UCHL1 Promotes Gastric Cancer Progression by Regulating CIP2A Degradation
Abstract
1. Introduction
2. Results
2.1. UCHL1 Is Highly Expressed in Gastric Cancer Tissues
2.2. UCHL1 Knockdown Suppresses Cell Growth in Gastric Cancer Cells
2.3. UCHL1 Interacts with and Deubiquitinates CIP2A
2.4. UCHL1 Regulates Cyclin D1 Through the CIP2A-Mediated Signaling Pathway
2.5. LDN-57444 Treatment Resulted in the Cell Cycle Arrest in Gastric Cancer Cells
3. Discussion
4. Materials and Methods
4.1. Reagents and Antibodies
4.2. Patients and Gastric Tissue Samples
4.3. Cell Culture
4.4. Immunohistochemistry (IHC) Staining
4.5. Transfection of Plasmids or siRNAs
4.6. Western Blot Analysis
4.7. Immunoprecipitation
4.8. Mass Spectrometry Analysis
4.9. Flow Cytometry for the Detection of Cell Cycle
4.10. Cell Synchronization
4.11. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GC | Gastric Cancer |
UPS | Ubiquitin Proteasome System |
DUB | Deubiquitinating Enzyme |
CIP2A | Cancerous Inhibitor of Protein Phosphatase |
PP2A | Protein Phosphatase 2A |
BAP1 | BRCA1-associated protein 1 |
E2F1 | E2F transcription factor 1 |
UCHL1 | Ubiquitin C-terminal Hydrolase L1 |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Ma, J.; Shen, H.; Kapesa, L.; Zeng, S. Lauren classification and individualized chemotherapy in gastric cancer. Oncol. Lett. 2016, 11, 2959–2964. [Google Scholar] [CrossRef] [PubMed]
- Sundar, R.; Nakayama, I.; Markar, S.R.; Shitara, K.; van Laarhoven, H.W.M.; Janjigian, Y.Y.; Smyth, E.C. Gastric cancer. Lancet 2025, 405, 2087–2102. [Google Scholar] [CrossRef] [PubMed]
- Conti, C.B.; Agnesi, S.; Scaravaglio, M.; Masseria, P.; Dinelli, M.E.; Oldani, M.; Uggeri, F. Early Gastric Cancer: Update on Prevention, Diagnosis and Treatment. Int. J. Environ. Res. Public Health 2023, 20, 2149. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M. Epidemiology of Gastric Cancer—Changing Trends and Global Disparities. Cancers 2024, 16, 2948. [Google Scholar] [CrossRef]
- Liu, F.; Chen, J.; Li, K.; Li, H.; Zhu, Y.; Zhai, Y.; Lu, B.; Fan, Y.; Liu, Z.; Chen, X.; et al. Ubiquitination and deubiquitination in cancer: From mechanisms to novel therapeutic approaches. Mol. Cancer 2024, 23, 148. [Google Scholar] [CrossRef]
- Muller, L.; Hoppe, T. UPS-dependent strategies of protein quality control degradation. Trends Biochem. Sci. 2024, 49, 859–874. [Google Scholar] [CrossRef]
- An, T.; Lu, Y.; Gong, Z.; Wang, Y.; Su, C.; Tang, G.; Hou, J. Research Progress for Targeting Deubiquitinases in Gastric Cancers. Cancers 2022, 14, 5831. [Google Scholar] [CrossRef]
- Murali, P.; Kavitha, B.; Narasimhan, M. Deubiquitinases and Cancer. J. Pharm. Bioallied Sci. 2024, 16 (Suppl. S5), S4210–S4220. [Google Scholar] [CrossRef]
- Xian, Y.; Ye, J.; Tang, Y.; Zhang, N.; Peng, C.; Huang, W.; He, G. Deubiquitinases as novel therapeutic targets for diseases. MedComm 2024, 5, e70036. [Google Scholar] [CrossRef]
- Cao, Y.; Yi, Y.; Han, C.; Shi, B. NF-kappaB signaling pathway in tumor microenvironment. Front. Immunol. 2024, 15, 1476030. [Google Scholar] [CrossRef]
- Iluta, S.; Nistor, M.; Buruiana, S.; Dima, D. Wnt Signaling Pathway in Tumor Biology. Genes 2024, 15, 1597. [Google Scholar] [CrossRef]
- Yang, X.; Wu, H. RAS signaling in carcinogenesis, cancer therapy and resistance mechanisms. J. Hematol. Oncol. 2024, 17, 108. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liang, X.; Wei, R.; Guo, F.; Qin, G.; Yu, H.; Liu, J.; Xia, W.; Gou, S.; Wu, H.; et al. BAP1 Represses Sequential Activation of IRAKs and NF-kappaB Signaling in Pancreatic Cancer. Int. J. Biol. Sci. 2025, 21, 1949–1965. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, N.; Li, M.; Hong, T.; Meng, W.; Ouyang, T. Ubiquitin C-terminal hydrolase-L1: A new cancer marker and therapeutic target with dual effects (Review). Oncol. Lett. 2023, 25, 123. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, N.; Shi, L. Potential roles of UCH family deubiquitinases in tumorigenesis and chemical inhibitors developed against them. Am. J. Cancer Res. 2024, 14, 2666–2694. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, Y.M.; Lim, S.; Nam, Y.K.; Jeong, J.; Kim, H.J.; Lee, K.J. Ubiquitin C-terminal hydrolase-L1 is a key regulator of tumor cell invasion and metastasis. Oncogene 2009, 28, 117–127. [Google Scholar] [CrossRef]
- Seo, E.Y.; Jin, S.P.; Sohn, K.C.; Park, C.H.; Lee, D.H.; Chung, J.H. UCHL1 Regulates Melanogenesis through Controlling MITF Stability in Human Melanocytes. J. Investig. Dermatol. 2017, 137, 1757–1765. [Google Scholar] [CrossRef]
- Xiang, T.; Li, L.; Yin, X.; Yuan, C.; Tan, C.; Su, X.; Xiong, L.; Putti, T.C.; Oberst, M.; Kelly, K.; et al. The ubiquitin peptidase UCHL1 induces G0/G1 cell cycle arrest and apoptosis through stabilizing p53 and is frequently silenced in breast cancer. PLoS ONE 2012, 7, e29783. [Google Scholar] [CrossRef]
- Yu, J.; Tao, Q.; Cheung, K.F.; Jin, H.; Poon, F.F.; Wang, X.; Li, H.; Cheng, Y.Y.; Rocken, C.; Ebert, M.P.; et al. Epigenetic identification of ubiquitin carboxyl-terminal hydrolase L1 as a functional tumor suppressor and biomarker for hepatocellular carcinoma and other digestive tumors. Hepatology 2008, 48, 508–518. [Google Scholar] [CrossRef]
- Chen, B.; Hu, H.; Chen, X. From Basic Science to Clinical Practice: The Role of Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A)/p90 in Cancer. Front. Genet. 2023, 14, 1110656. [Google Scholar] [CrossRef]
- Fang, D.; Ou, X.; Sun, K.; Zhou, X.; Li, Y.; Shi, P.; Zhao, Z.; He, Y.; Peng, J.; Xu, J. m6A modification-mediated lncRNA TP53TG1 inhibits gastric cancer progression by regulating CIP2A stability. Cancer Sci. 2022, 113, 4135–4150. [Google Scholar] [CrossRef]
- Laine, A.; Nagelli, S.G.; Farrington, C.; Butt, U.; Cvrljevic, A.N.; Vainonen, J.P.; Feringa, F.M.; Gronroos, T.J.; Gautam, P.; Khan, S.; et al. CIP2A Interacts with TopBP1 and Drives Basal-Like Breast Cancer Tumorigenesis. Cancer Res. 2021, 81, 4319–4331. [Google Scholar] [CrossRef]
- Liang, L.J.; Yang, F.Y.; Wang, D.; Zhang, Y.F.; Yu, H.; Wang, Z.; Sun, B.B.; Liu, Y.T.; Wang, G.Z.; Zhou, G.B. CIP2A induces PKM2 tetramer formation and oxidative phosphorylation in non-small cell lung cancer. Cell Discov. 2024, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Nagelli, S.; Westermarck, J. CIP2A coordinates phosphosignaling, mitosis, and the DNA damage response. Trends Cancer 2024, 10, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Chen, H.; Qiao, L.; Zhang, W.; Zheng, J.; Zhao, W.; Chen, J.J.; Zhang, W. CIP2A facilitates the G1/S cell cycle transition via B-Myb in human papillomavirus 16 oncoprotein E6-expressing cells. J. Cell Mol. Med. 2018, 22, 4150–4160. [Google Scholar] [CrossRef] [PubMed]
- De, P.; Carlson, J.; Leyland-Jones, B.; Dey, N. Oncogenic nexus of cancerous inhibitor of protein phosphatase 2A (CIP2A): An oncoprotein with many hands. Oncotarget 2014, 5, 4581–4602. [Google Scholar] [CrossRef]
- Dhanasekaran, R.; Deutzmann, A.; Mahauad-Fernandez, W.D.; Hansen, A.S.; Gouw, A.M.; Felsher, D.W. The MYC oncogene—The grand orchestrator of cancer growth and immune evasion. Nat. Rev. Clin. Oncol. 2022, 19, 23–36. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Ma, L.B.; Yang, Z.; Wang, F.; Wang, H.Y.; Dang, J.Y. Cancerous inhibitor of protein phosphatase 2A enhances chemoresistance of gastric cancer cells to oxaliplatin. World J. Gastrointest. Oncol. 2023, 15, 286–302. [Google Scholar] [CrossRef]
- Pavic, K.; Gupta, N.; Omella, J.D.; Derua, R.; Aakula, A.; Huhtaniemi, R.; Maatta, J.A.; Hofflin, N.; Okkeri, J.; Wang, Z.; et al. Structural mechanism for inhibition of PP2A-B56alpha and oncogenicity by CIP2A. Nat. Commun. 2023, 14, 1143. [Google Scholar] [CrossRef]
- Seth, A.; Gupta, S.; Davis, R.J. Cell cycle regulation of the c-Myc transcriptional activation domain. Mol. Cell Biol. 1993, 13, 4125–4136. [Google Scholar] [CrossRef] [PubMed]
- Geng, B.; Wang, X.; Park, K.H.; Lee, K.E.; Kim, J.; Chen, P.; Zhou, X.; Tan, T.; Yang, C.; Zou, X.; et al. UCHL1 protects against ischemic heart injury via activating HIF-1alpha signal pathway. Redox Biol. 2022, 52, 102295. [Google Scholar] [CrossRef] [PubMed]
- Jansen, C.; McAdams, J.; Kim, C.; De La Cruz, P.; Salaverria, A.; DaSilva, N.A.; Grive, K.; James, N.E. Small molecule inhibition of ubiquitin C-terminal hydrolase L1 alters cell metabolism proteins and exerts anti- or pro-tumorigenic effects contingent upon chemosensitivity status in high grade serous ovarian cancer. Front. Pharmacol. 2025, 16, 1547164. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, E.; Hwang, D.; Bheda-Malge, A.; Whitehurst, C.B.; Kabanov, A.V.; Kondo, S.; Aga, M.; Yoshizaki, T.; Pagano, J.S.; Sokolsky, M.; et al. Inhibition of UCH-L1 Deubiquitinating Activity with Two Forms of LDN-57444 Has Anti-Invasive Effects in Metastatic Carcinoma Cells. Int. J. Mol. Sci. 2019, 20, 3733. [Google Scholar] [CrossRef]
- Shi, S.; Yuan, H.; Zhang, L.; Gao, L.; Zhao, L.; Zeng, X.; Qiao, S.; Chu, G.; Cai, C. UCHL1 promotes the proliferation of porcine granulosa cells by stabilizing CCNB1. J. Anim. Sci. Biotechnol. 2024, 15, 85. [Google Scholar] [CrossRef]
- Bonacci, T.; Emanuele, M.J. Dissenting degradation: Deubiquitinases in cell cycle and cancer. Semin. Cancer Biol. 2020, 67, 145–158. [Google Scholar] [CrossRef]
- Kamseng, P.; Siriboonpiputtana, T.; Puavilai, T.; Chuncharunee, S.; Paisooksantivatana, K.; Chareonsirisuthigul, T.; Junking, M.; Chiraphapphaiboon, W.; Yenchitsomanus, P.T.; Rerkamnuaychoke, B. Targeting UCHL1 Induces Cell Cycle Arrest in High-Risk Multiple Myeloma with t(4;14). Pathol. Oncol. Res. 2021, 27, 606567. [Google Scholar] [CrossRef]
- Jin, J.O.; Lee, G.D.; Nam, S.H.; Lee, T.H.; Kang, D.H.; Yun, J.K.; Lee, P.C. Sequential ubiquitination of p53 by TRIM28, RLIM, and MDM2 in lung tumorigenesis. Cell Death Differ. 2021, 28, 1790–1803. [Google Scholar] [CrossRef]
- Kim, S.J.; Hyeong Lee, T.; Hee Nam, S.; Kim, J.H.; Oh, S.; Sook Cho, Y.; Sup Lee, M.; Choi, S.; Lee, P.C. Association of Uba6-Specific-E2 (USE1) With Lung Tumorigenesis. J. Natl. Cancer Inst. 2017, 109, djw224. [Google Scholar] [CrossRef]
- Lee, P.C.; Sowa, M.E.; Gygi, S.P.; Harper, J.W. Alternative ubiquitin activation/conjugation cascades interact with N-end rule ubiquitin ligases to control degradation of RGS proteins. Mol. Cell 2011, 43, 392–405. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, G.-y.; Jeong, I.-h.; Kim, B.S.; Kim, H.-S.; Lee, P.C.-W. UCHL1 Promotes Gastric Cancer Progression by Regulating CIP2A Degradation. Pharmaceuticals 2025, 18, 1468. https://doi.org/10.3390/ph18101468
Lee G-y, Jeong I-h, Kim BS, Kim H-S, Lee PC-W. UCHL1 Promotes Gastric Cancer Progression by Regulating CIP2A Degradation. Pharmaceuticals. 2025; 18(10):1468. https://doi.org/10.3390/ph18101468
Chicago/Turabian StyleLee, Ga-ye, In-ho Jeong, Byung Sik Kim, Hee-Sung Kim, and Peter Chang-Whan Lee. 2025. "UCHL1 Promotes Gastric Cancer Progression by Regulating CIP2A Degradation" Pharmaceuticals 18, no. 10: 1468. https://doi.org/10.3390/ph18101468
APA StyleLee, G.-y., Jeong, I.-h., Kim, B. S., Kim, H.-S., & Lee, P. C.-W. (2025). UCHL1 Promotes Gastric Cancer Progression by Regulating CIP2A Degradation. Pharmaceuticals, 18(10), 1468. https://doi.org/10.3390/ph18101468