Bioactive Constituents and Antihypertensive Mechanisms of Zhengan Xifeng Decoction: Insights from Plasma UPLC–MS, Network Pharmacology and Molecular Dynamics Simulations
Abstract
1. Introduction
2. Results
2.1. Characterization of ZXD Chemical Constituents and Absorbed Compounds
2.2. ZXD Absorbed Compounds–Disease Target Network
2.3. Protein–Protein Interaction (PPI) Network Construction and Topological Analysis
2.4. GO and KEGG Enrichment of Common Targets
2.5. Molecular Docking Results for Key Compounds and Core Targets
2.6. MM-GBSA Binding Free Energies for Representative Protein–Ligand Complexes
2.7. Molecular Dynamics Simulations
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Animals
4.3. Preparation of ZXD
4.4. Sample Preparation
4.4.1. Preparation of ZXD Solution
4.4.2. Plasma Sample Collection and Preparation
4.5. Chromatography and Mass Spectrometry Conditions
4.6. Absorbed Compound Targets of ZXD
4.7. Collection of Potential Targets for ZXD
4.8. Construction of the Absorbed Compound–Target Network
4.9. Construction and Analysis of the Protein–Protein Interaction Network
4.10. GO and KEGG Enrichment Analyses
4.11. Molecular Docking Analysis
4.12. MM-GBSA Binding Free Energy Estimation
4.13. Molecular Dynamics Simulation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dzau, V.J.; Hodgkinson, C.P. Precision Hypertension. Hypertension 2024, 81, 702–708. [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide Trends in Hypertension Prevalence and Progress in Treatment and Control from 1990 to 2019: A Pooled Analysis of 1201 Population-Representative Studies with 104 Million Participants. Lancet 2021, 398, 957–980. [Google Scholar] [CrossRef]
- Wang, J.-G.; Zhang, W.; Li, Y.; Liu, L. Hypertension in China: Epidemiology and Treatment Initiatives. Nat. Rev. Cardiol. 2023, 20, 531–545. [Google Scholar] [CrossRef]
- Li, J. Traditional Chinese Medicine in Treating Hypertension. Circ. Cardiovasc. Qual. Outcomes 2022, 15, e008723. [Google Scholar] [CrossRef]
- Xiong, X.; Yang, X.; Liu, Y.; Zhang, Y.; Wang, P.; Wang, J. Chinese Herbal Formulas for Treating Hypertension in Traditional Chinese Medicine: Perspective of Modern Science. Hypertens. Res. 2013, 36, 570–579. [Google Scholar] [CrossRef]
- Xie, X.; Chen, L.; Miao, J.; Liu, W.; Chen, J.; Wu, C.; Zhang, L. Research of Zhengan Xifeng Decoction on JAK2 mRNA Expression and Protein Expression in Spontaneously Hypertensive Rats. Liaoning J. Tradit. Chin. Med. 2019, 46, 853–856. [Google Scholar] [CrossRef]
- Yan, C.; Jin, H.; Liu, F.; Dou, R.; Wen, X.; Chen, L.; Zhang, Q.; Xu, H. Effects of Zhengan Xifeng Decoction on blood pressure and gastrointestinal motility in spontaneously hypertensive rats. Chin. J. Inf. Tradit. Chin. Med. 2015, 22, 69–72. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, Y.; Shen, T.; Lu, Y.; Yang, J. A systematic review of efficacy and safety of Zhengan Xifeng Decoction combined with antihypertensive drugs in the treatment of primary hypertension. Pharmacol. Clin. Chin. Mater. Med. 2022, 38, 168–174. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Y.; Cai, H.; Chen, D.; He, X.; Li, Z.; Cai, X.; Peng, X.; Huang, Y.; Li, S.; et al. Herbal Medicine (Zhengan Xifeng Decoction) for Essential Hypertension Protocol for a Systematic Review and Meta-Analysis. Medicine 2019, 98, e14292. [Google Scholar] [CrossRef]
- Li, L.; Zuo, Y. Clinical effects observation of Combined Zhengan Xifeng decoction with Fosinopril on hyperactivity hypertension. Clin. J. Chin. Med. 2014, 6, 49–50. [Google Scholar] [CrossRef]
- Gu, P.; Zhang, M. Zhengan Xifeng Decoction treating plasma metabonomics of yin deficiency and yang hyperactivity type of hypertension. Liaoning J. Tradit. Chin. Med. 2016, 43, 1353–1355. [Google Scholar] [CrossRef]
- Liu, L. Clinical Study on Liver-Sedating and Wind-Extinguishing Decoction in the Treatment of Hypertension with Hyperactivity of Liver Yang. Henan Tradit. Chin. Med. 2022, 42, 1222–1225. [Google Scholar] [CrossRef]
- Xie, X.; Chen, L.; Miao, J.; Liu, W.; Chen, J.; Wu, C.; Zhang, L. Effects of Zhengan Xifeng Decoction on c-Src mRNA Expression and Protein Expression in Spontaneously Hypertensive Rats. Chin. Arch. Tradit. Chin. Med. 2018, 36, 2394–2396. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, X.; Jin, H.; Wu, Z.; Yan, C.; Liu, Z.; Xu, X.; Liu, S.; Zhu, F. Zhengganxifeng Decoction Affects Gut Microbiota and Reduces Blood Pressure via Renin-Angiotensin System. Biol. Pharm. Bull. 2019, 42, 1482–1490. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Jin, H.; Ling, B.; Qi, S.; Si, M.; Zhang, Q.; Wang, Y. Effect of Zhengan Xifengtang on blood pressure and fecal microflora of spontaneously hypertensive rats. Chin. J. Exp. Tradit. Med. Formulae 2024, 30, 76–85. [Google Scholar] [CrossRef]
- Xu, X.; Yu, X.; Jin, H.; Yan, C.; Zhang, Q. Effects of Zhengan Xifeng Decoction on intestinal mucosal barrier in spontaneously hypertensive rats. Chin. J. Tradit. Chin. Med. Pharm. 2020, 35, 2808–2812. Available online: https://qikan.cqvip.com/Qikan/Article/Detail?id=7102446323 (accessed on 29 September 2025).
- Li, H.; Wang, L.; Zhang, H.; Yu, W.; Li, Y.; Jiang, H.; Wang, D.; Wang, Y. Study on Material Basis and Anti-Hypertensive Metabolomics of Zhengan-Xifeng-Tang (ZXT): A Comparison between ZXT Decoction and Granules. J. Chromatogr. B 2024, 1236, 124063. [Google Scholar] [CrossRef]
- Xu, X.; Yu, X.; Jin, H.; Yan, C.; Zhang, Q. Influence of Zhengan Xifeng Decoction on blood pressure and cecal and colonic flora in spontaneously hypertensive rats. Pharmacol. Clin. Chin. Mater. Med. 2022, 38, 9–14. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, H.; Li, N.; Chen, J.; Xu, H.; Wang, Y.; Liang, Q. Network Pharmacology, a Promising Approach to Reveal the Pharmacology Mechanism of Chinese Medicine Formula. J. Ethnopharmacol. 2023, 309, 116306. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Liao, J.; Chen, Q.; Lu, X.; Fan, X. Network Pharmacology Approaches for Research of Traditional Chinese Medicines. Chin. J. Nat. Med. 2023, 21, 323–332. [Google Scholar] [CrossRef]
- Li, X.; Wei, S.; Niu, S.; Ma, X.; Li, H.; Jing, M.; Zhao, Y. Network Pharmacology Prediction and Molecular Docking-Based Strategy to Explore the Potential Mechanism of Huanglian Jiedu Decoction against Sepsis. Comput. Biol. Med. 2022, 144, 105389. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Jiao, Y.; Yang, M.; Wu, L.; Long, G.; Hu, W. Network Pharmacology, Molecular Docking and Molecular Dynamics to Explore the Potential Immunomodulatory Mechanisms of Deer Antler. Int. J. Mol. Sci. 2023, 24, 10370. [Google Scholar] [CrossRef]
- Peng, J.; Yang, K.; Tian, H.; Lin, Y.; Hou, M.; Gao, Y.; Zhou, X.; Gao, Z.; Ren, J. The Mechanisms of Qizhu Tangshen Formula in the Treatment of Diabetic Kidney Disease: Network Pharmacology, Machine Learning, Molecular Docking and Experimental Assessment. Phytomedicine 2023, 108, 154525. [Google Scholar] [CrossRef]
- Yang, J.; Hu, X.; Zhang, Y.; Zhao, L.; Yue, C.; Cao, Y.; Zhang, Y.; Zhao, Z. Direct observation of natural products bound to protein based on UHPLC-ESI-MS combined with molecular dynamics simulation. Chin. Chem. Lett. 2025, 36, 110128. [Google Scholar] [CrossRef]
- Wang, L.; Du, Z.; Guan, Y.; Wang, B.; Pei, Y.; Zhang, L.; Fang, M. Identifying Absorbable Bioactive Constituents of Yupingfeng Powder Acting on COVID-19 through Integration of UPLC-Q/TOF-MS and Network Pharmacology Analysis. Chin. Herb. Med. 2022, 14, 283–293. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New Data Content and Improved Web Interfaces. Nucleic Acids. Res. 2021, 49, D1388–D1395. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated Data and New Features for Efficient Prediction of Protein Targets of Small Molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef] [PubMed]
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; et al. TCMSP: A Database of Systems Pharmacology for Drug Discovery from Herbal Medicines. J. Cheminform. 2014, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Safran, M.; Solomon, I.; Shmueli, O.; Lapidot, M.; Shen-Orr, S.; Adato, A.; Ben-Dor, U.; Esterman, N.; Rosen, N.; Peter, I.; et al. GeneCards 2002: Towards a Complete, Object-Oriented, Human Gene Compendium. Bioinformatics 2002, 18, 1542–1543. [Google Scholar] [CrossRef]
- Amberger, J.S.; Hamosh, A. Searching Online Mendelian Inheritance in Man (OMIM): A Knowledgebase of Human Genes and Genetic Phenotypes. Curr. Protoc. Bioinform. 2017, 58, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING Database in 2023: Protein-Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Karar, J.; Maity, A. PI3K/AKT/mTOR Pathway in Angiogenesis. Front. Mol. Neurosci. 2011, 4, 51. [Google Scholar] [CrossRef]
- Liu, C.; Su, T.; Li, F.; Li, L.; Qin, X.; Pan, W.; Feng, F.; Chen, F.; Liao, D.; Chen, L. PI3K/Akt Signaling Transduction Pathway Is Involved in Rat Vascular Smooth Muscle Cell Proliferation Induced by Apelin-13. Acta Biochim. Biophys. Sin. 2010, 42, 396–402. [Google Scholar] [CrossRef]
- Majhi, R.; Kurmi, S.; Tayara, H.; Chong, K.T. Harnessing the Therapeutic Potential of Pomegranate Peel-Derived Bioactive Compounds in Pancreatic Cancer: A Computational Approach. Pharmaceuticals 2025, 18, 896. [Google Scholar] [CrossRef]
- Li, X.; Yang, H.; Xiao, J.; Zhang, J.; Zhang, J.; Liu, M.; Zheng, Y.; Ma, L. Network Pharmacology Based Investigation into the Bioactive Compounds and Molecular Mechanisms of Schisandrae Chinensis Fructus against Drug-Induced Liver Injury. Bioorg. Chem. 2020, 96, 103553. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Gao, C.; Liu, H.; Liu, X.; Yue, T. Exploring the Mechanism by Which Aqueous Gynura Divaricata Inhibits Diabetic Foot Based on Network Pharmacology, Molecular Docking and Experimental Verification. Mol. Med. 2023, 29, 11. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Y.; Pang, X.; Wang, X.; Zeng, H. Mechanisms of Polydatin against Spinal Cord Ischemia-Reperfusion Injury Based on Network Pharmacology, Molecular Docking and Molecular Dynamics Simulation. Bioorg. Chem. 2023, 140, 106840. [Google Scholar] [CrossRef]
- Wang, B.; Jiang, T.; Qi, Y.; Luo, S.; Xia, Y.; Lang, B.; Zhang, B.; Zheng, S. AGE-RAGE Axis and Cardiovascular Diseases: Pathophysiologic Mechanisms and Prospects for Clinical Applications. Cardiovasc. Drugs Ther. 2024; ahead of print. [Google Scholar] [CrossRef]
- Zou, L.; Zheng, L. Research progress of PI3K/AKt signaling pathway in the prevention and treatment of hypertension diseases. Med. Innovation China 2021, 18, 176–179. [Google Scholar] [CrossRef]
- Chen, Y.P.; Sivalingam, K.; Shibu, M.A.; Peramaiyan, R.; Day, C.H.; Shen, C.Y.; Lai, C.H.; Chen, R.J.; Viswanadha, V.P.; Chen, Y.F.; et al. Protective effect of Fisetin against angiotensin II-induced apoptosis by activation of IGF-IR-PI3K-Akt signaling in H9c2 cells and spontaneous hypertension rats. Phytomedicine 2019, 57, 1–8. [Google Scholar] [CrossRef]
- Giani, J.F.; Janjulia, T.; Taylor, B.; Bernstein, E.A.; Shah, K.; Shen, X.Z.; McDonough, A.A.; Bernstein, K.E.; Gonzalez-Villalobos, R.A. Renal generation of angiotensin II and the pathogenesis of hypertension. Curr. Hypertens. Rep. 2014, 16, 477. [Google Scholar] [CrossRef]
- Qin, B.; Zhou, J. Src Family Kinases (SFK) Mediate Angiotensin II-Induced Myosin Light Chain Phosphorylation and Hypertension. PLoS ONE 2015, 10, e0127891. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Zhang, Y.D.; Liu, C.Q. The application and efficacy evaluation of Zhengan Xifeng decoction in the treatment of yin deficiency and yang hyperactivity-type hypertension patients. Mod. Med. Health Res. 2022, 6, 90–93. Available online: https://qikan.cqvip.com/Qikan/Article/Detail?id=7108433475 (accessed on 29 September 2025).
- Jia, A.; Xu, L.; Wang, Y. Venn Diagrams in Bioinformatics. Brief. Bioinform. 2021, 22, bbab108. [Google Scholar] [CrossRef]
- Chen, B.; Huang, X.; Zhu, F.; Zhi, Y.; Mei, M.; Li, Y.; Xie, Y.; Zhu, Y.; Ren, S. Integrating network pharmacology and experimental verification to study the mechanism of Polygonum hydropiper total flavonoids against stress-induced gastric mucosal damage. Heliyon 2024, 10, e38629. [Google Scholar] [CrossRef] [PubMed]
- Zang, D.; Maimaiti, Z.; Mamat, N.; Ma, X.; Li, H.; Lu, X.; Turak, A.; Luo, Y.; Aisa, H. Investigating the effects and mechanisms of Vernonia anthelmintica (L.) Willd., seed extracts on melanogenesis and vitiligo treatment based on multi-omics and network pharmacology. J. Ethnopharmacol. 2025, 16, 120528. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhao, H.; Fan, Y.; Zhang, Y.; Wang, Y.; Li, B.; Yang, H.; Li, P. Network pharmacology-guided identification of bioactive equivalent combinatorial components in Lanqin Oral Liquid for acute pharyngitis treatment. J. Ethnopharmacol. 2025, 350, 120038. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level Datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef]












| No. | tR (min) | Element Composition | Ion Mode | Theoretical m/z | Observed m/z | Error (ppm) | Fragment Ions | Compounds | Sources |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 5.80 | C21H32O14 | ESI- | 553.1774 | 553.1793 | 3.4 | 507.1735, 147.0450, 89.0236 | 6-O-β-glucopyranosylaucubin | Xuanshen |
| 2 | 8.58 | C16H18O9 | ESI- | 353.0873 | 353.0882 | 2.5 | 353.0878, 191.0556, 179.0345, 135.0446, 134.0369, 85.0291 | chlorogenic acid | Yinchen |
| 3 | 8.71 | C16H24O8 | ESI- | 389.1453 | 389.1451 | −0.5 | 389.1451, 343.1408, 181.0869, 161.0462, 151.0768, 136.0533, 109.0666 | mudanpioside F | Baishao |
| 4 | 10.02 | C23H28O13S | ESI- | 543.1178 | 543.1177 | −0.2 | 543.1193, 421.0798, 259.0273, 121.0292 | paeoniflorin sulfite | Baishao |
| 5 | 10.49 | C16H18O9 | ESI- | 353.0873 | 353.0886 | 3.7 | 192.0599, 191.0568 | neochlorogenic acid | Yinchen |
| 6 | 10.90 | C16H18O9 | ESI- | 353.0873 | 353.0886 | 3.7 | 191.0545, 179.0341, 173.0441, 135.0443, 93.0339 | cryptochlorogenic acid | Yinchen |
| 7 | 17.42 | C23H28O11 | ESI- | 525.1608 | 525.1633 | 4.8 | 479.1573, 283.0818, 121.0296, 77.0392 | mudanpioside I | Baishao |
| 8 | 18.15 | C36H48O19 | ESI- | 783.2717 | 783.2721 | 0.5 | 783.2736, 607.2253, 175.0400 | angoroside C | Xuanshen |
| 9 | 19.19 | C22H22O9 | ESI- | 475.1246 | 475.1261 | 3.2 | 267.0655;252.0411 | formononetin glucoside | Gancao |
| 10 | 20.60 | C21H34O10 | ESI- | 491.2134 | 491.2142 | 1.6 | 491.2103, 445.2060, 293.0860, 191.0556, 89.0235, 59.0127 | pinen-10-yl vicianoside | Baishao |
| 11 | 29.78 | C42H62O17 | ESI- | 837.3914 | 837.3935 | 2.5 | 837.3963, 351.0556 | licorice saponin G2 | Gancao |
| 12 | 30.65 | C42H62O17 | ESI- | 837.3927 | 837.3929 | 0.2 | 837.3953, 351.0576 | uralsaponin U | Gancao |
| 13 | 36.23 | C20H16O6 | ESI- | 351.0869 | 351.0878 | 2.6 | 352.0877, 283.0960, 199.0754 | licoisoflavone B | Gancao |
| No. | Compounds | Sources | Average Shortest Pathlength | Betweenness Centrality | Degree |
|---|---|---|---|---|---|
| D11 | isoliquiritigenin | Gancao | 2.378698225 | 0.193318 | 41 |
| D3 | liquiritigenin | Gancao | 2.378698225 | 0.192043 | 41 |
| D8 | formononetin | Gancao | 2.414201183 | 0.184771 | 39 |
| D6 | caffeic acid | Yinchen | 2.485207101 | 0.127596 | 32 |
| P7 | β-ecdysterone | Niuxi | 2.674556213 | 0.146296 | 28 |
| D1 | paeonol | Baishao | 2.603550296 | 0.103937 | 25 |
| P5 | albiflorin | Baishao | 2.591715976 | 0.101707 | 25 |
| P14 | glycyrrhizic acid | Gancao | 2.686390533 | 0.040437 | 19 |
| P12 | licorice saponin G2 | Gancao | 2.816568047 | 0.029340 | 19 |
| P13 | uralsaponin U | Gancao | 2.816568047 | 0.029340 | 19 |
| No. | Key Compounds | Core Targets | PDB ID | Binding Energy (kcal·mol−1) |
|---|---|---|---|---|
| D3 | liquiritigenin | PIK3CA | 8EXL | −8.725 |
| IGF1R | 5FXS | −8.689 | ||
| PIK3CB | 4BFR | −8.133 | ||
| SRC | 4U5J | −7.763 | ||
| MET | 3DKC | −7.501 | ||
| P5 | albiflorin | EGFR | 7U99 | −6.017 |
| D6 | caffeic acid | PIK3CB | 4BFR | −7.113 |
| D11 | isoliquiritigenin | EGFR | 7U99 | −7.055 |
| IGF1R | 5FXS | −7.777 | ||
| D8 | formononetin | EGFR | 7U99 | −7.084 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, Y.; Lin, Z.; Li, N.; Zhang, Q.; Liu, S.; Si, M.; Jin, H. Bioactive Constituents and Antihypertensive Mechanisms of Zhengan Xifeng Decoction: Insights from Plasma UPLC–MS, Network Pharmacology and Molecular Dynamics Simulations. Pharmaceuticals 2025, 18, 1493. https://doi.org/10.3390/ph18101493
Wang Y, Li Y, Lin Z, Li N, Zhang Q, Liu S, Si M, Jin H. Bioactive Constituents and Antihypertensive Mechanisms of Zhengan Xifeng Decoction: Insights from Plasma UPLC–MS, Network Pharmacology and Molecular Dynamics Simulations. Pharmaceuticals. 2025; 18(10):1493. https://doi.org/10.3390/ph18101493
Chicago/Turabian StyleWang, Yu, Yiyi Li, Zhuoying Lin, Niping Li, Qiuju Zhang, Shuangfang Liu, Meilong Si, and Hua Jin. 2025. "Bioactive Constituents and Antihypertensive Mechanisms of Zhengan Xifeng Decoction: Insights from Plasma UPLC–MS, Network Pharmacology and Molecular Dynamics Simulations" Pharmaceuticals 18, no. 10: 1493. https://doi.org/10.3390/ph18101493
APA StyleWang, Y., Li, Y., Lin, Z., Li, N., Zhang, Q., Liu, S., Si, M., & Jin, H. (2025). Bioactive Constituents and Antihypertensive Mechanisms of Zhengan Xifeng Decoction: Insights from Plasma UPLC–MS, Network Pharmacology and Molecular Dynamics Simulations. Pharmaceuticals, 18(10), 1493. https://doi.org/10.3390/ph18101493

