Design and Preclinical Validation of an Anti-B7-H3-Specific Radiotracer: A Non-Invasive Imaging Tool to Guide B7-H3-Targeted Therapies
Abstract
1. Introduction
2. Results
2.1. Generation and Selection of Anti-B7-H3 sdAbs
2.2. Lead Anti-B7-H3 sdAbs Are Cross-Reactive and Efficiently Radiolabeled with 99mTc
2.3. [99mTc]Tc-sdAbs Allow Specific Non-Invasive Imaging of B7-H3 Expressing Tumors
3. Discussion
4. Materials and Methods
4.1. Cell Lines
4.2. Single-Domain Antibody Generation, Identification, and Production
4.3. ELISA
4.4. Flow Cytometry
4.5. Surface Plasmon Resonance (SPR)
4.6. Single-Cell Suspension of Tumors
4.7. Thermal Stability Assay
4.8. Radiolabelling of sdAbs with Technetium-99m (99mTc)
4.9. Radioligand-Specific Cell Binding Assay
4.10. Mouse Model
4.11. Micro-SPECT-CT Imaging
4.12. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, Y.T.; Tan, Y.J.; Oon, C.E. Molecular targeted therapy: Treating cancer with specificity. Eur. J. Pharmacol. 2018, 834, 188–196. [Google Scholar] [CrossRef]
- Choi, H.Y.; Chang, J.E. Targeted Therapy for Cancers: From Ongoing Clinical Trials to FDA-Approved Drugs. Int. J. Mol. Sci. 2023, 24, 13618. [Google Scholar] [CrossRef] [PubMed]
- Funeh, C.N.; Bridoux, J.; Ertveldt, T.; De Groof, T.W.M.; Chigoho, D.M.; Asiabi, P.; Covens, P.; D’huyvetter, M.; Devoogdt, N. Optimizing the Safety and Efficacy of Bio-Radiopharmaceuticals for Cancer Therapy. Pharmaceutics 2023, 15, 1378. [Google Scholar] [CrossRef] [PubMed]
- Mielcarska, S.; Kula, A.; Dawidowicz, M.; Waniczek, D.; Świętochowska, E. Prognostic Significance of B7H3 Expression in Solid Tumors: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2025, 26, 3044. [Google Scholar] [CrossRef] [PubMed]
- Chavin, G.; Sheinin, Y.; Crispen, P.L.; Boorjian, S.A.; Roth, T.J.; Rangel, L.; Blute, M.L.; Sebo, T.J.; Tindall, D.J.; Kwon, E.D.; et al. Expression of immunosuppresive B7-H3 ligand by hormone-treated prostate cancer tumors and metastases. Clin. Cancer Res. 2009, 15, 2174–2180. [Google Scholar] [PubMed]
- Digregorio, M.; Coppieters, N.; Lombard, A.; Lumapat, P.N.; Scholtes, F.; Rogister, B. The expression of B7-H3 isoforms in newly diagnosed glioblastoma and recurrence and their functional role. Acta Neuropathol. Commun. 2021, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Fauci, J.M.; Sabbatino, F.; Wang, Y.; Londoño-Joshi, A.I.; Straughn, J.M.; Landen, C.N.; Ferrone, S.; Buchsbaum, D.J. Monoclonal antibody-based immunotherapy of ovarian cancer: Targeting ovarian cancer cells with the B7-H3-specific mAb 376.96. Gynecol. Oncol. 2014, 132, 203–210. [Google Scholar]
- Sun, M.; Richards, S.; Prasad, D.V.R.; Mai, X.M.; Rudensky, A.; Dong, C. Characterization of Mouse and Human B7-H3 Genes. J. Immunol. 2002, 168, 6294–6297. [Google Scholar] [CrossRef]
- Chen, L.; Chen, J.; Xu, B.; Wang, Q.; Zhou, W.; Zhang, G.; Sun, J.; Shi, L.; Pei, H.; Wu, C.; et al. B7-H3 expression associates with tumor invasion and patient’s poor survival in human esophageal cancer. Am. J. Transl. Res. 2015, 7, 2646–2660. [Google Scholar] [PubMed] [PubMed Central]
- Lu, H.; Shi, T.; Wang, M.; Li, X.; Gu, Y.; Zhang, X.; Zhang, G.; Chen, W. B7-H3 inhibits the IFN-γ-dependent cytotoxicity of Vγ9Vδ2 T cells against colon cancer cells. OncoImmunology 2020, 9, 1748991. [Google Scholar]
- Kontos, F.; Michelakos, T.; Kurokawa, T.; Sadagopan, A.; Schwab, J.H.; Ferrone, C.R.; Ferrone, S. B7-H3: An attractive target for antibody-based immunotherapy. Clin. Cancer Res. 2021, 27, 1227–1235. [Google Scholar] [CrossRef] [PubMed]
- Seaman, S.; Zhu, Z.; Saha, S.; Zhang, X.M.; Yang, M.Y.; Hilton, M.B.; Morris, K.; Szot, C.; Morris, H.; Swing, D.A.; et al. Eradication of Tumors through Simultaneous Ablation of CD276/B7-H3-Positive Tumor Cells and Tumor Vasculature. Cancer Cell 2017, 31, 501–515. [Google Scholar] [CrossRef] [PubMed]
- Meeus, F.; Funeh, C.N.; Awad, R.M.; Zeven, K.; Autaers, D.; De Becker, A.; Van Riet, I.; Goyvaerts, C.; Tuyaerts, S.; Neyns, B.; et al. Preclinical evaluation of antigen-sensitive B7-H3-targeting nanobody-based CAR-T cells in glioblastoma cautions for on-target, off-tumor toxicity. J. Immunother. Cancer 2024, 12, e009110. [Google Scholar] [CrossRef] [PubMed]
- Kasten, B.B.; Ferrone, S.; Zinn, K.R.; Buchsbaum, D.J. B7-H3-targeted Radioimmunotherapy of Human Cancer. Curr. Med. Chem. 2019, 27, 4016–4038. [Google Scholar] [CrossRef]
- Michelakos, T.; Kontos, F.; Barakat, O.; Maggs, L.; Schwab, J.H.; Ferrone, C.R.; Ferrone, S. B7-H3 targeted antibody-based immunotherapy of malignant diseases. Expert. Opin. Biol. Ther. 2021, 21, 587–602. [Google Scholar] [CrossRef]
- Duerinck, J.; Schwarze, J.K.; Awada, G.; Tijtgat, J.; Vaeyens, F.; Bertels, C.; Geens, W.; Klein, S.; Seynaeve, L.; Cras, L.; et al. Intracerebral administration of CTLA-4 and PD-1 immune checkpoint blocking monoclonal antibodies in patients with recurrent glioblastoma: A phase I clinical trial. J. Immunother. Cancer 2021, 9, e002296. [Google Scholar] [CrossRef]
- Altan, M.; Pelekanou, V.; Schalper, K.A.; Toki, M.; Gaule, P.; Syrigos, K.; Herbst, R.S.; Rimm, D.L. B7-H3 expression in NSCLC and its association with B7-H4, PD-L1 and tumor-infiltrating lymphocytes. Clin. Cancer Res. 2017, 23, 5202–5209. [Google Scholar] [CrossRef]
- Zang, X.; Thompson, R.H.; Al-Ahmadie, H.A.; Serio, A.M.; Reuter, V.E.; Eastham, J.A.; Scardino, P.T.; Sharma, P.; Allison, J.P. B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc. Natl. Acad. Sci. USA 2007, 104, 19458–19463. [Google Scholar] [CrossRef]
- Tekle, C.; Nygren, M.K.; Chen, Y.W.; Dybsjord, I.; Nesland, J.M.; Mælandsmo, G.M.; Fodstad, Ø. B7-H3 contributes to the metastatic capacity of melanoma cells by modulation of known metastasis-associated genes. Int. J. Cancer 2012, 130, 2282–2290. [Google Scholar] [CrossRef]
- Arigami, T.; Narita, N.; Mizuno, R.; Nguyen, L.; Ye, X.; Chung, A.; Giuliano, A.E.; Hoon, D.S.B.M. B7-H3 ligand expression by primary breast cancer and associated with regional nodal metastasis. Ann. Surg. 2010, 252, 1044–1051. [Google Scholar] [CrossRef]
- Fernandes, B.; Olkowski, C.P.; Ghaemi, B.; Basuli, F.; Shi, J.; Kiesewetter, D.O.; Lang, L.; Elijah, E.; Swenson, R.; Choyke, P.L.; et al. Unraveling the dynamics of B7-H3-targeting therapeutic antibodies in cancer through PET imaging and antibody pharmacokinetics. J. Control. Release 2025, 379, 478–488. [Google Scholar] [PubMed]
- Zheng, M.; Liu, Q.; Zhang, H.; Wang, Y.; Zhang, K.; Mu, H.; Fu, F.; Zhang, X.; Wang, Y.; Miao, L. Development of a Specifically Labeled 89Zr Antibody for the Noninvasive Imaging of Tumors Overexpressing B7-H3. Mol. Pharm. 2024, 21, 5205–5216. [Google Scholar] [CrossRef] [PubMed]
- Oroujeni, M.; Bezverkhniaia, E.A.; Xu, T.; Liu, Y.; Plotnikov, E.V.; Karlberg, I.; Ryer, E.; Orlova, A.; Tolmachev, V.; Frejd, F.Y. Evaluation of an Affibody-Based Binder for Imaging of Immune Check-Point Molecule B7-H3. Pharmaceutics 2022, 14, 1780. [Google Scholar] [CrossRef] [PubMed]
- Oroujeni, M.; Bezverkhniaia, E.A.; Xu, T.; Liu, Y.; Plotnikov, E.V.; Klint, S.; Ryer, E.; Karlberg, I.; Orlova, A.; Frejd, F.Y.; et al. Evaluation of affinity matured Affibody molecules for imaging of the immune checkpoint protein B7-H3. Nucl. Med. Biol. 2023, 124–125, 108384. [Google Scholar] [CrossRef]
- Funeh, C.N.; Asiabi, P.; D’Huyvetter, M.; Devoogdt, N. Case Study #3: Antibody Fragments in Radiopharmaceutical Therapy. In Radiopharmaceutical Therapy; Springer: Cham, Switzerland, 2023; pp. 253–273. [Google Scholar]
- De Pauw, T.; De Mey, L.; Debacker, J.M.; Raes, G.; Van Ginderachter, J.A.; De Groof, T.W.M.; Devoogdt, N. Current status and future expectations of nanobodies in oncology trials. Expert Opin. Investig. Drugs 2023, 32, 705–721. [Google Scholar] [CrossRef]
- Gondry, O.; Caveliers, V.; Xavier, C.; Raes, L.; Vanhoeij, M.; Verfaillie, G.; Fontaine, C.; Glorieus, K.; De Grève, J.; Joris, S.; et al. Phase II Trial Assessing the Repeatability and Tumor Uptake of [68Ga]Ga-HER2 Single-Domain Antibody PET/CT in Patients with Breast Carcinoma. JNM 2024, 65, 178–184. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, C.; Xing, Y.; He, J.; O’doherty, J.; Huang, W.; Zhao, J. Development of a 99mTc-Labeled Single-Domain Antibody for SPECT/CT Assessment of HER2 Expression in Breast Cancer. Mol. Pharm. 2021, 18, 3616–3622. [Google Scholar] [CrossRef]
- DuBridge, R.B.; Vinogradova, M.; Zhu, Y. Coexpression and Purification Method of Conditionally Activated Binding Proteins. Patent WO2020033837A1, 13 February 2020. [Google Scholar]
- Lemaire, M.; D’Huyvetter, M.; Lahoutte, T.; Van Valckenborgh, E.; Menu, E.; De Bruyne, E.; Kronenberger, P.; Wernery, U.; Muyldermans, S.; Devoogdt, N.; et al. Imaging and radioimmunotherapy of multiple myeloma with anti-idiotypic Nanobodies. Leukemia 2014, 28, 444–447. [Google Scholar]
- Li, D.; Wang, R.; Liang, T.; Ren, H.; Park, C.; Tai, C.H.; Ni, W.; Zhou, J.; Mackay, S.; Edmondson, E.; et al. Camel nanobody-based B7-H3 CAR-T cells show high efficacy against large solid tumors. Nat. Commun. 2023, 14, 5920. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, C.; Liu, Z.; Yang, M.; Tang, X.; Wang, Y.; Zheng, M.; Huang, J.; Zhong, K.; Zhao, S.; et al. B7-H3-Targeted CAR-T Cells Exhibit Potent Antitumor Effects on Hematologic and Solid Tumors. Mol. Ther. Oncolytics 2020, 26, 180–189. [Google Scholar]
- De Groof, T.W.M.; Lauwers, Y.; De Pauw, T.; Saxena, M.; Vincke, C.; Van Craenenbroeck, J.; Chapon, C.; Le Grand, R.; Raes, G.; Naninck, T.; et al. Specific imaging of CD8 + T-Cell dynamics with a nanobody radiotracer against human CD8β. Eur. J. Nucl. Med. Mol. Imaging 2024, 52, 193–207. [Google Scholar]
- Zeven, K.; De Groof, T.W.M.; Ceuppens, H.; Awad, R.M.; Ertveldt, T.; de Mey, W.; Meeus, F.; Raes, G.; Breckpot, K.; Devoogdt, N. Development and evaluation of nanobody tracers for noninvasive nuclear imaging of the immune-checkpoint TIGIT. Front. Immunol. 2023, 14, 1268900. [Google Scholar] [CrossRef]
- Dewulf, J.; Massa, S.; Navarro, L.; Dekempeneer, Y.; Santens, F.; Ceuppens, H.; Breckpot, K.; Van Ginderachter, J.A.; Lahoutte, T.; D’hUyvetter, M.; et al. Development and evaluation of a single domain antibody targeting folate receptor alpha for radioligand therapy. J. Nanobiotechnol. 2024, 22, 763. [Google Scholar]
- Alqahtani, F.F. SPECT/CT and PET/CT, related radiopharmaceuticals, and areas of application and comparison. Saudi Pharm. J. 2023, 31, 312–328. [Google Scholar]
- Heidari, M.M.; Shirazi, E.A.; Cheraghi, S.F.; Shahshahani, R.; Rahnama, T.; Khatami, M. CDR grafting and site-directed mutagenesis approach for the generation and affinity maturation of Anti-CD20 nanobody. Mol. Biol. Rep. 2024, 51, 751. [Google Scholar]
- Cunningham, B.C.; Wells, J.A. High-Resolution Epitope Mapping of hGH-Receptor Interactions by Alanine-Scanning Mutagenesis. Science 1989, 244, 1081–1085. [Google Scholar] [CrossRef]
- Clark, L.A.; Boriack-Sjodin, P.A.; Eldredge, J.; Fitch, C.; Friedman, B.; Hanf, K.J.M.; Jarpe, M.; Liparoto, S.F.; Li, Y.; Lugovskoy, A.; et al. Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design. Protein Sci. 2006, 15, 949–960. [Google Scholar] [PubMed]
- Wang, Z.; Yang, J.; Zhu, Y.; Zhu, Y.; Zhang, B.; Zhou, Y. Differential expression of 2IgB7-H3 and 4IgB7-H3 in cancer cell lines and glioma tissues. Oncol. Lett. 2015, 10, 2204–2208. [Google Scholar] [PubMed]
- Zeven, K.; Dierick, H.; Sevenois, M.; Baudhuin, H.; Navarro, L.; Van den Block, S.; Saliën, J.; Breckpot, K.; Bridoux, J.; De Groof, T.W.M.; et al. Optimizing antibody PET imaging: A comparative preclinical analysis of nanobody and minibody-like PET tracers. Eur. J. Nucl. Med. Mol. Imaging 2025, 52, 3833–3845. [Google Scholar] [PubMed]
- D’Huyvetter, M.; Vincke, C.; Xavier, C.; Aerts, A.; Impens, N.; Baatout, S.; De Raeve, H.; Muyldermans, S.; Caveliers, V.; Devoogdt, N.; et al. Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody. Theranostics 2014, 4, 708–720. [Google Scholar] [CrossRef]
- Vegt, E.; Melis, M.; Eek, A.; De Visser, M.; Brom, M.; Oyen, W.J.G.; Gotthardt, M.; de Jong, M.; Boerman, O.C. Renal uptake of different radiolabelled peptides is mediated by megalin: SPECT and biodistribution studies in megalin-deficient mice. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 623–632. [Google Scholar]
- Christensen, E.I.; Birn, H.; Verroust, P.; Moestrup, S.K. Megalin-mediated endocytosis in renal proximal tubule. Ren. Fail. 1998, 20, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Holik, H.A.; Ibrahim, F.M.; Elaine, A.A.; Putra, B.D.; Achmad, A.; Kartamihardja, A.H.S. The Chemical Scaffold of Theranostic Radiopharmaceuticals: Radionuclide, Bifunctional Chelator, and Pharmacokinetics Modifying Linker. Molecules 2022, 27, 3062. [Google Scholar] [CrossRef] [PubMed]
- Barone, R.; Pauwels, S.; De Camps, J.; Krenning, E.P.; Kvols, L.K.; Smith, M.C.; Bouterfa, H.; Devuyst, O.; Jamar, F. Metabolic effects of amino acid solutions infused for renal protection during therapy with radiolabelled somatostatin analogues. Nephrol. Dial. Transplant. 2004, 19, 2275–2281. [Google Scholar] [CrossRef] [PubMed]
- Yim, C.B.; Mikkola, K.; Fagerholm, V.; Elomaa, V.V.; Ishizu, T.; Rajander, J.; Schlesinger, J.; Roivainen, A.; Nuutila, P.; Solin, O. Synthesis and preclinical characterization of [64Cu]NODAGA-MAL-exendin-4 with a Nε-maleoyl-l-lysyl-glycine linkage. Nucl. Med. Biol. 2013, 40, 1006–1012. [Google Scholar] [CrossRef]
- Poty, S.; Ordas, L.; Dekempeneer, Y.; Parach, A.A.; Navarro, L.; Santens, F.; Dumauthioz, N.; Bardiès, M.; Lahoutte, T.; D’hUyvetter, M.; et al. Optimizing the Therapeutic Index of sdAb-Based Radiopharmaceuticals Using Pretargeting. J. Nucl. Med. 2024, 65, 1564–1570. [Google Scholar]
- Dierick, H.; Navarro, L.; Ceuppens, H.; Ertveldt, T.; Pombo Antunes, A.R.; Keyaerts, M.; Devoogdt, N.; Breckpot, K.; D’hUyvetter, M.; Lahoutte, T.; et al. Generic semi-automated radiofluorination strategy for single domain antibodies: [18F]FB-labelled single domain antibodies for PET imaging of fibroblast activation protein-α or folate receptor-α overexpression in cancer. EJNMMI Radiopharm. Chem. 2024, 9, 54. [Google Scholar]
- Zhang, Y.; Xiao, L.; Popovic, K.; Xie, X.; Chordia, M.D.; Chung, L.W.K.; Williams, M.B.; Yue, W.; Pan, D. Novel cancer-targeting SPECT/NIRF dual-modality imaging probe 99mTc-PC-1007: Synthesis and biological evaluation. Bioorg. Med. Chem. Lett. 2013, 23, 6350–6354. [Google Scholar] [CrossRef]
- Xue, X.; Li, Q.; Zhang, P.; Xue, Y.; Zhao, Y.; Ye, Y.; Li, J.; Li, Y.; Zhao, L.; Shao, G. PET/NIR Fluorescence Bimodal Imaging for Targeted Tumor Detection. Mol. Pharm. 2023, 20, 6262–6271. [Google Scholar] [CrossRef]
- Vincke, C.; Gutiérrez, C.; Wernery, U.; Devoogdt, N.; Hassanzadeh-ghassabeh, G.; Muyldermans, S. Generation of single domain antibody fragments derived from camelids and generation of manifold constructs. Methods Mol. Biol. 2012, 907, 145–176. [Google Scholar]
- Xavier, C.; Devoogdt, N.; Hernot, S.; Vaneycken, I.; D’Huyvetter, M.; De Vos, J.; Massa, S.; Lahoutte, T.; Caveliers, V. Site-specific labeling of his-tagged nanobodies with 99mTc: A practical guide. In Single Domain Antibodies: Methods and Protocols; Series Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2012; Volume 911, pp. 485–490. [Google Scholar]
SdAb | Affinity and Kinetics Parameters on 4IgB7-H3 | KD Values on Cell (nM) | Melting Temperature (°C) | |||
---|---|---|---|---|---|---|
ka (1/M.s) | kd (1/s) | KD (nM) | U87-MG | SK-OV-3 | ||
First-generation sdAbs | ||||||
Nb2 | 2.08 × 106 | 1.34 × 10−1 | 341 | 121 | 33 | 61.0 ± 0.2 |
Nb16 | 2.08 × 106 | 1.34 × 10−1 | 126 | 178 | 228 | 71.0 ± 0.5 |
Nb29 | 1.84 × 105 | 2.40 × 10−2 | 130 | 115 | 23 | 70.0 ± 0.2 |
Nb38 | 2.49 × 106 | 2.31 × 10−1 | 92 | 325 | 257 | 65.0 ± 0.3 |
Nb39 | 1.28 × 106 | 1.52 × 10−1 | 118 | 114 | 108 | 56.0 ± 0.3 |
Nb43 | 9.26 × 105 | 1.07 × 10−1 | 115 | 256 | 66 | 54.0 ± 00 |
Nb44 | 2.23 × 106 | 2.29 × 10−1 | 102 | 244 | 79 | 77.0 ± 00 |
Nb55 | 2.90 × 106 | 1.96 × 10−1 | 67 | 289 | 22 | 66.0 ± 0.1 |
Nb62 | 9.85 × 105 | 9.87 × 10−2 | 100 | 289 | 29 | 53.0 ± 0.3 |
Nb67 | 9.72 × 105 | 1.08 × 10−1 | 111 | 240 | 75 | 54.0 ± 0.5 |
Nb68 | 6.83 × 105 | 1.11 × 10−1 | 161 | 219 | 158 | 52.0 ± 0.3 |
Nb75 | 1.86 × 106 | 2.60 × 10−1 | 140 | 895 | 731 | 78.0 ± 0.2 |
Nb78 | 2.16 × 106 | 2.28 × 10−1 | 105 | 104 | 66 | 71.0 ± 0.2 |
Second-generation sdAbs | ||||||
C22 | 1.30 × 106 | 1.16 × 10−1 | 89 | 198 | 265 | 55.0 ± 0.3 |
C51 | 2.39 × 106 | 5.78 × 10−2 | 24 | 20 | 48 | 55.0 ± 0.4 |
C80 | 1.42 × 106 | 1.14 × 10−1 | 80 | 159 | 363 | 54.8 ± 0.2 |
Benchmark sdAb | ||||||
Nb0 | 2.37 × 106 | 3.36 × 10−2 | 14 | 36 | 42 | 68.0 ± 00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Funeh, C.N.; Meeus, F.; Van Winnendael, N.; De Groof, T.W.M.; D’Huyvetter, M.; Devoogdt, N. Design and Preclinical Validation of an Anti-B7-H3-Specific Radiotracer: A Non-Invasive Imaging Tool to Guide B7-H3-Targeted Therapies. Pharmaceuticals 2025, 18, 1477. https://doi.org/10.3390/ph18101477
Funeh CN, Meeus F, Van Winnendael N, De Groof TWM, D’Huyvetter M, Devoogdt N. Design and Preclinical Validation of an Anti-B7-H3-Specific Radiotracer: A Non-Invasive Imaging Tool to Guide B7-H3-Targeted Therapies. Pharmaceuticals. 2025; 18(10):1477. https://doi.org/10.3390/ph18101477
Chicago/Turabian StyleFuneh, Cyprine Neba, Fien Meeus, Niels Van Winnendael, Timo W. M. De Groof, Matthias D’Huyvetter, and Nick Devoogdt. 2025. "Design and Preclinical Validation of an Anti-B7-H3-Specific Radiotracer: A Non-Invasive Imaging Tool to Guide B7-H3-Targeted Therapies" Pharmaceuticals 18, no. 10: 1477. https://doi.org/10.3390/ph18101477
APA StyleFuneh, C. N., Meeus, F., Van Winnendael, N., De Groof, T. W. M., D’Huyvetter, M., & Devoogdt, N. (2025). Design and Preclinical Validation of an Anti-B7-H3-Specific Radiotracer: A Non-Invasive Imaging Tool to Guide B7-H3-Targeted Therapies. Pharmaceuticals, 18(10), 1477. https://doi.org/10.3390/ph18101477