance (CLtot < 5 mL/min/kg).
- Toxicological thresholds: Drug-induced liver injury (DILI) prediction [55] via validated random forest classifiers.
4.2. Identification of Potential Targets for Treating Both Diseases
4.3. Protein–Protein Interaction Network Construction
4.4. Pathway Analysis
- KEGG/GO enrichment analysis identified significantly enriched pathways (adjusted ) among formula–disease overlapping targets.
- Contextualized pathway prioritization was achieved through PROGENy-derived weighting of 14 therapeutic pathways, where target-specific coefficients were calibrated against herb–component interaction gradients.
- Pathway activity inference was implemented using decoupleR’s multi-linear model (MLM), which projects gene-level differential expression () onto curated pathway networks. Formally, pathway activity scores are computed via:
- The resulting scores were subsequently z-normalized to enable cross-sample comparison:
- For mechanistic dissection of four key pathways—JAK–STAT, PI3K, TNF, and Androgen—we defined a directional concordance index for each pathway gene g:
4.5. Molecular Docking
4.6. Molecular Dynamics Simulation Analysis
4.7. Software and Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2022. Diabetes Care 2022, 45, S17–S38. [Google Scholar] [CrossRef]
- Dong, C.; Wu, G.; Li, H.; Qiao, Y.; Gao, S. Type 1 and type 2 diabetes mortality burden: Predictions for 2030 based on Bayesian age-period-cohort analysis of China and global mortality burden from 1990 to 2019. J. Diabetes Investig. 2024, 15, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.; Chan, F.K.; et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 2017, 390, 2769–2778. [Google Scholar] [CrossRef]
- Franzosa, E.A.; Sirota-Madi, A.; Avila-Pacheco, J.; Fornelos, N.; Haiser, H.J.; Reinker, S.; Vatanen, T.; Hall, A.B.; Mallick, H.; McIver, L.J.; et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 2019, 4, 293–305. [Google Scholar] [CrossRef]
- Dubinsky, M.; Bleakman, A.P.; Panaccione, R.; Hibi, T.; Schreiber, S.; Rubin, D.; Dignass, A.; Redondo, I.; Gibble, T.H.; Kayhan, C.; et al. Bowel urgency in ulcerative colitis: Current perspectives and future directions. Off. J. Am. Coll. Gastroenterol.|ACG 2023, 118, 1940–1953. [Google Scholar] [CrossRef]
- Hu, Y.z.; Chen, Z.; Zhou, M.h.; Zhao, Z.y.; Wang, X.y.; Huang, J.; Li, X.t.; Zeng, J.n. Global and regional genetic association analysis of ulcerative colitis and type 2 diabetes mellitus and causal validation analysis of two-sample two-way Mendelian randomization. Front. Immunol. 2024, 15, 1375915. [Google Scholar] [CrossRef]
- Juyal, G.; Amre, D.; Midha, V.; Sood, A.; Seidman, E.; Thelma, B. Evidence of allelic heterogeneity for associations between the NOD2/CARD15 gene and ulcerative colitis among North Indians. Aliment. Pharmacol. Ther. 2007, 26, 1325–1332. [Google Scholar] [CrossRef]
- Kim, Y.; Kwon, O.C.; Kim, R.; Kim, J.H.; Kim, M.J.; Park, M.C.; Kim, J.H.; Youn, Y.H.; Park, H.; Han, K.; et al. Association of Immune-Mediated Inflammatory Diseases and Fracture Risk in Patients with Type 2 Diabetes: A Nationwide Population-Based Study. J. Clin. Med. 2025, 14, 795. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhuang, Y.; Ran, Y.; Xu, Y.; Wang, L.; Chen, L.; Chen, J.; Sun, Y.; Mei, L.; Ye, F.; et al. Type II diabetes mellitus increases the risk of inflammatory bowel disease in a prospective cohort study. Clin. Nutr. ESPEN 2024, 61, 212–218. [Google Scholar] [CrossRef]
- Maconi, G.; Furfaro, F.; Sciurti, R.; Bezzio, C.; Ardizzone, S.; de Franchis, R. Glucose intolerance and diabetes mellitus in ulcerative colitis: Pathogenetic and therapeutic implications. World J. Gastroenterol. WJG 2014, 20, 3507. [Google Scholar] [PubMed]
- Chiba, M.; Komatsu, M.; Hosoba, M.; Hatano, K.; Takeda, M. Onset of ulcerative colitis in a patient with type 2 diabetes: Efficacy of a plant-based diet for both diseases. Gastrointest. Disord. 2022, 4, 223–229. [Google Scholar] [CrossRef]
- Youssef, M.E.; Abd El-Fattah, E.E.; Abdelhamid, A.M.; Eissa, H.; El-Ahwany, E.; Amin, N.A.; Hetta, H.F.; Mahmoud, M.H.; Batiha, G.E.S.; Gobba, N.; et al. Interference with the AMPKα/mTOR/NLRP3 signaling and the IL-23/IL-17 axis effectively protects against the dextran sulfate sodium intoxication in rats: A new paradigm in empagliflozin and metformin reprofiling for the management of ulcerative colitis. Front. Pharmacol. 2021, 12, 719984. [Google Scholar]
- Chen, H.; Wei, G.; Dong, Y. Effects of Shenlin Baizu San and Erchen decoction and acupuncture on insulin resistance in type 2 diabetes mellitus. Clin. J. Chin. Med. 2014, 6, 1–3. [Google Scholar]
- Jiao, C.; Zhang, Q.; Yang, M.; Ma, J.; Zhao, X.; Tang, N.; Dai, M.; Li, Q.; Jiang, Z.; Huang, X.; et al. Shenling Baizhu San ameliorates ulcerative colitis by regulating the gut microbiota and its tryptophan metabolites: A complementary medicine to mesalamine. J. Ethnopharmacol. 2022, 291, 115145. [Google Scholar] [CrossRef]
- Yang, L.; Song, Y.; Jin, P.; Liu, Y.; Wang, Y.; Qiao, H.; Huang, Y. Shen-Ling-Bai-Zhu-San for ulcerative colitis: Protocol for a systematic review and meta-analysis. Medicine 2018, 97, e12337. [Google Scholar] [CrossRef]
- Li, S.; Xu, H.; Cui, S.; Wu, F.; Zhang, Y.; Su, M.; Gong, Y.; Qiu, S.; Jiao, Q.; Qin, C.; et al. Discovery and rational design of natural-product-derived 2-phenyl-3, 4-dihydro-2H-benzo[f]chromen-3-amine analogs as novel and potent dipeptidyl peptidase 4 (DPP-4) inhibitors for the treatment of type 2 diabetes. J. Med. Chem. 2016, 59, 6772–6790. [Google Scholar]
- Han, H.; Sun, W.; Feng, L.; Wen, Z.; Yang, M.; Ma, Y.; Fu, J.; Ma, X.; Xu, X.; Wang, Z.; et al. Differential relieving effects of shikonin and its derivatives on inflammation and mucosal barrier damage caused by ulcerative colitis. PeerJ 2021, 9, e10675. [Google Scholar] [CrossRef] [PubMed]
- Meena, S.N.; Wajs-Bonikowska, A.; Girawale, S.; Imran, M.; Poduval, P.; Kodam, K.M. High-Throughput Mining of Novel Compounds from Known Microbes: A Boost to Natural Product Screening. Molecules 2024, 29, 3237. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yang, X.; Zheng, S.; Chen, C.; Qi, L.; Xu, X.; Zhang, D. Research progress on the use of traditional Chinese medicine to treat diseases by regulating ferroptosis. Genes Dis. 2024, 12, 101451. [Google Scholar]
- Sikder, M.O.; Sivaprakasam, S.; Vadivel, G. Amino acid transporter SLC6A14: A novel drug target for colorectal cancer and colitis and its transcriptional regulation by TCF4/beta-catenin pathway. Cancer Res. 2018, 78, 5735. [Google Scholar] [CrossRef]
- Fan, G.; Dai, L.; Xie, T.; Li, L.; Tang, L.; Han, X.; Shi, Y. Spatial analyses revealed CXCL5 and SLC6A14 as the markers of microvascular invasion in intrahepatic cholangiocarcinoma. Hepatol. Commun. 2025, 9, e0597. [Google Scholar] [CrossRef]
- Le, J.; Fu, Y.; Han, Q.; Wei, X.; Ji, H.; Chen, Y.; Wang, Q.; Pi, P.; Li, J.; Lin, X.; et al. Restoration of mRNA expression of solute carrier proteins in liver of diet-induced obese mice by metformin. Front. Endocrinol. 2021, 12, 720784. [Google Scholar]
- Suviolahti, E.; Oksanen, L.J.; Öhman, M.; Cantor, R.M.; Ridderstråle, M.; Tuomi, T.; Kaprio, J.; Rissanen, A.; Mustajoki, P.; Jousilahti, P.; et al. The SLC6A14 gene shows evidence of association with obesity. J. Clin. Investig. 2003, 112, 1762–1772. [Google Scholar] [CrossRef]
- Ren, X.J.; Zhang, M.L.; Shi, Z.H.; Zhu, P.P. SLC6A14 as a Key Diagnostic Biomarker for Ulcerative Colitis: An Integrative Bioinformatics and Machine Learning Approach. Biochem. Genet. 2025, 1–16. [Google Scholar] [CrossRef]
- Gu, Q.; Xia, H.; Song, Y.Q.; Duan, J.; Chen, Y.; Zhang, Y.; Chen, H.P.; Zhang, L. SLC6A14 promotes ulcerative colitis progression by facilitating NLRP3 inflammasome-mediated pyroptosis. World J. Gastroenterol. 2024, 30, 252. [Google Scholar] [CrossRef] [PubMed]
- Gui, X.; Iacucci, M.; Ghosh, S. Dysregulation of IL6/IL6R-STAT3-SOCS3 signaling pathway in IBD-associated colorectal dysplastic lesions as compared to sporadic colorectal adenomas in non-IBD patients. Pathol.-Res. Pract. 2020, 216, 153211. [Google Scholar] [CrossRef] [PubMed]
- Parisinos, C.A.; Serghiou, S.; Katsoulis, M.; George, M.J.; Patel, R.S.; Hemingway, H.; Hingorani, A.D. Variation in interleukin 6 receptor gene associates with risk of Crohn’s disease and ulcerative colitis. Gastroenterology 2018, 155, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Cirelli, T.; Nepomuceno, R.; Rios, A.C.S.; Orrico, S.R.; Cirelli, J.A.; Theodoro, L.H.; Barros, S.P.; Scarel-Caminaga, R.M. Genetic polymorphisms in the Interleukins IL1B, IL4, and IL6 are associated with concomitant periodontitis and type 2 diabetes mellitus in Brazilian patients. J. Periodontal Res. 2020, 55, 918–930. [Google Scholar] [CrossRef]
- Verhulst, C.E.; van Heck, J.I.; Fabricius, T.W.; Stienstra, R.; Teerenstra, S.; McCrimmon, R.J.; Tack, C.J.; Pedersen-Bjergaard, U.; de Galan, B.E. Sustained proinflammatory effects of hypoglycemia in people with type 2 diabetes and in people without diabetes. Diabetes 2022, 71, 2716–2727. [Google Scholar] [CrossRef]
- Ayelign, B.; Genetu, M.; Wondmagegn, T.; Adane, G.; Negash, M.; Berhane, N. Tnf-α (−308) gene polymorphism and type 2 diabetes mellitus in ethiopian diabetes patients. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 2453–2459. [Google Scholar] [CrossRef]
- Jin, H.S.; Hong, K.W.; Lim, J.E.; Lee, G.J.; Han, J.H.; Go, M.J.; Lee, J.Y.; Woo, J.T.; Park, H.K.; Oh, B. Association analysis of v-AKT murine thymoma viral oncogene homolog 1 (AKT1) polymorphisms and type 2 diabetes mellitus in the Korean population. Genes Genom. 2009, 31, 73–83. [Google Scholar] [CrossRef]
- Roep, B.; Kleijwegt, F.; Van Halteren, A.; Bonato, V.; Boggi, U.; Vendrame, F.; Marchetti, P.; Dotta, F. Islet inflammation and CXCL10 in recent-onset type 1 diabetes. Clin. Exp. Immunol. 2010, 159, 338–343. [Google Scholar] [CrossRef]
- Qusay, M.A.; Zeiny, S.M.; Al-Maraashi, H.J. Serum CXCL 9 as a Potential Biomarker for Patients with Ulcerative Colitis. J. Fac. Med. Baghdad 2024, 66, 116–121. [Google Scholar] [CrossRef]
- Yu, J.; Wu, H.; Liu, Z.Y.; Zhu, Q.; Shan, C.; Zhang, K.Q. Advanced glycation end products induce the apoptosis of and inflammation in mouse podocytes through CXCL9-mediated JAK2/STAT3 pathway activation. Int. J. Mol. Med. 2017, 40, 1185–1193. [Google Scholar]
- Taheri, R.; Mokhtari, Y.; Yousefi, A.M.; Bashash, D. The PI3K/Akt signaling axis and type 2 diabetes mellitus (T2DM): From mechanistic insights into possible therapeutic targets. Cell Biol. Int. 2024, 48, 1049–1068. [Google Scholar]
- Vara, J.Á.F.; Casado, E.; de Castro, J.; Cejas, P.; Belda-Iniesta, C.; González-Barón, M. PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev. 2004, 30, 193–204. [Google Scholar]
- Feng, Y.; Ren, Y.; Zhang, X.; Yang, S.; Jiao, Q.; Li, Q.; Jiang, W. Metabolites of traditional Chinese medicine targeting PI3K/AKT signaling pathway for hypoglycemic effect in type 2 diabetes. Front. Pharmacol. 2024, 15, 1373711. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Mang, X.Y.; Jiang, K.W.; Zhao, Y.; Chen, Y.R. Swimming training promotes angiogenesis of endothelial progenitor cells by upregulating IGF1 expression and activating the PI3K/AKT pathway in type 2 diabetic rats. Mol. Med. Rep. 2024, 30, 237. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.L.; Xu, J.; Zhang, X.H.; Qiu, B.Y.; Peng, L.; Zhang, M.; Gan, H.T. PI3K/Akt signaling pathway is involved in the pathogenesis of ulcerative colitis. Inflamm. Res. 2011, 60, 727–734. [Google Scholar] [CrossRef]
- Han, Z.; Tan, X.; Sun, J.; Wang, T.; Yan, G.; Wang, C.; Ma, K. Systems pharmacology and transcriptomics reveal the mechanisms of Sanhuang decoction enema in the treatment of ulcerative colitis with additional Candida albicans infection. Chin. Med. 2021, 16, 75. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.H. Role of lipids in the MAPK signaling pathway. Prog. Lipid Res. 2006, 45, 102–119. [Google Scholar] [CrossRef]
- Xu, Q.; Ding, H.; Li, S.; Dong, S.; Li, L.; Shi, B.; Zhong, M.; Zhang, G. Sleeve gastrectomy ameliorates diabetes-induced cardiac hypertrophy correlates with the MAPK signaling pathway. Front. Physiol. 2021, 12, 785799. [Google Scholar] [CrossRef]
- Wang, M.; Xie, K.; Zhao, S.; Jia, N.; Zong, Y.; Gu, W.; Cai, Y. Aerobic exercise improves cognitive impairment in mice with type 2 diabetes by regulating the MALAT1/miR-382-3p/BDNF signaling pathway in serum-exosomes. Mol. Med. 2023, 29, 130. [Google Scholar]
- Liu, M.; Wang, L.; Huang, B.; Lu, Q.; Liu, R. 3, 4-Dihydroxyphenylacetic acid ameliorates gut barrier dysfunction via regulation of MAPK-MLCK pathway in type 2 diabetes mice. Life Sci. 2022, 305, 120742. [Google Scholar] [CrossRef]
- Borozdina, N.; Popkova, D.; Dyachenko, I. Promising Directions for Regulating Signaling Pathways Involved in the Type 2 Diabetes Mellitus Development. Bioorg. Himiâ 2024, 50, 412–435. [Google Scholar]
- Wang, Y.; Xiao, J.; Suzek, T.O.; Zhang, J.; Wang, J.; Bryant, S.H. PubChem: A public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 2009, 37, W623–W633. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar]
- Davis, A.P.; Wiegers, T.C.; Johnson, R.J.; Sciaky, D.; Wiegers, J.; Mattingly, C.J. Comparative toxicogenomics database (CTD): Update 2023. Nucleic Acids Res. 2023, 51, D1257–D1262. [Google Scholar] [PubMed]
- Pires, D.E.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2012, 64, 4–17. [Google Scholar] [CrossRef]
- Baruah, V.J.; Paul, R.; Gogoi, D.; Mazumder, N.; Chakraborty, S.; Das, A.; Mondal, T.K.; Sarmah, B. Integrated computational approach toward discovery of multi-targeted natural products from Thumbai (Leucas aspera) for attuning NKT cells. J. Biomol. Struct. Dyn. 2022, 40, 2893–2907. [Google Scholar] [CrossRef]
- Thomas, S.; Brightman, F.; Gill, H.; Lee, S.; Pufong, B. Simulation modelling of human intestinal absorption using Caco-2 permeability and kinetic solubility data for early drug discovery. J. Pharm. Sci. 2008, 97, 4557–4574. [Google Scholar] [CrossRef] [PubMed]
- Takemura, A.; Ishii, S.; Ikeyama, Y.; Esashika, K.; Takahashi, J.; Ito, K. New in vitro screening system to detect drug-induced liver injury using a culture plate with low drug sorption and high oxygen permeability. Drug Metab. Pharmacokinet. 2023, 52, 100511. [Google Scholar] [CrossRef] [PubMed]
- Pantaleão, S.Q.; Fernandes, P.O.; Gonçalves, J.E.; Maltarollo, V.G.; Honorio, K.M. Recent advances in the prediction of pharmacokinetics properties in drug design studies: A review. ChemMedChem 2022, 17, e202100542. [Google Scholar] [CrossRef]
- Paggi, J.M.; Pandit, A.; Dror, R.O. The art and science of molecular docking. Annu. Rev. Biochem. 2024, 93, 389–410. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Sousa da Silva, A.W.; Vranken, W.F. ACPYPE-Antechamber python parser interface. BMC Res. Notes 2012, 5, 367. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Lu, T.; Lim, H.; Xie, L. A Bayesian approach to accurate and robust signature detection on LINCS L1000 data. Bioinformatics 2020, 36, 2787–2795. [Google Scholar] [CrossRef]
- Wang, J.; Hou, T. Application of molecular dynamics simulations in molecular property prediction. 1. density and heat of vaporization. J. Chem. Theory Comput. 2011, 7, 2151–2165. [Google Scholar] [CrossRef]
Physicochemical Properties | Isotrifoliol | Licoisoflavanone | Sigmoidin-B | Vestitol |
---|---|---|---|---|
Molecular Weight (MW) | 298.25 | 354.358 | 356.374 | 272.3 |
No. of Rotatable Bonds (<10) | 1 | 1 | 3 | 2 |
No. of H-bond Acceptors (<10) | 6 | 6 | 6 | 4 |
No. of H-bond Donors (<5) | 2 | 3 | 4 | 2 |
LogP (<5) | 3.112 | 3.347 | 3.724 | 2.825 |
LogS (Water Solubility) | −3.67 | −5.93 | −5.58 | −4.45 |
Caco-2 (logPapp) Prediction | −4.62 | −5.02 | −5.81 | −4.74 |
Human Intestinal Absorption (HIA) | 0.998 | 0.959 | 0.881 | 0.985 |
Human Oral Bioavailability (20%) | 0.369 | 0.38 | 0.418 | 0.63 |
P-Glycoprotein Inhibitor | Non-Inhibitor | Non-Inhibitor | Non-Inhibitor | Non-Inhibitor |
VDss (Human) | 1.58 | 0.88 | 0.92 | 1.14 |
Blood–Brain Barrier (BBB) | −2.17 | −2.99 | −2.93 | −2.43 |
CYP3A4 Substrate Probability | Non-Substrate | Non-Substrate | Non-Substrate | Non-Substrate |
Clearance (mL/min/kg) | 2.7 | 10.29 | 10.42 | 6.85 |
Drug-Induced Liver Injury (DILI) | Safe | Safe | Safe | Safe |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; Sun, S.; Han, T.; Li, H.; Yao, F.; Zong, D.; Li, Z. Investigating the Therapeutic Mechanisms of Shen-Ling-Bai-Zhu-San in Type 2 Diabetes and Ulcerative Colitis Comorbidity: A Network Pharmacology and Molecular Simulation Approach. Pharmaceuticals 2025, 18, 1516. https://doi.org/10.3390/ph18101516
Yu Q, Sun S, Han T, Li H, Yao F, Zong D, Li Z. Investigating the Therapeutic Mechanisms of Shen-Ling-Bai-Zhu-San in Type 2 Diabetes and Ulcerative Colitis Comorbidity: A Network Pharmacology and Molecular Simulation Approach. Pharmaceuticals. 2025; 18(10):1516. https://doi.org/10.3390/ph18101516
Chicago/Turabian StyleYu, Qian, Shijie Sun, Tao Han, Haishui Li, Fan Yao, Dongsheng Zong, and Zuojing Li. 2025. "Investigating the Therapeutic Mechanisms of Shen-Ling-Bai-Zhu-San in Type 2 Diabetes and Ulcerative Colitis Comorbidity: A Network Pharmacology and Molecular Simulation Approach" Pharmaceuticals 18, no. 10: 1516. https://doi.org/10.3390/ph18101516
APA StyleYu, Q., Sun, S., Han, T., Li, H., Yao, F., Zong, D., & Li, Z. (2025). Investigating the Therapeutic Mechanisms of Shen-Ling-Bai-Zhu-San in Type 2 Diabetes and Ulcerative Colitis Comorbidity: A Network Pharmacology and Molecular Simulation Approach. Pharmaceuticals, 18(10), 1516. https://doi.org/10.3390/ph18101516