Small-Molecule Inhibitors of Amyloid Beta: Insights from Molecular Dynamics—Part B: Natural Compounds
Abstract
1. Introduction
2. Oligomeric Structures and Stabilizing Interactions
3. Molecular Dynamics Simulations
4. Natural Compounds with Scaffold 1 Inhibiting Aβ
4.1. Curcumin (CCN)
4.2. Rosmarinic Acid (RA)
4.3. Lemairamin (Gx-50; Wgx-50)
4.4. Resveratrol (RESV)
4.5. Piceatannol (PCT)
4.6. Oleuropein (OLEU) and Oleuropein Aglycone (OleuA)
5. Natural Compounds with Flavonoid Scaffold Inhibiting Aβ
5.1. (-)- Epigallocatechin-3-gallate (EGCG)
FF/Water Model | Duration per System, ns | Aβ Length/PDB ID/Type (Monomer/Dimer/ (Proto-) Fibril) | Inhibitor * | Main Findings | Ref. |
---|---|---|---|---|---|
GROMOS96 53a6/SPC/300 and 330 K | 300 | Aβ1-42/1IYT/monomer | 5 and 10 EGCG | inhibits β-sheet dose-dependently; key contact residues: F4, R5, F19, F20, K28, G29, L34, M35, V36, G37, and I41; forms H- bonds with F20, K28, G29, G37, and I41; hydrophobic contacts with F4, F20, K28, G29, M35, and I41 | 2011 [302] |
REMD/Amber99SB-ILDN/TIP3P | NA | Aβ16-22/generated/six monomers | EGCG | two ways for preventing Aβ oligomerization—by accelerating oligomerization or by reducing β-sheet content | 2017 [303] |
REMD/OPLS-AA/SPC | 200 | Aβ1-42/1IYT/dimer | 10 EGCG | contacts with main chains of R5, G29/A30, G37/G38/V39, A42, and with side chains of F4, Y10, F19/F20, I31/I32, M35/V36, V39 and I41; forms a stable complex with the dimer and leads to remarkable changes, including secondary structure, morphologies, and interchain interactions | 2013 [305] |
REST/GROMOS 54a7/SPC | 100–800 | Aβ1-40/2M9R/mono-, di-, and trimer | EGCG in ratio 1:1 | reduces β-sheet, increases turn and helical structures; interacts with the CHC of Aβ | 2020 [203] |
AMBER99SB-ILDN/TIP3P | 1000 | Aβ1-42/5OQV/tetramer, protofibril | 20 EGCG | disrupts N-terminal (D1–G9) and C-terminal (K28–A42) segments; increases the kink angle around Y10; decreases H-bonds in the H6–E11 segment, while increasing them in the E11–H13; interrupts the stabilizing K28–A42 salt bridge; interacts with F4, R5, D7, Y10, E11, H13, H14, K28, L34, I41, and A42, via H-bonds, π–π and cation–π interactions; key interactions: H-bonds with E11, π–π stacking with H14 and Y10, with the COO− group of A42 and a cation–π contact with K28 | 2020 [308] |
AMBER99SB-ILDN/TIP3P | 300 | Aβ1-42/5OQV/tetramer, protofibril + POPC/POPG (7:3) membrane | 20 EGCG | disrupts protofibril in a lesser extent; reduces structural stability in the D1–G9 and K28–A42 regions, as well as in both hydrophobic cores: F4–L34–V36 (core 1) and L17–F19–I31 (core 2); weakens intrachain salt bridges in the K28–A42 region; distinct inhibition mechanism and binding mode; preferably binds to F4, H6, E11, H13, Q15, L17, F20, and L34; notable contacts: π–π stacking with F4 (from the inner surface) and hydrophobic contacts with L17 and L34; slows the adsorption dynamics by reducing anion–π and cation–π interactions between Y10/H14 and the lipid bilayer; prevents membrane thinning, perturbation and destabilization, induced by protofibril; a dual effect—destabilizing protofibrils and protecting membrane integrity | 2021 [309] |
CHARMM36m/TIP3P | 1000 | Aβ1-42/5OQV/pentamer, protofibril | 3 EGCG | four BSs were identified; residues defining each BS are: F19 for BS1, E3—for BS2, I41—BS3, and E11 and H13 for BS4 | 2020 [310] |
DMD + CGM/PRIME20/implicit solvent effects | 50,000 | Aβ17-36/NA/ (1) monomer (2) 8 monomers (3) pre—formed protofilament (octamer) (4) pre + formed protofilament (octamer) + 8 monomers | (1) 10 EGCG (2) 30 EGCG (3) 30 EGCG (4) 30 EGCG | (1) contacts F19, F20, L34, M35 (2) prevents fibrilization, forming disordered complexes (3) perturbs the protofilament structure, forming a disordered oligomer (4) dissolves the protofilament during its elongation | 2017 [208] |
REMD/GROMOS 57a7/SPC | 50 per replica | Aβ1-40/2LMN/decamer, protofibril | EGCG | primary BSs: N-terminal and β-2; secondary BSs: Elbow and β-1; forms interactions with M35, G33, and I31 at β-2, and with K16, V18, and F20 at β-1; disrupts the fibril secondary structure; β-sheets is unfolding of the two outermost monomers; affects the secondary structure of the double-layer protofilament | 2018 [209] |
GROMOS96 53a6/SPC | 100 | Aβ17-42/2BEG/monomer | (1) 1 MYR (2) 2 MYR (3) 6 MYR (4) 10 MYR | H-bonding is dominant; changes β-sheet content into coil; penetrates Aβ core; forms self-clustered Aβ–MYR complexes at higher molar ratios | 2018 [311] |
GROMOS 53a6/SPC | 100 | (1)Aβ1-42/2BEG/monomer (2) Aβ1-42/2BEG/pentamer, protofibril | 10 MYR | (1) forms six H-bonds; transforms β-sheet structure into a random coil; (2) forms five H-bonds; decreases the number of backbone H-bonds between monomers, resulting in loose and uncondensed aggregates; negligible changes in β-sheet structure; converts into expanded, fragile non-toxic amorphous aggregates; the rigidity is destroyed | 2020 [30] |
RPMD/AMBER parm14SB/TIP3P | 100 per replica | Aβ16-22/NA/monomer | (1) 1 MYR (2) 4 MYR | in (1) and (2) disrupts the key electrostatic attraction between K16 and E22, as forming H-bonds with E22 in (1), and with E22 and K16 in (2) | 2020 [211] |
REMD/GROMOS 57a7/SPC | 50 per replica | Aβ1-40/2LMN/decamer, protofibril | QUER | binds at β-1 BS and at the top of the protofibril (the Over BS); the most stable complexes are at β-2 and β-1 BSs; contacts with M35, G33, and I31 at β-2, and with K16, V18, and F20 at β-1; leads to perturbation of the fibril secondary structure; influences the secondary structure of the double-layer protofilament | 2018 [209] |
GROMOS96 53a6/SPC | (1) 6 × 150 per system (2) 3 × 250—750 per system until rmsd was stable for 100 ns | (1) Aβ1-42/1IYT/monomer (2) three distinct configurations of Aβ1-42 dimers—(i) two monomers/1IYT/, (ii) fibril-derived/2BEG/and (iii) soluble oligomer-derived [312] | (1) 2 and 10 MOR (2) 4 MOR | (1) 2 MOR—two BS– (i) at N-terminal, as CHC (L17–A21) contacted C-terminal, Aβ1-42 was more compact, tending to collapse; (ii) at F20 of CHC and other hydrophobic residues, elongated Aβ1-42; 10 MOR covered Aβ1-42, restricting it from collapse and α-helix and β-sheet interconversion; (2) (i) interfacial binding of MOR clusters in the vicinity of hydrophobic residues, directly competed inter-peptide’s interactions; contacts with F19 and F20 from CHC, F4, L34, M35, and V36; β-sheet contend is unchanged; altered quaternary but not secondary structure; surface binding to principally polar residues—Y10, H13, E22, D23, and K28, plus F19 and F20, significantly decreases β-strand content; strongly affects secondary structure but dimerization (aggregation) is comparable to control; (ii) fibril-derived dimer structure remains unaffected even though the D23–K28 salt bridge is disrupted; (iii) β-strand converts into random coil, decreases the strength of interaction between peptides | 2012 [313] |
GROMOS96 53a6/SPC | 100 | Aβ17-42/2BEG/monomer | (1) 1 MOR (2) 2 MOR (3) 6 MOR (4) 10 MOR | H-bonding is dominant; changes β-sheet content into bend; penetrates the core of Aβ, forming self-clusters of Aβ–MOR complexes | 2018 [311] |
GROMOS 53a6/SPC | 100 | (1)Aβ1-42/2BEG/monomer (2) Aβ1-42/2BEG/pentamer, protofibril | 10 MOR | (1) forms five H-bonds; transforms β-sheet structure into a random coil; (2) forms four H-bonds; decreases the number of backbone H-bonds between monomers, resulting in loose and uncondensed aggregates; negligible changes in β-sheet structure; converts into expanded, fragile, and nontoxic amorphous aggregates; destroys protofibril rigidity | 2020 [30] |
CHARMM/TIP3P | 2 × 60 | Aβ1-42/2BEG/pentamer, protofibril | 10 GEN | stabilizes Aβ pentamer; reduces the decrease in β-sheet content; contacts L17, F20, E22, I31, G33, M35, and V39; preferably locates at the C-terminal β-sheet groove near G33 and M35 | 2018 [314] |
Amber99-ILDN/TIP3P | 150 | Aβ11-42/2MXU/pentamer, fibril | GOS | inserts into a pocket formed within the S-shaped Aβ fibril; disorders the whole fibril; reduces the β-sheet content and inter-chain interaction surface | 2020 [206] |
ff99SB/TIP3P | 1000 (1 µs) | Aβ1-42/2NAO/hexamer (two trimers), fibril | biflavonoids: AMF, SQF, BIL, STF, and PCF | promote disaggregation; preferably bind to the N-terminal pocket of the second trimer; π–π interactions with F4, H6, Y10, H13, and H14, resulting in a significant decrease in β-sheet content due to H-bonding of R2/R3 OH groups of biflavonoids to the peptide backbone | 2021 [315] |
5.2. Myricetin (MYR)
5.3. Quercetin (QUER)
5.4. Morin (MOR)
5.5. Genistein (GEN)
5.6. Gossypin (GOS)
5.7. Amentoflavone-Type Biflavonoids
6. Natural Compounds with Condensed-Ring Scaffold Inhibiting Aβ
6.1. Brazilin
6.2. Tanshinones TS1 and TS2
FF/Water Model | Duration per System, ns | Aβ Length/PDB ID/Type (Monomer/Dimer/ (Proto-) Fibril) | Inhibitor * | Main Findings | Year, Ref. |
---|---|---|---|---|---|
GROMOS96/SPC | 3 × 100 | Aβ17-42/2BEG/pentamer, protofibril | 10 brazilin | preferably interacts with L17, F19, F20 and K28; reduces interchain H-bonds; inhibits fibrillogenesis, forming unstructured aggregates; remodels Aβ fibrils via disrupting the salt bridge D23–K28 | 2015 [31] |
CHARMM27/TIP3P | 2 × 40 per system | Aβ1-42 built from experimental U-shaped Aβ9-40 data [85,89]/modelled pentamer | 5 and 10 TS1; 5 and 10 TS2 | TS1: two primary BS were identified, which are the most energetically favourable; BS A1—at the β-sheet groove at C-terminal (I31–M35); BS A2—near the N-terminus (F4–H6); forms contacts with: F4, H6, I31, G33, L34, M35; TS2: seven BSs (B1–B7), BS1 and BS6, near at Y10, cover ~ 30% of pose population, as BS B1 = BS A1 of TS1; BS6 = BS A2; forms contacts with F4, H6, Y10, V39, F40, I41 | 2013 [406] |
GROMOS 53a6/TIP3P | 3 × 100—300 per system | (1) Aβ1-40/2LMN/monomer; mAβ40 (2) Aβ1-40/2LMN/pentamer, protofibril; pAβ40 (3) Aβ1-42/2BEG/monomer; mAβ42 (4) Aβ1-42/2BEG/pentamer, protofibril; pAβ42 | (1) & (3) 2 TS1; (2) & (4) 10 TS1; molar ratio 2:1 | (1) binds to four regions—DR, β1, turn, and β2; increases β-sheet content; (3) binds also to DR region; leading to decrease in β-sheet content; (1) & (3) preferred binding residues F4, D7, Y10, K16, F20, K28, and V40; (2) & (4) mainly located in DR; (2); β-sheet content remains unchanged; (4) decreases β-sheet content, accompanied by an increased twist angle and disappearance of the bend region (37 GGV 39), resulting in reduced structural stability; | 2017 [407] |
7. Other Natural Compounds Inhibiting Aβ
7.1. Scyllo-Inositol (sINO)
7.2. Caffeine (CAF)
7.3. 6-Shogaol (SGL)
8. Discussion
9. Key Challenges and Feature Remarks
10. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
AFM | Atomic force microscopy |
aMD | accelerated molecular dynamics |
AMF | amentoflavone |
APP | amyloid-β (A4) precursor protein |
ATP | adenosine triphosphate |
BACE-1 | β-amyloid precursor (APP)-cleaving enzyme 1 |
BBB | blood–brain barrier |
BDNF | brain-derived neurotrophic factor |
BIL | bilobetin |
BS | binding site |
CAF | caffeine |
CCN | curcumin |
CD | Circular dichroism |
CG | coarse-grained |
CGM | coarse-grained model |
cMD | classical/conventional molecular dynamics |
CNS | central nervous system |
CTF | C-terminal domain of APP |
DMD | discontinuous molecular dynamics |
DR | disordered region |
EGCG | (-)-epigallocatechin-3-gallate |
FAD | familial Alzheimer’s disease |
FF | force field |
GEN | genistein |
GOS | gossypin |
gx-50 | wgx-50, lemairamin, N-[2-(3,4-dimethoxyphenyl)ethyl]-3-phenylacrylamide |
IDP | intrinsically disordered proteins |
INO | inositol |
MD | molecular dynamics |
MOR | morin |
MYR | myricetin |
NMR | nuclear magnetic resonance |
OLEU | oleuropein |
OleuA | oleuropein aglycone |
PCF | podocarpusflavone |
QUER | quercetin |
RA | rosmarinic acid |
REM | replica exchange method |
REMD | replica exchange molecular dynamics |
REST | replica exchange solute tempering |
RESV | resveratrol |
REXAMD | replica exchanged accelerated molecular dynamics |
RONS | reactive oxygen and nitrogen species |
ROS | reactive oxygen species |
RPMD | replica permutation molecular dynamics |
SAD | sporadic Alzheimer’s disease |
SGL | 6-shogaol |
sINO | scyllo-inositol |
SQF | sequoiaflavone |
SPC | simple point charge water model |
SPCE | extended simple pint charge water model |
STF | sotetsuflavone |
STDR | simulated tempering distributed replica |
TIP3P | transferable intermolecular potential 3-point water model |
TS0, TS1, TS2 | tanshinones 0, 1, and 2 |
wgx-50 | gx-50, lemairamin, N-[2-(3,4-dimethoxyphenyl)ethyl]-3-phenylacrylamide |
References
- World Health Organization. Dementia. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 20 March 2023).
- GBD 2019 Collaborators. Global Mortality from Dementia: Application of a New Method and Results from the Global Burden of Disease Study 2019. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2021, 7, e12200. [Google Scholar] [CrossRef]
- Hamley, I.W. The Amyloid Beta Peptide: A Chemist’s Perspective. Role in Alzheimer’s and Fibrillization. Chem. Rev. 2012, 112, 5147–5192. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, H. Inflammation and Alzheimer’s Disease. Neurobiol. Aging 2000, 21, 383–421. [Google Scholar] [CrossRef]
- Ghiso, J.; Frangione, B. Amyloidosis and Alzheimer’s Disease. Adv. Drug Deliv. Rev. 2002, 54, 1539–1551. [Google Scholar] [CrossRef]
- Bartus, R.T. On Neurodegenerative Diseases, Models, and Treatment Strategies: Lessons Learned and Lessons Forgotten a Generation Following the Cholinergic Hypothesis. Exp. Neurol. 2000, 163, 495–529. [Google Scholar] [CrossRef]
- Terry, A.V.; Buccafusco, J.J. The Cholinergic Hypothesis of Age and Alzheimer’s Disease-Related Cognitive Deficits: Recent Challenges and Their Implications for Novel Drug Development. J. Pharmacol. Exp. Ther. 2003, 306, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Winek, K.; Soreq, H.; Meisel, A. Regulators of Cholinergic Signaling in Disorders of the Central Nervous System. J. Neurochem. 2021, 158, 1425–1438. [Google Scholar] [CrossRef]
- Selkoe, D.J.; Hardy, J. The Amyloid Hypothesis of Alzheimer’s Disease at 25 Years. EMBO Mol. Med. 2016, 8, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Wang, X.; Geng, M. Alzheimer’s Disease Hypothesis and Related Therapies. Transl. Neurodegener. 2018, 7, 2. [Google Scholar] [CrossRef]
- Naseri, N.N.; Wang, H.; Guo, J.; Sharma, M.; Luo, W. The Complexity of Tau in Alzheimer’s Disease. Neurosci. Lett. 2019, 705, 183–194. [Google Scholar] [CrossRef]
- Uddin, M.S.; Kabir, M.T.; Rahman, M.S.; Behl, T.; Jeandet, P.; Ashraf, G.M.; Najda, A.; Bin-Jumah, M.N.; El-Seedi, H.R.; Abdel-Daim, M.M. Revisiting the Amyloid Cascade Hypothesis: From Anti-Aβ Therapeutics to Auspicious New Ways for Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 5858. [Google Scholar] [CrossRef]
- Arnsten, A.F.T.; Datta, D.; Del Tredici, K.; Braak, H. Hypothesis: Tau Pathology Is an Initiating Factor in Sporadic Alzheimer’s Disease. Alzheimer’s Dement. 2021, 17, 115–124. [Google Scholar] [CrossRef]
- Hardy, J.A.; Higgins, G.A. Alzheimer’s Disease: The Amyloid Cascade Hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef] [PubMed]
- Leroy, K.; Ando, K.; Laporte, V.; Dedecker, R.; Suain, V.; Authelet, M.; Héraud, C.; Pierrot, N.; Yilmaz, Z.; Octave, J.-N.; et al. Lack of Tau Proteins Rescues Neuronal Cell Death and Decreases Amyloidogenic Processing of APP in APP/PS1 Mice. Am. J. Pathol. 2012, 181, 1928–1940. [Google Scholar] [CrossRef] [PubMed]
- Borchelt, D.R.; Thinakaran, G.; Eckman, C.B.; Lee, M.K.; Davenport, F.; Ratovitsky, T.; Prada, C.-M.; Kim, G.; Seekins, S.; Yager, D.; et al. Familial Alzheimer’s Disease–Linked Presenilin 1 Variants Elevate Aβ1–42/1–40 Ratio In Vitro and In Vivo. Neuron 1996, 17, 1005–1013. [Google Scholar] [CrossRef]
- Kabir, M.T.; Uddin, M.S.; Setu, J.R.; Ashraf, G.M.; Bin-Jumah, M.N.; Abdel-Daim, M.M. Exploring the Role of PSEN Mutations in the Pathogenesis of Alzheimer’s Disease. Neurotox. Res. 2020, 38, 833–849. [Google Scholar] [CrossRef]
- Strittmatter, W.J.; Saunders, A.M.; Schmechel, D.; Pericak-Vance, M.; Enghild, J.; Salvesen, G.S.; Roses, A.D. Apolipoprotein E: High-Avidity Binding to Beta-Amyloid and Increased Frequency of Type 4 Allele in Late-Onset Familial Alzheimer Disease. Proc. Natl. Acad. Sci. USA 1993, 90, 1977–1981. [Google Scholar] [CrossRef]
- Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.; St. George-Hyslop, P.H.; Pericak-Vance, M.A.; Joo, S.H.; Rosi, B.L.; Gusella, J.F.; Crapper-MacLachlan, D.R.; Alberts, M.J.; et al. Association of Apolipoprotein E Allele Ε4 with Late-onset Familial and Sporadic Alzheimer’s Disease. Neurology 1993, 43, 1467. [Google Scholar] [CrossRef] [PubMed]
- Bertram, L.; Tanzi, R.E. Thirty Years of Alzheimer’s Disease Genetics: The Implications of Systematic Meta-Analyses. Nat. Rev. Neurosci. 2008, 9, 768–778. [Google Scholar] [CrossRef]
- Mawuenyega, K.G.; Sigurdson, W.; Ovod, V.; Munsell, L.; Kasten, T.; Morris, J.C.; Yarasheski, K.E.; Bateman, R.J. Decreased Clearance of CNS β-Amyloid in Alzheimer’s Disease. Science 2010, 330, 1774. [Google Scholar] [CrossRef]
- Yang, L.-B.; Lindholm, K.; Yan, R.; Citron, M.; Xia, W.; Yang, X.-L.; Beach, T.; Sue, L.; Wong, P.; Price, D.; et al. Elevated β-Secretase Expression and Enzymatic Activity Detected in Sporadic Alzheimer Disease. Nat. Med. 2003, 9, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Atanasova, M. Small Molecule Inhibitors of Amyloid Beta: Insights from Molecular Dynamics—Part A: Endogenous Compounds and Repurposed Drugs. Pharmaceuticals 2025, 18, 306. [Google Scholar] [CrossRef]
- Dawkins, E.; Small, D.H. Insights into the Physiological Function of the Β-amyloid Precursor Protein: Beyond Alzheimer’s Disease. J. Neurochem. 2014, 129, 756–769. [Google Scholar] [CrossRef]
- Gandy, S. The Role of Cerebral Amyloid β Accumulation in Common Forms of Alzheimer Disease. J. Clin. Investig. 2005, 115, 1121–1129. [Google Scholar] [CrossRef]
- Wilkins, H.M.; Swerdlow, R.H. Amyloid Precursor Protein Processing and Bioenergetics. Brain Res. Bull. 2017, 133, 71–79. [Google Scholar] [CrossRef]
- Zhang, Y.; McLaughlin, R.; Goodyer, C.; LeBlanc, A. Selective Cytotoxicity of Intracellular Amyloid β Peptide1–42 through P53 and Bax in Cultured Primary Human Neurons. J. Cell Biol. 2002, 156, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Owen, M.C.; Kulig, W.; Poojari, C.; Rog, T.; Strodel, B. Physiologically-Relevant Levels of Sphingomyelin, but Not GM1, Induces a β-Sheet-Rich Structure in the Amyloid-β(1-42) Monomer. Biochim. Biophys. Acta (BBA)—Biomembr. 2018, 1860, 1709–1720. [Google Scholar] [CrossRef] [PubMed]
- Urban, A.S.; Pavlov, K.V.; Kamynina, A.V.; Okhrimenko, I.S.; Arseniev, A.S.; Bocharov, E.V. Structural Studies Providing Insights into Production and Conformational Behavior of Amyloid-β Peptide Associated with Alzheimer’s Disease Development. Molecules 2021, 26, 2897. [Google Scholar] [CrossRef]
- Gargari, S.A.; Barzegar, A. Simulations on the Dual Effects of Flavonoids as Suppressors of Aβ42 Fibrillogenesis and Destabilizers of Mature Fibrils. Sci. Rep. 2020, 10, 16636. [Google Scholar] [CrossRef]
- Du, W.-J.; Guo, J.-J.; Gao, M.-T.; Hu, S.-Q.; Dong, X.-Y.; Han, Y.-F.; Liu, F.-F.; Jiang, S.; Sun, Y. Brazilin Inhibits Amyloid β-Protein Fibrillogenesis, Remodels Amyloid Fibrils and Reduces Amyloid Cytotoxicity. Sci. Rep. 2015, 5, 7992. [Google Scholar] [CrossRef]
- Cerdà-Costa, N.; Esteras-Chopo, A.; Avilés, F.X.; Serrano, L.; Villegas, V. Early Kinetics of Amyloid Fibril Formation Reveals Conformational Reorganisation of Initial Aggregates. J. Mol. Biol. 2007, 366, 1351–1363. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, R. The Toxicity and Polymorphism of β-Amyloid Oligomers. Int. J. Mol. Sci. 2020, 21, 4477. [Google Scholar] [CrossRef]
- Cohen, S.I.A.; Linse, S.; Luheshi, L.M.; Hellstrand, E.; White, D.A.; Rajah, L.; Otzen, D.E.; Vendruscolo, M.; Dobson, C.M.; Knowles, T.P.J. Proliferation of Amyloid-Β42 Aggregates Occurs through a Secondary Nucleation Mechanism. Proc. Natl. Acad. Sci. USA 2013, 110, 9758–9763. [Google Scholar] [CrossRef] [PubMed]
- Linse, S. Monomer-Dependent Secondary Nucleation in Amyloid Formation. Biophys. Rev. 2017, 9, 329–338. [Google Scholar] [CrossRef]
- Scheidt, T.; Łapińska, U.; Kumita, J.R.; Whiten, D.R.; Klenerman, D.; Wilson, M.R.; Cohen, S.I.A.; Linse, S.; Vendruscolo, M.; Dobson, C.M.; et al. Secondary Nucleation and Elongation Occur at Different Sites on Alzheimer’s Amyloid-β Aggregates. Sci. Adv. 2019, 5, eaau3112. [Google Scholar] [CrossRef]
- Ferrone, F.A.; Hofrichter, J.; Eaton, W.A. Kinetics of Sickle Hemoglobin Polymerization. J. Mol. Biol. 1985, 183, 611–631. [Google Scholar] [CrossRef]
- Knowles, T.P.J.; Waudby, C.A.; Devlin, G.L.; Cohen, S.I.A.; Aguzzi, A.; Vendruscolo, M.; Terentjev, E.M.; Welland, M.E.; Dobson, C.M. An Analytical Solution to the Kinetics of Breakable Filament Assembly. Science 2009, 326, 1533–1537. [Google Scholar] [CrossRef]
- Cohen, S.I.A.; Vendruscolo, M.; Dobson, C.M.; Knowles, T.P.J. Nucleated Polymerization with Secondary Pathways. II. Determination of Self-Consistent Solutions to Growth Processes Described by Non-Linear Master Equations. J. Chem. Phys. 2011, 135, 065106. [Google Scholar] [CrossRef]
- Tabaton, M.; Nunzi, M.G.; Xue, R.; Usiak, M.; Autiliogambetti, L.; Gambetti, P. Soluble Amyloid β-Protein Is a Marker of Alzheimer Amyloid in Brain But Not in Cerebrospinal Fluid. Biochem. Biophys. Res. Commun. 1994, 200, 1598–1603. [Google Scholar] [CrossRef] [PubMed]
- Frackowiak, J.; Zoltowska, A.; Wisniewski, H.M. Non-Fibrillar β-Amyloid Protein Is Associated with Smooth Muscle Cells of Vessel Walls in Alzheimer Disease. J. Neuropathol. Exp. Neurol. 1994, 53, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Shankar, G.M.; Li, S.; Mehta, T.H.; Garcia-Munoz, A.; Shepardson, N.E.; Smith, I.; Brett, F.M.; Farrell, M.A.; Rowan, M.J.; Lemere, C.A.; et al. Amyloid-β Protein Dimers Isolated Directly from Alzheimer’s Brains Impair Synaptic Plasticity and Memory. Nat. Med. 2008, 14, 837–842. [Google Scholar] [CrossRef]
- Choi, Y.J.; Chae, S.; Kim, J.H.; Barald, K.F.; Park, J.Y.; Lee, S.-H. Neurotoxic Amyloid Beta Oligomeric Assemblies Recreated in Microfluidic Platform with Interstitial Level of Slow Flow. Sci. Rep. 2013, 3, 1921. [Google Scholar] [CrossRef]
- Hardy, J.; Selkoe, D.J. The Amyloid Hypothesis of Alzheimer’s Disease: Progress and Problems on the Road to Therapeutics. Science 2002, 297, 353–356. [Google Scholar] [CrossRef]
- Decourt, B.; Boumelhem, F.; Pope, E.D.; Shi, J.; Mari, Z.; Sabbagh, M.N. Critical Appraisal of Amyloid Lowering Agents in AD. Curr. Neurol. Neurosci. Rep. 2021, 21, 39. [Google Scholar] [CrossRef]
- Panza, F.; Lozupone, M.; Logroscino, G.; Imbimbo, B.P. A Critical Appraisal of Amyloid-β-Targeting Therapies for Alzheimer Disease. Nat. Rev. Neurol. 2019, 15, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Pagano, K.; Tomaselli, S.; Molinari, H.; Ragona, L. Natural Compounds as Inhibitors of Aβ Peptide Aggregation: Chemical Requirements and Molecular Mechanisms. Front. Neurosci. 2020, 14, 619667. [Google Scholar] [CrossRef]
- Boopathi, S.; Poma, A.B.; Garduño-Juárez, R. An Overview of Several Inhibitors for Alzheimer’s Disease: Characterization and Failure. Int. J. Mol. Sci. 2021, 22, 10798. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liao, W.; Huang, D.; Ou, M.; Chen, T.; Wang, X.; Zhao, R.; Zhang, L.; Mei, L.; Liu, J.; et al. Current Strategies of Detecting Aβ Species and Inhibiting Aβ Aggregation: Status and Prospects. Coord. Chem. Rev. 2023, 495, 215375. [Google Scholar] [CrossRef]
- Arndt, J.W.; Qian, F.; Smith, B.A.; Quan, C.; Kilambi, K.P.; Bush, M.W.; Walz, T.; Pepinsky, R.B.; Bussière, T.; Hamann, S.; et al. Structural and Kinetic Basis for the Selectivity of Aducanumab for Aggregated Forms of Amyloid-β. Sci. Rep. 2018, 8, 6412. [Google Scholar] [CrossRef]
- Wu, W.; Ji, Y.; Wang, Z.; Wu, X.; Li, J.; Gu, F.; Chen, Z.; Wang, Z. The FDA-Approved Anti-Amyloid-β Monoclonal Antibodies for the Treatment of Alzheimer’s Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Eur. J. Med. Res. 2023, 28, 544. [Google Scholar] [CrossRef]
- Zhao, Y.; Rao, P.P.N. Small Molecules N -Phenylbenzofuran-2-Carboxamide and N -Phenylbenzo[b]Thiophene-2-Carboxamide Promote Beta-Amyloid (Aβ42) Aggregation and Mitigate Neurotoxicity. ACS Chem. Neurosci. 2023, 14, 4185–4198. [Google Scholar] [CrossRef]
- Bieschke, J.; Herbst, M.; Wiglenda, T.; Friedrich, R.P.; Boeddrich, A.; Schiele, F.; Kleckers, D.; Lopez Del Amo, J.M.; Grüning, B.A.; Wang, Q.; et al. Small-Molecule Conversion of Toxic Oligomers to Nontoxic β-Sheet–Rich Amyloid Fibrils. Nat. Chem. Biol. 2012, 8, 93–101. [Google Scholar] [CrossRef]
- Luo, J.; Yu, C.-H.; Yu, H.; Borstnar, R.; Kamerlin, S.C.L.; Gräslund, A.; Abrahams, J.P.; Wärmländer, S.K.T.S. Cellular Polyamines Promote Amyloid-Beta (Aβ) Peptide Fibrillation and Modulate the Aggregation Pathways. ACS Chem. Neurosci. 2013, 4, 454–462. [Google Scholar] [CrossRef]
- De Almeida, N.E.C.; Do, T.D.; Tro, M.; LaPointe, N.E.; Feinstein, S.C.; Shea, J.-E.; Bowers, M.T. Opposing Effects of Cucurbit[7]Uril and 1,2,3,4,6-Penta- O -Galloyl-β- d -Glucopyranose on Amyloid β25–35 Assembly. ACS Chem. Neurosci. 2016, 7, 218–226. [Google Scholar] [CrossRef]
- Sonzini, S.; Stanyon, H.F.; Scherman, O.A. Decreasing Amyloid Toxicity through an Increased Rate of Aggregation. Phys. Chem. Chem. Phys. 2017, 19, 1458–1465. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Qian, C.; Yang, T.; Wang, Y.; Luo, J.; Zhang, C.; Wang, X.; Wang, X.; Guo, Z. Small Molecule-Mediated Co-Assembly of Amyloid-β Oligomers Reduces Neurotoxicity through Promoting Non-Fibrillar Aggregation. Chem. Sci. 2020, 11, 7158–7169. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, T.; Gujral, S.S.; Rao, P.P.N. Tau Derived Hexapeptide AcPHF6 Promotes Beta-Amyloid (Aβ) Fibrillogenesis. ACS Chem. Neurosci. 2018, 9, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Bryngelson, J.D.; Onuchic, J.N.; Socci, N.D.; Wolynes, P.G. Funnels, Pathways, and the Energy Landscape of Protein Folding: A Synthesis. Proteins 1995, 21, 167–195. [Google Scholar] [CrossRef]
- Onuchic, J.N.; Wolynes, P.G. Theory of Protein Folding. Curr. Opin. Struct. Biol. 2004, 14, 70–75. [Google Scholar] [CrossRef]
- Dill, K.A.; Chan, H.S. From Levinthal to Pathways to Funnels. Nat. Struct. Mol. Biol. 1997, 4, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, N.P.; Adamcik, J.; Berryman, J.T.; Handschin, S.; Zanjani, A.A.H.; Li, W.; Liu, K.; Zhang, A.; Mezzenga, R. Competition between Crystal and Fibril Formation in Molecular Mutations of Amyloidogenic Peptides. Nat. Commun. 2017, 8, 1338. [Google Scholar] [CrossRef]
- Adamcik, J.; Mezzenga, R. Amyloid Polymorphism in the Protein Folding and Aggregation Energy Landscape. Angew. Chem. Int. Ed. 2018, 57, 8370–8382. [Google Scholar] [CrossRef]
- Ke, P.C.; Zhou, R.; Serpell, L.C.; Riek, R.; Knowles, T.P.J.; Lashuel, H.A.; Gazit, E.; Hamley, I.W.; Davis, T.P.; Fändrich, M.; et al. Half a Century of Amyloids: Past, Present and Future. Chem. Soc. Rev. 2020, 49, 5473–5509. [Google Scholar] [CrossRef]
- Lührs, T.; Ritter, C.; Adrian, M.; Riek-Loher, D.; Bohrmann, B.; Döbeli, H.; Schubert, D.; Riek, R. 3D Structure of Alzheimer’s Amyloid-β(1–42) Fibrils. Proc. Natl. Acad. Sci. USA 2005, 102, 17342–17347. [Google Scholar] [CrossRef]
- Schmidt, M.; Rohou, A.; Lasker, K.; Yadav, J.K.; Schiene-Fischer, C.; Fändrich, M.; Grigorieff, N. Peptide Dimer Structure in an Aβ(1–42) Fibril Visualized with Cryo-EM. Proc. Natl. Acad. Sci. USA 2015, 112, 11858–11863. [Google Scholar] [CrossRef]
- Xiao, Y.; Ma, B.; McElheny, D.; Parthasarathy, S.; Long, F.; Hoshi, M.; Nussinov, R.; Ishii, Y. Aβ(1–42) Fibril Structure Illuminates Self-Recognition and Replication of Amyloid in Alzheimer’s Disease. Nat. Struct. Mol. Biol. 2015, 22, 499–505. [Google Scholar] [CrossRef]
- Colvin, M.T.; Silvers, R.; Ni, Q.Z.; Can, T.V.; Sergeyev, I.; Rosay, M.; Donovan, K.J.; Michael, B.; Wall, J.; Linse, S.; et al. Atomic Resolution Structure of Monomorphic Aβ42 Amyloid Fibrils. J. Am. Chem. Soc. 2016, 138, 9663–9674. [Google Scholar] [CrossRef] [PubMed]
- Gremer, L.; Schölzel, D.; Schenk, C.; Reinartz, E.; Labahn, J.; Ravelli, R.B.G.; Tusche, M.; Lopez-Iglesias, C.; Hoyer, W.; Heise, H.; et al. Fibril Structure of Amyloid-β(1–42) by Cryo–Electron Microscopy. Science 2017, 358, 116–119. [Google Scholar] [CrossRef]
- Wälti, M.A.; Ravotti, F.; Arai, H.; Glabe, C.G.; Wall, J.S.; Böckmann, A.; Güntert, P.; Meier, B.H.; Riek, R. Atomic-Resolution Structure of a Disease-Relevant Aβ(1–42) Amyloid Fibril. Proc. Natl. Acad. Sci. USA 2016, 113, E4976–E4984. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Aucoin, D.; Ahmed, M.; Ziliox, M.; Van Nostrand, W.E.; Smith, S.O. Capping of Aβ42 Oligomers by Small Molecule Inhibitors. Biochemistry 2014, 53, 7893–7903. [Google Scholar] [CrossRef] [PubMed]
- Eanes, E.D.; Glenner, G.G. X-RAY DIFFRACTION STUDIES ON AMYLOID FILAMENTS. J. Histochem. Cytochem. 1968, 16, 673–677. [Google Scholar] [CrossRef]
- Kirschner, D.A.; Abraham, C.; Selkoe, D.J. X-Ray Diffraction from Intraneuronal Paired Helical Filaments and Extraneuronal Amyloid Fibers in Alzheimer Disease Indicates Cross-Beta Conformation. Proc. Natl. Acad. Sci. USA 1986, 83, 503–507. [Google Scholar] [CrossRef]
- Sunde, M.; Blake, C. The Structure of Amyloid Fibrils by Electron Microscopy and X-Ray Diffraction. In Advances in Protein Chemistry; Elsevier: Amsterdam, The Netherlands, 1997; Volume 50, pp. 123–159. ISBN 978-0-12-034250-1. [Google Scholar]
- Serpell, L.C. Alzheimer’s Amyloid Fibrils: Structure and Assembly. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2000, 1502, 16–30. [Google Scholar] [CrossRef]
- Makin, O.S.; Serpell, L.C. Structures for Amyloid Fibrils. FEBS J. 2005, 272, 5950–5961. [Google Scholar] [CrossRef]
- Ahmed, M.; Davis, J.; Aucoin, D.; Sato, T.; Ahuja, S.; Aimoto, S.; Elliott, J.I.; Van Nostrand, W.E.; Smith, S.O. Structural Conversion of Neurotoxic Amyloid-Β1–42 Oligomers to Fibrils. Nat. Struct. Mol. Biol. 2010, 17, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Härd, T. Protein Engineering to Stabilize Soluble Amyloid Β-protein Aggregates for Structural and Functional Studies. FEBS J. 2011, 278, 3884–3892. [Google Scholar] [CrossRef]
- Adler, J.; Scheidt, H.A.; Krüger, M.; Thomas, L.; Huster, D. Local Interactions Influence the Fibrillation Kinetics, Structure and Dynamics of Aβ(1–40) but Leave the General Fibril Structure Unchanged. Phys. Chem. Chem. Phys. 2014, 16, 7461–7471. [Google Scholar] [CrossRef]
- Korn, A.; McLennan, S.; Adler, J.; Krueger, M.; Surendran, D.; Maiti, S.; Huster, D. Amyloid β (1–40) Toxicity Depends on the Molecular Contact between Phenylalanine 19 and Leucine 34. ACS Chem. Neurosci. 2018, 9, 790–799. [Google Scholar] [CrossRef]
- Bonhommeau, S.; Talaga, D.; Hunel, J.; Cullin, C.; Lecomte, S. Tip-Enhanced Raman Spectroscopy to Distinguish Toxic Oligomers from Aβ 1—42 Fibrils at the Nanometer Scale. Angew. Chem. Int. Ed. 2017, 56, 1771–1774. [Google Scholar] [CrossRef] [PubMed]
- Qiang, W.; Yau, W.-M.; Luo, Y.; Mattson, M.P.; Tycko, R. Antiparallel β-Sheet Architecture in Iowa-Mutant β-Amyloid Fibrils. Proc. Natl. Acad. Sci. USA 2012, 109, 4443–4448. [Google Scholar] [CrossRef]
- Gu, L.; Tran, J.; Jiang, L.; Guo, Z. A New Structural Model of Alzheimer’s Aβ42 Fibrils Based on Electron Paramagnetic Resonance Data and Rosetta Modeling. J. Struct. Biol. 2016, 194, 61–67. [Google Scholar] [CrossRef]
- Paparcone, R.; Pires, M.A.; Buehler, M.J. Mutations Alter the Geometry and Mechanical Properties of Alzheimer’s Aβ(1−40) Amyloid Fibrils. Biochemistry 2010, 49, 8967–8977. [Google Scholar] [CrossRef]
- Petkova, A.T.; Yau, W.-M.; Tycko, R. Experimental Constraints on Quaternary Structure in Alzheimer’s β-Amyloid Fibrils. Biochemistry 2006, 45, 498–512. [Google Scholar] [CrossRef]
- Paravastu, A.K.; Leapman, R.D.; Yau, W.-M.; Tycko, R. Molecular Structural Basis for Polymorphism in Alzheimer’s β-Amyloid Fibrils. Proc. Natl. Acad. Sci. USA 2008, 105, 18349–18354. [Google Scholar] [CrossRef]
- Friedemann, M.; Helk, E.; Tiiman, A.; Zovo, K.; Palumaa, P.; Tõugu, V. Effect of Methionine-35 Oxidation on the Aggregation of Amyloid-β Peptide. Biochem. Biophys. Rep. 2015, 3, 94–99. [Google Scholar] [CrossRef]
- Bertini, I.; Gonnelli, L.; Luchinat, C.; Mao, J.; Nesi, A. A New Structural Model of Aβ40 Fibrils. J. Am. Chem. Soc. 2011, 133, 16013–16022. [Google Scholar] [CrossRef]
- Paravastu, A.K.; Petkova, A.T.; Tycko, R. Polymorphic Fibril Formation by Residues 10–40 of the Alzheimer’s β-Amyloid Peptide. Biophys. J. 2006, 90, 4618–4629. [Google Scholar] [CrossRef] [PubMed]
- Petkova, A.T.; Ishii, Y.; Balbach, J.J.; Antzutkin, O.N.; Leapman, R.D.; Delaglio, F.; Tycko, R. A Structural Model for Alzheimer’s β-Amyloid Fibrils Based on Experimental Constraints from Solid State NMR. Proc. Natl. Acad. Sci. USA 2002, 99, 16742–16747. [Google Scholar] [CrossRef] [PubMed]
- Karplus, M.; McCammon, J.A. Molecular Dynamics Simulations of Biomolecules. Nat. Struct. Biol. 2002, 9, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef]
- Schmid, N.; Eichenberger, A.P.; Choutko, A.; Riniker, S.; Winger, M.; Mark, A.E.; Van Gunsteren, W.F. Definition and Testing of the GROMOS Force-Field Versions 54A7 and 54B7. Eur. Biophys. J. 2011, 40, 843–856. [Google Scholar] [CrossRef]
- Mackerell, A.D.; Feig, M.; Brooks, C.L. Extending the Treatment of Backbone Energetics in Protein Force Fields: Limitations of Gas-phase Quantum Mechanics in Reproducing Protein Conformational Distributions in Molecular Dynamics Simulations. J. Comput. Chem. 2004, 25, 1400–1415. [Google Scholar] [CrossRef]
- Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016, 12, 281–296. [Google Scholar] [CrossRef]
- Robustelli, P.; Piana, S.; Shaw, D.E. Developing a Molecular Dynamics Force Field for Both Folded and Disordered Protein States. Proc. Natl. Acad. Sci. USA 2018, 115, E4758–E4766. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Ji, D.; Wang, W.; Luo, R.; Chen, H.-F. Test and Evaluation of ff99IDPs Force Field for Intrinsically Disordered Proteins. J. Chem. Inf. Model. 2015, 55, 1021–1029. [Google Scholar] [CrossRef]
- Best, R.B.; Mittal, J. Protein Simulations with an Optimized Water Model: Cooperative Helix Formation and Temperature-Induced Unfolded State Collapse. J. Phys. Chem. B 2010, 114, 14916–14923. [Google Scholar] [CrossRef] [PubMed]
- Piana, S.; Lindorff-Larsen, K.; Shaw, D.E. How Robust Are Protein Folding Simulations with Respect to Force Field Parameterization? Biophys. J. 2011, 100, L47–L49. [Google Scholar] [CrossRef]
- Samantray, S.; Yin, F.; Kav, B.; Strodel, B. Different Force Fields Give Rise to Different Amyloid Aggregation Pathways in Molecular Dynamics Simulations. J. Chem. Inf. Model. 2020, 60, 6462–6475. [Google Scholar] [CrossRef]
- Rahman, M.U.; Rehman, A.U.; Liu, H.; Chen, H.-F. Comparison and Evaluation of Force Fields for Intrinsically Disordered Proteins. J. Chem. Inf. Model. 2020, 60, 4912–4923. [Google Scholar] [CrossRef]
- Song, D.; Luo, R.; Chen, H.-F. The IDP-Specific Force Field ff14IDPSFF Improves the Conformer Sampling of Intrinsically Disordered Proteins. J. Chem. Inf. Model. 2017, 57, 1166–1178. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Wang, W.; Ye, W.; Ji, D.; Luo, R.; Chen, H. ff14IDPs Force Field Improving the Conformation Sampling of Intrinsically Disordered Proteins. Chem. Biol. Drug Des. 2017, 89, 5–15. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Yang, S.; Luo, R.; Chen, H.-F. Well-Balanced Force Field Ff 03 CMAP for Folded and Disordered Proteins. J. Chem. Theory Comput. 2019, 15, 6769–6780. [Google Scholar] [CrossRef]
- Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; De Groot, B.L.; Grubmüller, H.; MacKerell, A.D. CHARMM36m: An Improved Force Field for Folded and Intrinsically Disordered Proteins. Nat. Methods 2017, 14, 71–73. [Google Scholar] [CrossRef]
- Liu, H.; Song, D.; Zhang, Y.; Yang, S.; Luo, R.; Chen, H.-F. Extensive Tests and Evaluation of the CHARMM36IDPSFF Force Field for Intrinsically Disordered Proteins and Folded Proteins. Phys. Chem. Chem. Phys. 2019, 21, 21918–21931. [Google Scholar] [CrossRef] [PubMed]
- Carballo-Pacheco, M.; Strodel, B. Comparison of Force Fields for Alzheimer’s A: A Case Study for Intrinsically Disordered Proteins. Protein Sci. 2017, 26, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Krupa, P.; Quoc Huy, P.D.; Li, M.S. Properties of Monomeric Aβ42 Probed by Different Sampling Methods and Force Fields: Role of Energy Components. J. Chem. Phys. 2019, 151, 055101. [Google Scholar] [CrossRef]
- Amber24. Available online: https://ambermd.org/AmberModels_proteins.php (accessed on 19 February 2025).
- Shabane, P.S.; Izadi, S.; Onufriev, A.V. General Purpose Water Model Can Improve Atomistic Simulations of Intrinsically Disordered Proteins. J. Chem. Theory Comput. 2019, 15, 2620–2634. [Google Scholar] [CrossRef]
- Minary, P.; Tuckerman, M.E.; Martyna, G.J. Long Time Molecular Dynamics for Enhanced Conformational Sampling in Biomolecular Systems. Phys. Rev. Lett. 2004, 93, 150201. [Google Scholar] [CrossRef]
- Lei, H.; Duan, Y. Improved Sampling Methods for Molecular Simulation. Curr. Opin. Struct. Biol. 2007, 17, 187–191. [Google Scholar] [CrossRef]
- Darve, E.; Rodríguez-Gómez, D.; Pohorille, A. Adaptive Biasing Force Method for Scalar and Vector Free Energy Calculations. J. Chem. Phys. 2008, 128, 144120. [Google Scholar] [CrossRef]
- Perez, D.; Uberuaga, B.P.; Shim, Y.; Amar, J.G.; Voter, A.F. Chapter 4 Accelerated Molecular Dynamics Methods: Introduction and Recent Developments. In Annual Reports in Computational Chemistry; Elsevier: Amsterdam, The Netherlands, 2009; Volume 5, pp. 79–98. ISBN 978-0-444-53359-3. [Google Scholar]
- Zuckerman, D.M. Equilibrium Sampling in Biomolecular Simulations. Annu. Rev. Biophys. 2011, 40, 41–62. [Google Scholar] [CrossRef]
- Naqvi, A.A.T.; Mohammad, T.; Hasan, G.M.; Hassan, M.I. Advancements in Docking and Molecular Dynamics Simulations Towards Ligand-Receptor Interactions and Structure-Function Relationships. Curr. Top. Med. Chem. 2018, 18, 1755–1768. [Google Scholar] [CrossRef]
- Dror, R.O.; Dirks, R.M.; Grossman, J.P.; Xu, H.; Shaw, D.E. Biomolecular Simulation: A Computational Microscope for Molecular Biology. Annu. Rev. Biophys. 2012, 41, 429–452. [Google Scholar] [CrossRef]
- Leimkuhler, B. Computational Molecular Dynamics: Challenges, Methods, Ideas. In Proceedings of the 2nd International Symposium on Algorithms for Macromolecular Modelling, Berlin, Germany, 21–24 May 1997; Deuflhard, P., Hermans, J., Leimkuhler, B., Mark, A.E., Reich, S., Skeel, R.D., Eds.; Lecture Notes in Computational Science and Engineering. Springer: Berlin/Heidelberg, Germany, 1999; Volume 4, ISBN 978-3-540-63242-9. [Google Scholar]
- Tuckerman, M.E.; Martyna, G.J. Understanding Modern Molecular Dynamics: Techniques and Applications. J. Phys. Chem. B 2000, 104, 159–178. [Google Scholar] [CrossRef]
- Becker, O.M.; Watanabe, M. Chapter 3—Dynamics Methods. In Computational Biochemistry and Biophysics; Becker, O.M., MacKerell, A.D., Jr., Roux, B., Watanabe, M., Eds.; Marcel Dekker, Inc.: Basel, Switzerland, 2001; ISBN 0-8247-0455-X. [Google Scholar]
- Rauscher, S.; Neale, C.; Pomès, R. Simulated Tempering Distributed Replica Sampling, Virtual Replica Exchange, and Other Generalized-Ensemble Methods for Conformational Sampling. J. Chem. Theory Comput. 2009, 5, 2640–2662. [Google Scholar] [CrossRef] [PubMed]
- Gelpi, J.; Hospital, A.; Goñi, R.; Orozco, M. Molecular Dynamics Simulations: Advances and Applications. Adv. Appl. Bioinform. Chem. 2015, 8, 37–47. [Google Scholar] [CrossRef]
- Huang, X.; Bowman, G.R.; Pande, V.S. Convergence of Folding Free Energy Landscapes via Application of Enhanced Sampling Methods in a Distributed Computing Environment. J. Chem. Phys. 2008, 128, 205106. [Google Scholar] [CrossRef]
- Hansmann, U.H.E. Parallel Tempering Algorithm for Conformational Studies of Biological Molecules. Chem. Phys. Lett. 1997, 281, 140–150. [Google Scholar] [CrossRef]
- Hansmann, U.H.E.; Okamoto, Y. New Monte Carlo Algorithms for Protein Folding. Curr. Opin. Struct. Biol. 1999, 9, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Nagasima, T.; Sugita, Y.; Mitsutake, A.; Okamoto, Y. Generalized-Ensemble Simulations of Spin Systems and Protein Systems. Comput. Phys. Commun. 2002, 146, 69–76. [Google Scholar] [CrossRef]
- Lyubartsev, A.P.; Martsinovski, A.A.; Shevkunov, S.V.; Vorontsov-Velyaminov, P.N. New Approach to Monte Carlo Calculation of the Free Energy: Method of Expanded Ensembles. J. Chem. Phys. 1992, 96, 1776–1783. [Google Scholar] [CrossRef]
- Marinari, E.; Parisi, G. Simulated Tempering: A New Monte Carlo Scheme. Europhys. Lett. 1992, 19, 451–458. [Google Scholar] [CrossRef]
- Swendsen, R.H.; Wang, J.-S. Replica Monte Carlo Simulation of Spin-Glasses. Phys. Rev. Lett. 1986, 57, 2607–2609. [Google Scholar] [CrossRef]
- Geyer, C.J. Markov Chain Monte Carlo Maximum Likelihood. In Proceedings of the 23rd Symposium on the Interface, Seattle, WA, USA, 21–24 April 1991; Retrieved from University Digital Conservancy: 1991. pp. 156–163. Available online: https://hdl.handle.net/11299/58440 (accessed on 25 September 2025).
- Geyer, C.J.; Thompson, E.A. Annealing Markov Chain Monte Carlo with Applications to Ancestral Inference. J. Am. Stat. Assoc. 1995, 90, 909–920. [Google Scholar] [CrossRef]
- Tesi, M.C.; Janse Van Rensburg, E.J.; Orlandini, E.; Whittington, S.G. Monte Carlo Study of the Interacting Self-Avoiding Walk Model in Three Dimensions. J. Stat. Phys. 1996, 82, 155–181. [Google Scholar] [CrossRef]
- Hukushima, K.; Nemoto, K. Exchange Monte Carlo Method and Application to Spin Glass Simulations. J. Phys. Soc. Jpn. 1996, 65, 1604–1608. [Google Scholar] [CrossRef]
- Marinari, E.; Parisi, G.; Ruiz-Lorenzo, J.J. NUMERICAL SIMULATIONS OF SPIN GLASS SYSTEMS. In Series on Directions in Condensed Matter Physics; World Scientific: London, UK, 1997; Volume 12, pp. 59–98. ISBN 978-981-02-3183-5. [Google Scholar]
- Sugita, Y.; Okamoto, Y. Replica-Exchange Molecular Dynamics Method for Protein Folding. Chem. Phys. Lett. 1999, 314, 141–151. [Google Scholar] [CrossRef]
- Rauscher, S.; Pomès, R. Simulated Tempering Distributed Replica Sampling: A Practical Guide to Enhanced Conformational Sampling. J. Phys. Conf. Ser. 2010, 256, 012011. [Google Scholar] [CrossRef]
- Monticelli, L.; Kandasamy, S.K.; Periole, X.; Larson, R.G.; Tieleman, D.P.; Marrink, S.-J. The MARTINI Coarse-Grained Force Field: Extension to Proteins. J. Chem. Theory Comput. 2008, 4, 819–834. [Google Scholar] [CrossRef]
- Chen, J.; Brooks, C.L.; Khandogin, J. Recent Advances in Implicit Solvent-Based Methods for Biomolecular Simulations. Curr. Opin. Struct. Biol. 2008, 18, 140–148. [Google Scholar] [CrossRef]
- Grubmüller, H. Predicting Slow Structural Transitions in Macromolecular Systems: Conformational Flooding. Phys. Rev. E 1995, 52, 2893–2906. [Google Scholar] [CrossRef]
- Lange, O.F.; Schäfer, L.V.; Grubmüller, H. Flooding in GROMACS: Accelerated Barrier Crossings in Molecular Dynamics. J. Comput. Chem. 2006, 27, 1693–1702. [Google Scholar] [CrossRef]
- Huber, T.; Torda, A.E.; Van Gunsteren, W.F. Local Elevation: A Method for Improving the Searching Properties of Molecular Dynamics Simulation. J. Comput. Aided Mol. Des. 1994, 8, 695–708. [Google Scholar] [CrossRef]
- Laio, A.; Parrinello, M. Escaping Free-Energy Minima. Proc. Natl. Acad. Sci. USA 2002, 99, 12562–12566. [Google Scholar] [CrossRef]
- Bussi, G.; Laio, A.; Parrinello, M. Equilibrium Free Energies from Nonequilibrium Metadynamics. Phys. Rev. Lett. 2006, 96, 090601. [Google Scholar] [CrossRef] [PubMed]
- Leone, V.; Marinelli, F.; Carloni, P.; Parrinello, M. Targeting Biomolecular Flexibility with Metadynamics. Curr. Opin. Struct. Biol. 2010, 20, 148–154. [Google Scholar] [CrossRef]
- Darve, E.; Pohorille, A. Calculating Free Energies Using Average Force. J. Chem. Phys. 2001, 115, 9169–9183. [Google Scholar] [CrossRef]
- Torrie, G.M.; Valleau, J.P. Nonphysical Sampling Distributions in Monte Carlo Free-Energy Estimation: Umbrella Sampling. J. Comput. Phys. 1977, 23, 187–199. [Google Scholar] [CrossRef]
- Beutler, T.C.; Van Gunsteren, W.F. The Computation of a Potential of Mean Force: Choice of the Biasing Potential in the Umbrella Sampling Technique. J. Chem. Phys. 1994, 100, 1492–1497. [Google Scholar] [CrossRef]
- Voter, A.F. A Method for Accelerating the Molecular Dynamics Simulation of Infrequent Events. J. Chem. Phys. 1997, 106, 4665–4677. [Google Scholar] [CrossRef]
- Voter, A.F. Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events. Phys. Rev. Lett. 1997, 78, 3908–3911. [Google Scholar] [CrossRef]
- Fajer, M.; Hamelberg, D.; McCammon, J.A. Replica-Exchange Accelerated Molecular Dynamics (REXAMD) Applied to Thermodynamic Integration. J. Chem. Theory Comput. 2008, 4, 1565–1569. [Google Scholar] [CrossRef] [PubMed]
- Wereszczynski, J.; McCammon, J.A. Using Selectively Applied Accelerated Molecular Dynamics to Enhance Free Energy Calculations. J. Chem. Theory Comput. 2010, 6, 3285–3292. [Google Scholar] [CrossRef]
- Bernardi, R.C.; Melo, M.C.R.; Schulten, K. Enhanced Sampling Techniques in Molecular Dynamics Simulations of Biological Systems. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2015, 1850, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Harpole, T.J.; Delemotte, L. Conformational Landscapes of Membrane Proteins Delineated by Enhanced Sampling Molecular Dynamics Simulations. Biochim. Biophys. Acta (BBA)—Biomembr. 2018, 1860, 909–926. [Google Scholar] [CrossRef]
- Smirnov, G.S.; Stegailov, V.V. Efficiency of Classical Molecular Dynamics Algorithms on Supercomputers. Math. Models Comput. Simul. 2016, 8, 734–743. [Google Scholar] [CrossRef]
- Jung, J.; Kobayashi, C.; Kasahara, K.; Tan, C.; Kuroda, A.; Minami, K.; Ishiduki, S.; Nishiki, T.; Inoue, H.; Ishikawa, Y.; et al. New Parallel Computing Algorithm of Molecular Dynamics for Extremely Huge Scale Biological Systems. J. Comput. Chem. 2021, 42, 231–241. [Google Scholar] [CrossRef]
- Guo, Z.; Lu, D.; Yan, Y.; Hu, S.; Liu, R.; Tan, G.; Sun, N.; Jiang, W.; Liu, L.; Chen, Y.; et al. Extending the Limit of Molecular Dynamics with Ab Initio Accuracy to 10 Billion Atoms. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Seoul, Republic of Korea, 2–6 April 2022; ACM: Seoul, Republic of Korea; pp. 205–218. [Google Scholar]
- Shaw, D.E.; Adams, P.J.; Azaria, A.; Bank, J.A.; Batson, B.; Bell, A.; Bergdorf, M.; Bhatt, J.; Butts, J.A.; Correia, T.; et al. Anton 3: Twenty Microseconds of Molecular Dynamics Simulation before Lunch. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, St. Louis, MO, USA, 14–19 November 2021; ACM: St. Louis, MO, USA, 2021; pp. 1–11. [Google Scholar]
- Lumi. Available online: https://www.lumi-supercomputer.eu/efficient-molecular-dynamics-simulations-on-lumi/ (accessed on 5 February 2025).
- Shirts, M.; Pande, V.S. Screen Savers of the World Unite! Science 2000, 290, 1903–1904. [Google Scholar] [CrossRef]
- Folding@home. Available online: http://foldingathome.org (accessed on 6 February 2025).
- Zimmerman, M.I.; Porter, J.R.; Ward, M.D.; Singh, S.; Vithani, N.; Meller, A.; Mallimadugula, U.L.; Kuhn, C.E.; Borowsky, J.H.; Wiewiora, R.P.; et al. SARS-CoV-2 Simulations Go Exascale to Predict Dramatic Spike Opening and Cryptic Pockets across the Proteome. Nat. Chem. 2021, 13, 651–659. [Google Scholar] [CrossRef]
- Mohamed Yusof, N.I.S.; Mohd Fauzi, F. Nature’s Toolbox for Alzheimer’s Disease: A Review on the Potential of Natural Products as Alzheimer’s Disease Drugs. Neurochem. Int. 2024, 176, 105738. [Google Scholar] [CrossRef]
- Andrade, S.; Ramalho, M.J.; Loureiro, J.A.; Pereira, M.D.C. Natural Compounds for Alzheimer’s Disease Therapy: A Systematic Review of Preclinical and Clinical Studies. Int. J. Mol. Sci. 2019, 20, 2313. [Google Scholar] [CrossRef] [PubMed]
- Lemkul, J.A.; Bevan, D.R. The Role of Molecular Simulations in the Development of Inhibitors of Amyloid β-Peptide Aggregation for the Treatment of Alzheimer’s Disease. ACS Chem. Neurosci. 2012, 3, 845–856. [Google Scholar] [CrossRef]
- Nasica-Labouze, J.; Nguyen, P.H.; Sterpone, F.; Berthoumieu, O.; Buchete, N.-V.; Coté, S.; De Simone, A.; Doig, A.J.; Faller, P.; Garcia, A.; et al. Amyloid β Protein and Alzheimer’s Disease: When Computer Simulations Complement Experimental Studies. Chem. Rev. 2015, 115, 3518–3563. [Google Scholar] [CrossRef]
- Rodríguez, M.H.; Morales, L.G.F.; Basurto, J.C.; Hernández, M.C.R. Molecular Docking and Molecular Dynamics Simulation to Evaluate Compounds That Avoid the Amyloid Beta 1-42 Aggregation. In Computational Modeling of Drugs Against Alzheimer’s Disease; Roy, K., Ed.; Neuromethods; Springer: New York, NY, USA, 2018; Volume 132, pp. 229–248. ISBN 978-1-4939-7403-0. [Google Scholar]
- Low, K.J.Y.; Venkatraman, A.; Mehta, J.S.; Pervushin, K. Molecular Mechanisms of Amyloid Disaggregation. J. Adv. Res. 2022, 36, 113–132. [Google Scholar] [CrossRef]
- Voulgaropoulou, S.D.; Van Amelsvoort, T.A.M.J.; Prickaerts, J.; Vingerhoets, C. The Effect of Curcumin on Cognition in Alzheimer’s Disease and Healthy Aging: A Systematic Review of Pre-Clinical and Clinical Studies. Brain Res. 2019, 1725, 146476. [Google Scholar] [CrossRef] [PubMed]
- Krup, V.; Prakash, L.H.; Harini, A. Pharmacological Activities of Turmeric (Curcuma Longa Linn): A Review. J. Homeop. Ayurv. Med. 2013, 2, 133. [Google Scholar] [CrossRef]
- Nasri, H.; Sahinfard, N.; Rafieian, M.; Rafieian, S.; Shirzad, M.; Rafieian-Kopaei, M. Turmeric: A Spice with Multifunctional Medicinal Properties. J. Herbmed Pharmacol. 2014, 3, 5–8. [Google Scholar]
- Hewlings, S.; Kalman, D. Curcumin: A Review of Its Effects on Human Health. Foods 2017, 6, 92. [Google Scholar] [CrossRef]
- Chen, M.; Du, Z.-Y.; Zheng, X.; Li, D.-L.; Zhou, R.-P.; Zhang, K. Use of Curcumin in Diagnosis, Prevention, and Treatment of Alzheimer’s Disease. Neural Regen. Res. 2018, 13, 742. [Google Scholar] [CrossRef]
- Salehi, B.; Stojanović-Radić, Z.; Matejić, J.; Sharifi-Rad, M.; Anil Kumar, N.V.; Martins, N.; Sharifi-Rad, J. The Therapeutic Potential of Curcumin: A Review of Clinical Trials. Eur. J. Med. Chem. 2019, 163, 527–545. [Google Scholar] [CrossRef]
- Dende, C.; Meena, J.; Nagarajan, P.; Nagaraj, V.A.; Panda, A.K.; Padmanaban, G. Nanocurcumin Is Superior to Native Curcumin in Preventing Degenerative Changes in Experimental Cerebral Malaria. Sci. Rep. 2017, 7, 10062. [Google Scholar] [CrossRef]
- Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; et al. Curcumin Inhibits Formation of Amyloid β Oligomers and Fibrils, Binds Plaques, and Reduces Amyloid in Vivo. J. Biol. Chem. 2005, 280, 5892–5901. [Google Scholar] [CrossRef]
- Maiti, P.; Dunbar, G. Use of Curcumin, a Natural Polyphenol for Targeting Molecular Pathways in Treating Age-Related Neurodegenerative Diseases. Int. J. Mol. Sci. 2018, 19, 1637. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.; Mahalakshmi, A.M.; Ray, B.; Tuladhar, S.; Hediyal, T.A.; Manthiannem, E.; Padamati, J.; Chandra, R.; Chidambaram, S.B.; Sakharkar, M.K. Benefits of Curcumin in Brain Disorders. BioFactors 2019, 45, 666–689. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.-L.; Zuo, X.; Yang, F.; Ubeda, O.J.; Gant, D.J.; Alaverdyan, M.; Teng, E.; Hu, S.; Chen, P.-P.; Maiti, P.; et al. Curcumin Suppresses Soluble Tau Dimers and Corrects Molecular Chaperone, Synaptic, and Behavioral Deficits in Aged Human Tau Transgenic Mice. J. Biol. Chem. 2013, 288, 4056–4065. [Google Scholar] [CrossRef] [PubMed]
- Ono, K.; Hasegawa, K.; Naiki, H.; Yamada, M. Curcumin Has Potent Anti-amyloidogenic Effects for Alzheimer’s Β-amyloid Fibrils in Vitro. J. Neurosci. Res. 2004, 75, 742–750. [Google Scholar] [CrossRef]
- Banerjee, R. Effect of Curcumin on the Metal Ion Induced Fibrillization of Amyloid-β Peptide. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 117, 798–800. [Google Scholar] [CrossRef]
- Rane, J.S.; Bhaumik, P.; Panda, D. Curcumin Inhibits Tau Aggregation and Disintegrates Preformed Tau Filaments in Vitro. J. Alzheimer’s Dis. 2017, 60, 999–1014. [Google Scholar] [CrossRef]
- Mohorko, N.; Repovš, G.; Popović, M.; Kovacs, G.G.; Bresjanac, M. Curcumin Labeling of Neuronal Fibrillar Tau Inclusions in Human Brain Samples. J. Neuropathol. Exp. Neurol. 2010, 69, 405–414. [Google Scholar] [CrossRef]
- Landau, M.; Sawaya, M.R.; Faull, K.F.; Laganowsky, A.; Jiang, L.; Sievers, S.A.; Liu, J.; Barrio, J.R.; Eisenberg, D. Towards a Pharmacophore for Amyloid. PLoS Biol. 2011, 9, e1001080. [Google Scholar] [CrossRef]
- Barzegar, A.; Moosavi-Movahedi, A.A. Intracellular ROS Protection Efficiency and Free Radical-Scavenging Activity of Curcumin. PLoS ONE 2011, 6, e26012. [Google Scholar] [CrossRef]
- Nery-Flores, S.D.; Mendoza-Magaña, M.L.; Ramírez-Herrera, M.A.; Ramírez-Vázquez, J.D.J.; Romero-Prado, M.M.D.J.; Cortez-Álvarez, C.R.; Ramírez-Mendoza, A.A. Curcumin Exerted Neuroprotection against Ozone-Induced Oxidative Damage and Decreased NF-κB Activation in Rat Hippocampus and Serum Levels of Inflammatory Cytokines. Oxidative Med. Cell. Longev. 2018, 2018, 9620684. [Google Scholar] [CrossRef]
- Martínez-Lazcano, J.C.; González-Guevara, E.; Custodio, V.; Pérez-Severiano, F.; Olvera-Pérez, K.; Salgado-Mozo, S.; Rubio, C.; Paz, C. Activity of Nitric Oxide Synthase Isoforms in Acute Brain Oxidative Damage Induced by Ozone Exposure. Nitric Oxide 2018, 75, 42–52. [Google Scholar] [CrossRef]
- Pryor, W.A.; Houk, K.N.; Foote, C.S.; Fukuto, J.M.; Ignarro, L.J.; Squadrito, G.L.; Davies, K.J.A. Free Radical Biology and Medicine: It’s a Gas, Man! American Journal of Physiology-Regulatory. Integr. Comp. Physiol. 2006, 291, R491–R511. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Arancibia, S.; Guevara-Guzmán, R.; López-Vidal, Y.; Rodríguez-Martínez, E.; Zanardo-Gomes, M.; Angoa-Pérez, M.; Raisman-Vozari, R. Oxidative Stress Caused by Ozone Exposure Induces Loss of Brain Repair in the Hippocampus of Adult Rats. Toxicol. Sci. 2010, 113, 187–197. [Google Scholar] [CrossRef]
- Marchiani, A.; Rozzo, C.; Fadda, A.; Delogu, G.; Ruzza, P. Curcumin and Curcumin-like Molecules: From Spice to Drugs. Curr. Med. Chem. 2013, 21, 204–222. [Google Scholar] [CrossRef]
- Frost, S.; Kanagasingam, Y.; Macaulay, L.; Koronyo-Hamaoui, M.; Koronyo, Y.; Biggs, D.; Verdooner, S.; Black, K.; Taddei, K.; Shah, T.; et al. O3-13-01: RETINAL AMYLOID FLUORESCENCE IMAGING PREDICTS CEREBRAL AMYLOID BURDEN AND ALZHEIMER’S DISEASE. Alzheimer’s Dement. 2014, 10, P234–P235. [Google Scholar] [CrossRef]
- Wang, X.; Kim, J.-R.; Lee, S.-B.; Kim, Y.-J.; Jung, M.Y.; Kwon, H.-W.; Ahn, Y.-J. Effects of Curcuminoids Identified in Rhizomes of Curcuma Longa on BACE-1 Inhibitory and Behavioral Activity and Lifespan of Alzheimer’s Disease Drosophila Models. BMC Complement. Altern. Med. 2014, 14, 88. [Google Scholar] [CrossRef]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.-Y.; Ho, C.-T.; Pan, M.-H. The Therapeutic Potential of Curcumin and Its Related Substances in Turmeric: From Raw Material Selection to Application Strategies. J. Food Drug Anal. 2023, 31, 194–211. [Google Scholar] [CrossRef]
- Godse, S.; Zhou, L.; Sakshi, S.; Singla, B.; Singh, U.P.; Kumar, S. Nanocarrier-Mediated Curcumin Delivery: An Adjuvant Strategy for CNS Disease Treatment. Exp. Biol. Med. 2023, 248, 2151–2166. [Google Scholar] [CrossRef] [PubMed]
- Cox, K.H.M.; White, D.J.; Pipingas, A.; Poorun, K.; Scholey, A. Further Evidence of Benefits to Mood and Working Memory from Lipidated Curcumin in Healthy Older People: A 12-Week, Double-Blind, Placebo-Controlled, Partial Replication Study. Nutrients 2020, 12, 1678. [Google Scholar] [CrossRef]
- Ngolab, J.; Donohue, M.; Belsha, A.; Salazar, J.; Cohen, P.; Jaiswal, S.; Tan, V.; Gessert, D.; Korouri, S.; Aggarwal, N.T.; et al. Feasibility Study for Detection of Retinal Amyloid in Clinical Trials: The Anti-Amyloid Treatment in Asymptomatic Alzheimer’s Disease (A4) Trial. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2021, 13, e12199. [Google Scholar] [CrossRef]
- Longvida Curcumin Human Pharmacokinetics Study (CRC) Clinical Trials ID: NCT03289507 2025. Available online: https://clinicaltrials.gov/study/NCT03289507?tab=table (accessed on 25 September 2025).
- Lim, G.P.; Chu, T.; Yang, F.; Beech, W.; Frautschy, S.A.; Cole, G.M. The Curry Spice Curcumin Reduces Oxidative Damage and Amyloid Pathology in an Alzheimer Transgenic Mouse. J. Neurosci. 2001, 21, 8370–8377. [Google Scholar] [CrossRef]
- Zhao, L.N.; Chiu, S.-W.; Benoit, J.; Chew, L.Y.; Mu, Y. The Effect of Curcumin on the Stability of Aβ Dimers. J. Phys. Chem. B 2012, 116, 7428–7435. [Google Scholar] [CrossRef]
- Kozmon, S.; Tvaroška, I. Molecular Dynamic Studies of Amyloid-Beta Interactions with Curcumin and Cu2+ Ions. Chem. Pap. 2015, 69, 1262–1276. [Google Scholar] [CrossRef]
- Salamanova, E.; Atanasova, M.; Dimitrov, I.; Doytchinova, I. Effects of Curcumin and Ferulic Acid on the Folding of Amyloid-β Peptide. Molecules 2021, 26, 2815. [Google Scholar] [CrossRef]
- Doytchinova, I.; Atanasova, M.; Salamanova, E.; Ivanov, S.; Dimitrov, I. Curcumin Inhibits the Primary Nucleation of Amyloid-Beta Peptide: A Molecular Dynamics Study. Biomolecules 2020, 10, 1323. [Google Scholar] [CrossRef]
- Tavanti, F.; Pedone, A.; Menziani, M.C. Insights into the Effect of Curcumin and (–)-Epigallocatechin-3-Gallate on the Aggregation of Aβ(1–40) Monomers by Means of Molecular Dynamics. Int. J. Mol. Sci. 2020, 21, 5462. [Google Scholar] [CrossRef] [PubMed]
- Kundaikar, H.S.; Degani, M.S. Insights into the Interaction Mechanism of Ligands with A β 42 Based on Molecular Dynamics Simulations and Mechanics: Implications of Role of Common Binding Site in Drug Design for Alzheimer’s Disease. Chem. Biol. Drug Des. 2015, 86, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Bajda, M.; Filipek, S. Computational Approach for the Assessment of Inhibitory Potency against Beta-Amyloid Aggregation. Bioorganic Med. Chem. Lett. 2017, 27, 212–216. [Google Scholar] [CrossRef]
- Muscat, S.; Pallante, L.; Stojceski, F.; Danani, A.; Grasso, G.; Deriu, M.A. The Impact of Natural Compounds on S-Shaped Aβ42 Fibril: From Molecular Docking to Biophysical Characterization. Int. J. Mol. Sci. 2020, 21, 2017. [Google Scholar] [CrossRef]
- Jakubowski, J.M.; Orr, A.A.; Le, D.A.; Tamamis, P. Interactions between Curcumin Derivatives and Amyloid-β Fibrils: Insights from Molecular Dynamics Simulations. J. Chem. Inf. Model. 2020, 60, 289–305. [Google Scholar] [CrossRef]
- Wang, Y.; Latshaw, D.C.; Hall, C.K. Aggregation of Aβ(17–36) in the Presence of Naturally Occurring Phenolic Inhibitors Using Coarse-Grained Simulations. J. Mol. Biol. 2017, 429, 3893–3908. [Google Scholar] [CrossRef]
- Tavanti, F.; Pedone, A.; Menziani, M.C. Computational Insight into the Effect of Natural Compounds on the Destabilization of Preformed Amyloid-β(1–40) Fibrils. Molecules 2018, 23, 1320. [Google Scholar] [CrossRef]
- Khurshid, B.; Rehman, A.U.; Muhammad, S.; Wadood, A.; Anwar, J. Toward the Noninvasive Diagnosis of Alzheimer’s Disease: Molecular Basis for the Specificity of Curcumin for Fibrillar Amyloid-β. ACS Omega 2022, 7, 22032–22038. [Google Scholar] [CrossRef] [PubMed]
- Ngoc, L.L.N.; Itoh, S.G.; Sompornpisut, P.; Okumura, H. Replica-Permutation Molecular Dynamics Simulations of an Amyloid-β(16–22) Peptide and Polyphenols. Chem. Phys. Lett. 2020, 758, 137913. [Google Scholar] [CrossRef]
- Fan, H.-M.; Gu, R.-X.; Wang, Y.-J.; Pi, Y.-L.; Zhang, Y.-H.; Xu, Q.; Wei, D.-Q. Destabilization of Alzheimer’s Aβ42 Protofibrils with a Novel Drug Candidate Wgx-50 by Molecular Dynamics Simulations. J. Phys. Chem. B 2015, 119, 11196–11202. [Google Scholar] [CrossRef]
- Sharma, S.; Goyal, H.; Joshi, S.; Nehru, B.; Saini, A. Molecular Interactions of Resveratrol with Aβ 42 Peptide and Fibril during In-Vitro Aβ 42 Aggregation. Adv. Redox Res. 2023, 7, 100060. [Google Scholar] [CrossRef]
- Brogi, S.; Sirous, H.; Calderone, V.; Chemi, G. Amyloid β Fibril Disruption by Oleuropein Aglycone: Long-Time Molecular Dynamics Simulation to Gain Insight into the Mechanism of Action of This Polyphenol from Extra Virgin Olive Oil. Food Funct. 2020, 11, 8122–8132. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Kim, B.; Friesner, R.A.; Berne, B.J. Replica Exchange with Solute Tempering: A Method for Sampling Biological Systems in Explicit Water. Proc. Natl. Acad. Sci. USA 2005, 102, 13749–13754. [Google Scholar] [CrossRef]
- Garcia-Alloza, M.; Borrelli, L.A.; Rozkalne, A.; Hyman, B.T.; Bacskai, B.J. Curcumin Labels Amyloid Pathology in Vivo, Disrupts Existing Plaques, and Partially Restores Distorted Neurites in an Alzheimer Mouse Model. J. Neurochem. 2007, 102, 1095–1104. [Google Scholar] [CrossRef]
- Mithu, V.S.; Sarkar, B.; Bhowmik, D.; Das, A.K.; Chandrakesan, M.; Maiti, S.; Madhu, P.K. Curcumin Alters the Salt Bridge-Containing Turn Region in Amyloid β(1–42) Aggregates. J. Biol. Chem. 2014, 289, 11122–11131. [Google Scholar] [CrossRef]
- Mladenova, K.; Stavrakov, G.; Philipova, I.; Atanasova, M.; Petrova, S.; Doumanov, J.; Doytchinova, I. A Galantamine–Curcumin Hybrid Decreases the Cytotoxicity of Amyloid-Beta Peptide on SH-SY5Y Cells. Int. J. Mol. Sci. 2021, 22, 7592. [Google Scholar] [CrossRef] [PubMed]
- Ono, K.; Li, L.; Takamura, Y.; Yoshiike, Y.; Zhu, L.; Han, F.; Mao, X.; Ikeda, T.; Takasaki, J.; Nishijo, H.; et al. Phenolic Compounds Prevent Amyloid β-Protein Oligomerization and Synaptic Dysfunction by Site-Specific Binding. J. Biol. Chem. 2012, 287, 14631–14643. [Google Scholar] [CrossRef] [PubMed]
- Alfieri, A.; Mann, G.E. Bioactive Nutraceuticals and Stroke. In Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease; Elsevier: Amsterdam, The Netherlands, 2015; pp. 365–379. ISBN 978-0-12-411462-3. [Google Scholar]
- Choi, H.R.; Choi, J.S.; Han, Y.N.; Bae, S.J.; Chung, H.Y. Peroxynitrite Scavenging Activity of Herb Extracts. Phytother. Res. 2002, 16, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Qiao, S.; Li, W.; Tsubouchi, R.; Haneda, M.; Murakami, K.; Takeuchi, F.; Nisimoto, Y.; Yoshino, M. Rosmarinic Acid Inhibits the Formation of Reactive Oxygen and Nitrogen Species in RAW264.7 Macrophages. Free Radic. Res. 2005, 39, 995–1003. [Google Scholar] [CrossRef]
- Azhar, M.K.; Anwar, S.; Hasan, G.M.; Shamsi, A.; Islam, A.; Parvez, S.; Hassan, M.I. Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases. Nutrients 2023, 15, 4297. [Google Scholar] [CrossRef]
- Kelsey, N.A.; Wilkins, H.M.; Linseman, D.A. Nutraceutical Antioxidants as Novel Neuroprotective Agents. Molecules 2010, 15, 7792–7814. [Google Scholar] [CrossRef]
- Nadeem, M.; Imran, M.; Aslam Gondal, T.; Imran, A.; Shahbaz, M.; Muhammad Amir, R.; Wasim Sajid, M.; Batool Qaisrani, T.; Atif, M.; Hussain, G.; et al. Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review. Appl. Sci. 2019, 9, 3139. [Google Scholar] [CrossRef]
- Shimojo, Y.; Kosaka, K.; Noda, Y.; Shimizu, T.; Shirasawa, T. Effect of Rosmarinic Acid in Motor Dysfunction and Life Span in a Mouse Model of Familial Amyotrophic Lateral Sclerosis. J. Neurosci. Res. 2010, 88, 896–904. [Google Scholar] [CrossRef]
- Alkam, T.; Nitta, A.; Mizoguchi, H.; Itoh, A.; Nabeshima, T. A Natural Scavenger of Peroxynitrites, Rosmarinic Acid, Protects against Impairment of Memory Induced by Aβ25–35. Behav. Brain Res. 2007, 180, 139–145. [Google Scholar] [CrossRef]
- Hamaguchi, T.; Ono, K.; Murase, A.; Yamada, M. Phenolic Compounds Prevent Alzheimer’s Pathology through Different Effects on the Amyloid-β Aggregation Pathway. Am. J. Pathol. 2009, 175, 2557–2565. [Google Scholar] [CrossRef]
- Hitl, M.; Kladar, N.; Gavarić, N.; Božin, B. Rosmarinic Acid–Human Pharmacokinetics and Health Benefits. Planta Med. 2021, 87, 273–282. [Google Scholar] [CrossRef]
- Kuo, Y.-C.; Rajesh, R. Targeted Delivery of Rosmarinic Acid across the Blood–Brain Barrier for Neuronal Rescue Using Polyacrylamide-Chitosan-Poly(Lactide- Co -Glycolide) Nanoparticles with Surface Cross-Reacting Material 197 and Apolipoprotein E. Int. J. Pharm. 2017, 528, 228–241. [Google Scholar] [CrossRef]
- Chaitanya, M.V.N.L.; Ramanunny, A.K.; Babu, M.R.; Gulati, M.; Vishwas, S.; Singh, T.G.; Chellappan, D.K.; Adams, J.; Dua, K.; Singh, S.K. Journey of Rosmarinic Acid as Biomedicine to Nano-Biomedicine for Treating Cancer: Current Strategies and Future Perspectives. Pharmaceutics 2022, 14, 2401. [Google Scholar] [CrossRef]
- Suwa, H.; Todo, S. Markov Chain Monte Carlo Method without Detailed Balance. Phys. Rev. Lett. 2010, 105, 120603. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Shi, S.; Tang, M.; Liang, D.; Xu, W.; Wang, L.; Wang, Z.; Qiao, Z. The Suppressive Effects of Gx-50 on Aβ-Induced Chemotactic Migration of Microglia. Int. Immunopharmacol. 2014, 19, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Liang, D.; Chen, Y.; Xie, Y.; Wang, Y.; Wang, L.; Wang, Z.; Qiao, Z. Gx-50 Reduces Β-amyloid-induced TNF-α, IL-1β, NO, and PGE2 Expression and Inhibits NF-κB Signaling in a Mouse Model of Alzheimer’s Disease. Eur. J. Immunol. 2016, 46, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Shi, S.; Guo, Y.; Xu, W.; Wang, L.; Chen, Y.; Wang, Z.; Qiao, Z. GSK-3/CREB Pathway Involved in the Gx-50’s Effect on Alzheimer’s Disease. Neuropharmacology 2014, 81, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Wang, Z.; Zhou, Y.; Xu, W.; Li, S.; Wang, L.; Wei, D.; Qiao, Z. A Novel Drug Candidate for Alzheimer’s Disease Treatment: Gx-50 Derived from Zanthoxylum Bungeanum. J. Alzheimer’s Dis. 2013, 34, 203–213. [Google Scholar] [CrossRef]
- Subbaramaiah, K.; Chung, W.J.; Michaluart, P.; Telang, N.; Tanabe, T.; Inoue, H.; Jang, M.; Pezzuto, J.M.; Dannenberg, A.J. Resveratrol Inhibits Cyclooxygenase-2 Transcription and Activity in Phorbol Ester-Treated Human Mammary Epithelial Cells. J. Biol. Chem. 1998, 273, 21875–21882. [Google Scholar] [CrossRef]
- Soleas, G.J.; Diamandis, E.P.; Goldberg, D.M. Resveratrol: A Molecule Whose Time Has Come? And Gone? Clin. Biochem. 1997, 30, 91–113. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.W.; Fong, H.H.S.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; et al. Cancer Chemopreventive Activity of Resveratrol, a Natural Product Derived from Grapes. Science 1997, 275, 218–220. [Google Scholar] [CrossRef]
- Surh, Y.-J. Molecular Mechanisms of Chemopreventive Effects of Selected Dietary and Medicinal Phenolic Substances. Mutat. Res. Fundam. Mol. Mech. Mutagen. 1999, 428, 305–327. [Google Scholar] [CrossRef]
- Jang, J. Protective Effect of Resveratrol on β-Amyloid-Induced Oxidative PC12 Cell Death. Free Radic. Biol. Med. 2003, 34, 1100–1110. [Google Scholar] [CrossRef]
- Hsieh, T.C.; Juan, G.; Darzynkiewicz, Z.; Wu, J.M. Resveratrol Increases Nitric Oxide Synthase, Induces Accumulation of P53 and P21(WAF1/CIP1), and Suppresses Cultured Bovine Pulmonary Artery Endothelial Cell Proliferation by Perturbing Progression through S and G2. Cancer Res. 1999, 59, 2596–2601. [Google Scholar]
- Feng, Y.; Wang, X.; Yang, S.; Wang, Y.; Zhang, X.; Du, X.; Sun, X.; Zhao, M.; Huang, L.; Liu, R. Resveratrol Inhibits Beta-Amyloid Oligomeric Cytotoxicity but Does Not Prevent Oligomer Formation. NeuroToxicology 2009, 30, 986–995. [Google Scholar] [CrossRef]
- Ge, J.-F.; Qiao, J.-P.; Qi, C.-C.; Wang, C.-W.; Zhou, J.-N. The Binding of Resveratrol to Monomer and Fibril Amyloid Beta. Neurochem. Int. 2012, 61, 1192–1201. [Google Scholar] [CrossRef] [PubMed]
- Al-Edresi, S.; Alsalahat, I.; Freeman, S.; Aojula, H.; Penny, J. Resveratrol-Mediated Cleavage of Amyloid Β1–42 Peptide: Potential Relevance to Alzheimer’s Disease. Neurobiol. Aging 2020, 94, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Almeida, L.; Vaz-da-Silva, M.; Falcão, A.; Soares, E.; Costa, R.; Loureiro, A.I.; Fernandes-Lopes, C.; Rocha, J.; Nunes, T.; Wright, L.; et al. Pharmacokinetic and Safety Profile of Trans -resveratrol in a Rising Multiple-dose Study in Healthy Volunteers. Mol. Nutr. Food Res. 2009, 53, S7–S15. [Google Scholar] [CrossRef]
- Cottart, C.; Nivet-Antoine, V.; Laguillier-Morizot, C.; Beaudeux, J. Resveratrol Bioavailability and Toxicity in Humans. Mol. Nutr. Food Res. 2010, 54, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Salla, M.; Karaki, N.; El Kaderi, B.; Ayoub, A.J.; Younes, S.; Abou Chahla, M.N.; Baksh, S.; El Khatib, S. Enhancing the Bioavailability of Resveratrol: Combine It, Derivatize It, or Encapsulate It? Pharmaceutics 2024, 16, 569. [Google Scholar] [CrossRef]
- Münzenberger, B.; Heilemann, J.; Strack, D.; Kottke, I.; Oberwinkler, F. Phenolics of Mycorrhizas and Non-Mycorrhizal Roots of Norway Spruce. Planta 1990, 182, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Cuendet, M.; Vigo, J.S.; Graham, J.G.; Cabieses, F.; Fong, H.H.S.; Pezzuto, J.M.; Kinghorn, A.D. A Novel Cyclooxygenase-Inhibitory Stilbenolignan from the Seeds of Aiphanes Aculeata. Org. Lett. 2001, 3, 2169–2171. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.-S.; Lin, M.; Liu, X.; Wang, Y.-H. Stilbene Derivatives from Gnetum cleistostachyum. J. Asian Nat. Prod. Res. 2005, 7, 131–137. [Google Scholar] [CrossRef]
- Piotrowska, H.; Kucinska, M.; Murias, M. Biological Activity of Piceatannol: Leaving the Shadow of Resveratrol. Mutat. Res./Rev. Mutat. Res. 2012, 750, 60–82. [Google Scholar] [CrossRef]
- Fu, Z.; Yang, J.; Wei, Y.; Li, J. Effects of Piceatannol and Pterostilbene against β-Amyloid-Induced Apoptosis on the PI3K/Akt/Bad Signaling Pathway in PC12 Cells. Food Funct. 2016, 7, 1014–1023. [Google Scholar] [CrossRef]
- Choi, B.; Kim, S.; Jang, B.-G.; Kim, M.-J. Piceatannol, a Natural Analogue of Resveratrol, Effectively Reduces Beta-Amyloid Levels via Activation of Alpha-Secretase and Matrix Metalloproteinase-9. J. Funct. Foods 2016, 23, 124–134. [Google Scholar] [CrossRef]
- Kershaw, J.; Kim, K.-H. The Therapeutic Potential of Piceatannol, a Natural Stilbene, in Metabolic Diseases: A Review. J. Med. Food 2017, 20, 427–438. [Google Scholar] [CrossRef]
- Alhakamy, N.A.; Badr-Eldin, S.M.; Ahmed, O.A.A.; Asfour, H.Z.; Aldawsari, H.M.; Algandaby, M.M.; Eid, B.G.; Abdel-Naim, A.B.; Awan, Z.A.; Alghaith, A.F.; et al. Piceatannol-Loaded Emulsomes Exhibit Enhanced Cytostatic and Apoptotic Activities in Colon Cancer Cells. Antioxidants 2020, 9, 419. [Google Scholar] [CrossRef]
- Sie, Y.-Y.; Chen, L.-C.; Li, C.-J.; Yuan, Y.-H.; Hsiao, S.-H.; Lee, M.-H.; Wang, C.-C.; Hou, W.-C. Inhibition of Acetylcholinesterase and Amyloid-β Aggregation by Piceatannol and Analogs: Assessing In Vitro and In Vivo Impact on a Murine Model of Scopolamine-Induced Memory Impairment. Antioxidants 2023, 12, 1362. [Google Scholar] [CrossRef]
- Sato, A.; Tagai, N.; Ogino, Y.; Uozumi, H.; Kawakami, S.; Yamamoto, T.; Tanuma, S.; Maruki-Uchida, H.; Mori, S.; Morita, M. Passion Fruit Seed Extract Protects Beta-amyloid-induced Neuronal Cell Death in a Differentiated Human Neuroblastoma SH-SY5Y Cell Model. Food Sci. Nutr. 2022, 10, 1461–1468. [Google Scholar] [CrossRef]
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Lercker, G. Phenolic Molecules in Virgin Olive Oils: A Survey of Their Sensory Properties, Health Effects, Antioxidant Activity and Analytical Methods. An Overview of the Last Decade Alessandra. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef] [PubMed]
- Romero-Márquez, J.M.; Forbes-Hernández, T.Y.; Navarro-Hortal, M.D.; Quirantes-Piné, R.; Grosso, G.; Giampieri, F.; Lipari, V.; Sánchez-González, C.; Battino, M.; Quiles, J.L. Molecular Mechanisms of the Protective Effects of Olive Leaf Polyphenols against Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 4353. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Velander, P.; Liu, D.; Xu, B. Olive Component Oleuropein Promotes β-Cell Insulin Secretion and Protects β-Cells from Amylin Amyloid-Induced Cytotoxicity. Biochemistry 2017, 56, 5035–5039. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, D.; Esposito, E.; Mazzon, E.; Paterniti, I.; Di Paola, R.; Bramanti, P.; Morittu, V.M.; Procopio, A.; Perri, E.; Britti, D.; et al. The Effects of a Polyphenol Present in Olive Oil, Oleuropein Aglycone, in an Experimental Model of Spinal Cord Injury in Mice. Biochem. Pharmacol. 2012, 83, 1413–1426. [Google Scholar] [CrossRef]
- Xu, F.; Li, Y.; Zheng, M.; Xi, X.; Zhang, X.; Han, C. Structure Properties, Acquisition Protocols, and Biological Activities of Oleuropein Aglycone. Front. Chem. 2018, 6, 239. [Google Scholar] [CrossRef]
- Leri, M.; Oropesa-Nuñez, R.; Canale, C.; Raimondi, S.; Giorgetti, S.; Bruzzone, E.; Bellotti, V.; Stefani, M.; Bucciantini, M. Oleuropein Aglycone: A Polyphenol with Different Targets against Amyloid Toxicity. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2018, 1862, 1432–1442. [Google Scholar] [CrossRef]
- Borah, P.; Sanjeev, A.; Mattaparthi, V.S.K. Computational Investigation on the Effect of Oleuropein Aglycone on the α-Synuclein Aggregation. J. Biomol. Struct. Dyn. 2021, 39, 1259–1270. [Google Scholar] [CrossRef]
- Paul, S.; Biswas, P. Molecular Dynamics Simulation Study of the Self-Assembly of Tau-Derived PHF6 and Its Inhibition by Oleuropein Aglycone from Extra Virgin Olive Oil. J. Phys. Chem. B 2024, 128, 5630–5641. [Google Scholar] [CrossRef]
- Alaziqi, B.; Beckitt, L.; Townsend, D.J.; Morgan, J.; Price, R.; Maerivoet, A.; Madine, J.; Rochester, D.; Akien, G.; Middleton, D.A. Characterization of Olive Oil Phenolic Extracts and Their Effects on the Aggregation of the Alzheimer’s Amyloid-β Peptide and Tau. ACS Omega 2024, 9, 32557–32578. [Google Scholar] [CrossRef]
- Luccarini, I.; Ed Dami, T.; Grossi, C.; Rigacci, S.; Stefani, M.; Casamenti, F. Oleuropein Aglycone Counteracts Aβ42 Toxicity in the Rat Brain. Neurosci. Lett. 2014, 558, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Rigacci, S.; Guidotti, V.; Bucciantini, M.; Nichino, D.; Relini, A.; Berti, A.; Stefani, M. Aβ(1-42) Aggregates into Non-Toxic Amyloid Assemblies in the Presence of the Natural Polyphenol Oleuropein Aglycon. Curr. Alzheimer Res. 2011, 8, 841–852. [Google Scholar] [CrossRef]
- Grossi, C.; Rigacci, S.; Ambrosini, S.; Ed Dami, T.; Luccarini, I.; Traini, C.; Failli, P.; Berti, A.; Casamenti, F.; Stefani, M. The Polyphenol Oleuropein Aglycone Protects TgCRND8 Mice against Aß Plaque Pathology. PLoS ONE 2013, 8, e71702. [Google Scholar] [CrossRef]
- Leri, M.; Natalello, A.; Bruzzone, E.; Stefani, M.; Bucciantini, M. Oleuropein Aglycone and Hydroxytyrosol Interfere Differently with Toxic Aβ1-42 Aggregation. Food Chem. Toxicol. 2019, 129, 1–12. [Google Scholar] [CrossRef]
- Cordero, J.G.; García-Escudero, R.; Avila, J.; Gargini, R.; García-Escudero, V. Benefit of Oleuropein Aglycone for Alzheimer’s Disease by Promoting Autophagy. Oxidative Med. Cell. Longev. 2018, 2018, 5010741. [Google Scholar] [CrossRef] [PubMed]
- Diomede, L.; Rigacci, S.; Romeo, M.; Stefani, M.; Salmona, M. Oleuropein Aglycone Protects Transgenic C. Elegans Strains Expressing Aβ42 by Reducing Plaque Load and Motor Deficit. PLoS ONE 2013, 8, e58893. [Google Scholar] [CrossRef]
- Nasr, M.; Katary, S.H. From Olive Tree to Treatment: Nano-Delivery Systems for Enhancing Oleuropein’s Health Benefits. Pharmaceuticals 2025, 18, 573. [Google Scholar] [CrossRef] [PubMed]
- De Bock, M.; Thorstensen, E.B.; Derraik, J.G.B.; Henderson, H.V.; Hofman, P.L.; Cutfield, W.S. Human Absorption and Metabolism of Oleuropein and Hydroxytyrosol Ingested as Olive (Olea europaea L.) Leaf Extract. Mol. Nutr. Food Res. 2013, 57, 2079–2085. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, B.; Li, M.; Shen, S.; Xin, W. Studies on Protective Mechanisms of Four Components of Green Tea Polyphenols against Lipid Peroxidation in Synaptosomes. Biochim. Biophys. Acta (BBA)—Lipids Lipid Metab. 1996, 1304, 210–222. [Google Scholar] [CrossRef]
- Kondo, K.; Kurihara, M.; Miyata, N.; Suzuki, T.; Toyoda, M. Scavenging Mechanisms of (-)-Epigallocatechin Gallate and (-)-Epicatechin Gallate on Peroxyl Radicals and Formation of Superoxide during the Inhibitory Action. Free Radic. Biol. Med. 1999, 27, 855–863. [Google Scholar] [CrossRef]
- Shi, X.; Ye, J.; Leonard, S.; Ding, M.; Vallyathan, V.; Castranova, V.; Rojanasakul, Y.; Dong, Z. Antioxidant Properties of (-)-Epicatechin-3-Gallate and Its Inhibition of Cr(VI)-Induced DNA Damage and Cr(IV)- or TPA-Stimulated NF-kappaB Activation. Mol. Cell. Biochem. 2000, 206, 125–132. [Google Scholar] [CrossRef]
- Lin, J.-K.; Chen, P.-C.; Ho, C.-T.; Lin-Shiau, S.-Y. Inhibition of Xanthine Oxidase and Suppression of Intracellular Reactive Oxygen Species in HL-60 Cells by Theaflavin-3,3‘-Digallate, (−)-Epigallocatechin-3-Gallate, and Propyl Gallate. J. Agric. Food Chem. 2000, 48, 2736–2743. [Google Scholar] [CrossRef]
- Stoner, G.D.; Mukhtar, H. Polyphenols as Cancer Chemopreventive Agents. J. Cell. Biochem. 1995, 59, 169–180. [Google Scholar] [CrossRef]
- Gensler, H.L.; Timmermann, B.N.; Valcic, S.; Wächter, G.A.; Dorr, R.; Dvorakova, K.; Alberts, D.S. Prevention of Photocarcinogenesis by Topical Administration of Pure Epigallocatechin Gallate Isolated from Green Tea. Nutr. Cancer 1996, 26, 325–335. [Google Scholar] [CrossRef]
- Kato, T.; Harashima, T.; Moriya, N.; Kikugawa, K.; Hiramoto, K. Formation of the Mutagenic/Carcinogenic Imidazoquinoxaline-Type Heterocyclic Amines through the Unstable Free Radical Maillard Intermediates and Its Inhibition by Phenolic Antioxidants. Carcinogenesis 1996, 17, 2469–2476. [Google Scholar] [CrossRef]
- Nakagawa, K.; Miyazawa, T. Absorption and Distribution of Tea Catechin(-)-Epigallocatechin-3-Gallate, in the Rat. Journal of Nutritional Science and Vitaminology. J. Nutr. Sci. Vitaminol. 1997, 43, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Suganuma, M. Wide Distribution of [3H](-)-Epigallocatechin Gallate, a Cancer Preventive Tea Polyphenol, in Mouse Tissue. Carcinogenesis 1998, 19, 1771–1776. [Google Scholar] [CrossRef]
- Choi, Y.-T.; Jung, C.-H.; Lee, S.-R.; Bae, J.-H.; Baek, W.-K.; Suh, M.-H.; Park, J.; Park, C.-W.; Suh, S.-I. The Green Tea Polyphenol (−)-Epigallocatechin Gallate Attenuates β-Amyloid-Induced Neurotoxicity in Cultured Hippocampal Neurons. Life Sci. 2001, 70, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.M.; Chyi, B.Y.; Wu, L.Y.; Hwang, L.S.; Ho, L.T. The Antioxidative Property of Green Tea against Iron-Induced Oxidative Stress in Rat Brain. Chin. J. Physiol. 1998, 41, 189–194. [Google Scholar] [PubMed]
- Fernandes, L.; Cardim-Pires, T.R.; Foguel, D.; Palhano, F.L. Green Tea Polyphenol Epigallocatechin-Gallate in Amyloid Aggregation and Neurodegenerative Diseases. Front. Neurosci. 2021, 15, 718188. [Google Scholar] [CrossRef]
- Levites, Y.; Amit, T.; Mandel, S.; Youdim, M.B.H. Neuroprotection and Neurorescue against Aβ Toxicity and PKC-dependent Release of Non-amyloidogenic Soluble Precursor Protein by Green Tea Polyphenol (-)-epigallocatechin-3-gallate. FASEB J. 2003, 17, 1–23. [Google Scholar] [CrossRef]
- Bastianetto, S.; Yao, Z.; Papadopoulos, V.; Quirion, R. Neuroprotective Effects of Green and Black Teas and Their Catechin Gallate Esters against Β-amyloid-induced Toxicity. Eur. J. Neurosci. 2006, 23, 55–64. [Google Scholar] [CrossRef]
- Ehrnhoefer, D.E.; Bieschke, J.; Boeddrich, A.; Herbst, M.; Masino, L.; Lurz, R.; Engemann, S.; Pastore, A.; Wanker, E.E. EGCG Redirects Amyloidogenic Polypeptides into Unstructured, off-Pathway Oligomers. Nat. Struct. Mol. Biol. 2008, 15, 558–566. [Google Scholar] [CrossRef]
- Bieschke, J.; Russ, J.; Friedrich, R.P.; Ehrnhoefer, D.E.; Wobst, H.; Neugebauer, K.; Wanker, E.E. EGCG Remodels Mature α-Synuclein and Amyloid-β Fibrils and Reduces Cellular Toxicity. Proc. Natl. Acad. Sci. USA 2010, 107, 7710–7715. [Google Scholar] [CrossRef] [PubMed]
- Rezai-Zadeh, K.; Arendash, G.W.; Hou, H.; Fernandez, F.; Jensen, M.; Runfeldt, M.; Shytle, R.D.; Tan, J. Green Tea Epigallocatechin-3-Gallate (EGCG) Reduces β-Amyloid Mediated Cognitive Impairment and Modulates Tau Pathology in Alzheimer Transgenic Mice. Brain Res. 2008, 1214, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Obregon, D.F.; Rezai-Zadeh, K.; Bai, Y.; Sun, N.; Hou, H.; Ehrhart, J.; Zeng, J.; Mori, T.; Arendash, G.W.; Shytle, D.; et al. ADAM10 Activation Is Required for Green Tea (–)-Epigallocatechin-3-Gallate-Induced α-Secretase Cleavage of Amyloid Precursor Protein. J. Biol. Chem. 2006, 281, 16419–16427. [Google Scholar] [CrossRef]
- Bao, J.; Liu, W.; Zhou, H.; Gui, Y.; Yang, Y.; Wu, M.; Xiao, Y.; Shang, J.; Long, G.; Shu, X. Epigallocatechin-3-Gallate Alleviates Cognitive Deficits in APP/PS1 Mice. Curr. Med. Sci. 2020, 40, 18–27. [Google Scholar] [CrossRef]
- Ettcheto, M.; Cano, A.; Manzine, P.R.; Busquets, O.; Verdaguer, E.; Castro-Torres, R.D.; García, M.L.; Beas-Zarate, C.; Olloquequi, J.; Auladell, C.; et al. Epigallocatechin-3-Gallate (EGCG) Improves Cognitive Deficits Aggravated by an Obesogenic Diet Through Modulation of Unfolded Protein Response in APPswe/PS1dE9 Mice. Mol. Neurobiol. 2020, 57, 1814–1827. [Google Scholar] [CrossRef]
- Mereles, D.; Hunstein, W. Epigallocatechin-3-Gallate (EGCG) for Clinical Trials: More Pitfalls than Promises? Int. J. Mol. Sci. 2011, 12, 5592–5603. [Google Scholar] [CrossRef] [PubMed]
- Furniturewalla, A.; Barve, K. Approaches to Overcome Bioavailability Inconsistencies of Epigallocatechin Gallate, a Powerful Anti-Oxidant in Green Tea. Food Chem. Adv. 2022, 1, 100037. [Google Scholar] [CrossRef]
- Nag, S.; Bhunia, A.; Mohanto, S.; Ahmed, M.G.; Subramaniyan, V. Rising Potentials of Epigallocatechin Gallate (EGCG) Loaded Lipid-Based Delivery Platforms for Breast Cancer. Discov. Appl. Sci. 2024, 6, 426. [Google Scholar] [CrossRef]
- Zagury, Y.; Kazir, M.; Livney, Y.D. Improved Antioxidant Activity, Bioaccessibility and Bioavailability of EGCG by Delivery in β-Lactoglobulin Particles. J. Funct. Foods 2019, 52, 121–130. [Google Scholar] [CrossRef]
- Mehmood, S.; Maqsood, M.; Mahtab, N.; Khan, M.I.; Sahar, A.; Zaib, S.; Gul, S. Epigallocatechin Gallate: Phytochemistry, Bioavailability, Utilization Challenges, and Strategies. J. Food Biochem. 2022, 46, e14189. [Google Scholar] [CrossRef]
- Sinha, S.; Du, Z.; Maiti, P.; Klärner, F.-G.; Schrader, T.; Wang, C.; Bitan, G. Comparison of Three Amyloid Assembly Inhibitors: The Sugar Scyllo- Inositol, the Polyphenol Epigallocatechin Gallate, and the Molecular Tweezer CLR01. ACS Chem. Neurosci. 2012, 3, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.-F.; Dong, X.-Y.; He, L.; Middelberg, A.P.J.; Sun, Y. Molecular Insight into Conformational Transition of Amyloid β-Peptide 42 Inhibited by (−)-Epigallocatechin-3-Gallate Probed by Molecular Simulations. J. Phys. Chem. B 2011, 115, 11879–11887. [Google Scholar] [CrossRef]
- Ngo, S.T.; Truong, D.T.; Tam, N.M.; Nguyen, M.T. EGCG Inhibits the Oligomerization of Amyloid Beta (16–22) Hexamer: Theoretical Studies. J. Mol. Graph. Model. 2017, 76, 1–10. [Google Scholar] [CrossRef]
- The PyMOL Molecular Graphics System, v. 1.5.0.4; Schrödinger, LLC.: New York, NY, USA, 2012.
- Zhang, T.; Zhang, J.; Derreumaux, P.; Mu, Y. Molecular Mechanism of the Inhibition of EGCG on the Alzheimer Aβ1–42 Dimer. J. Phys. Chem. B 2013, 117, 3993–4002. [Google Scholar] [CrossRef]
- Nag, S.; Sarkar, B.; Bandyopadhyay, A.; Sahoo, B.; Sreenivasan, V.K.A.; Kombrabail, M.; Muralidharan, C.; Maiti, S. Nature of the Amyloid-β Monomer and the Monomer-Oligomer Equilibrium. J. Biol. Chem. 2011, 286, 13827–13833. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.; VanSchouwen, B.; Jafari, N.; Ni, X.; Ortega, J.; Melacini, G. Molecular Mechanism for the (−)-Epigallocatechin Gallate-Induced Toxic to Nontoxic Remodeling of Aβ Oligomers. J. Am. Chem. Soc. 2017, 139, 13720–13734. [Google Scholar] [CrossRef]
- Zhan, C.; Chen, Y.; Tang, Y.; Wei, G. Green Tea Extracts EGCG and EGC Display Distinct Mechanisms in Disrupting Aβ42 Protofibril. ACS Chem. Neurosci. 2020, 11, 1841–1851. [Google Scholar] [CrossRef]
- Dong, X.; Tang, Y.; Zhan, C.; Wei, G. Green Tea Extract EGCG Plays a Dual Role in Aβ42 Protofibril Disruption and Membrane Protection: A Molecular Dynamic Study. Chem. Phys. Lipids 2021, 234, 105024. [Google Scholar] [CrossRef]
- Acharya, A.; Stockmann, J.; Beyer, L.; Rudack, T.; Nabers, A.; Gumbart, J.C.; Gerwert, K.; Batista, V.S. The Effect of (−)-Epigallocatechin-3-Gallate on the Amyloid-β Secondary Structure. Biophys. J. 2020, 119, 349–359. [Google Scholar] [CrossRef]
- Andarzi Gargari, S.; Barzegar, A.; Tarinejad, A. The Role of Phenolic OH Groups of Flavonoid Compounds with H-Bond Formation Ability to Suppress Amyloid Mature Fibrils by Destabilizing β-Sheet Conformation of Monomeric Aβ17-42. PLoS ONE 2018, 13, e0199541. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Edalji, R.; Harlan, J.E.; Holzman, T.F.; Lopez, A.P.; Labkovsky, B.; Hillen, H.; Barghorn, S.; Ebert, U.; Richardson, P.L.; et al. Structural Characterization of a Soluble Amyloid β-Peptide Oligomer. Biochemistry 2009, 48, 1870–1877. [Google Scholar] [CrossRef]
- Lemkul, J.A.; Bevan, D.R. Morin Inhibits the Early Stages of Amyloid β-Peptide Aggregation by Altering Tertiary and Quaternary Interactions to Produce “Off-Pathway” Structures. Biochemistry 2012, 51, 5990–6009. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.; Liu, Y.; Zhang, Y.; Cai, Y.; Gong, X.; Chang, Y.; Xu, L.; Zheng, J. Genistein: A Dual Inhibitor of Both Amyloid β and Human Islet Amylin Peptides. ACS Chem. Neurosci. 2018, 9, 1215–1224. [Google Scholar] [CrossRef] [PubMed]
- Windsor, P.K.; Plassmeyer, S.P.; Mattock, D.S.; Bradfield, J.C.; Choi, E.Y.; Miller, B.R.; Han, B.H. Biflavonoid-Induced Disruption of Hydrogen Bonds Leads to Amyloid-β Disaggregation. Int. J. Mol. Sci. 2021, 22, 2888. [Google Scholar] [CrossRef]
- Ahmed, R.; Melacini, G. A Solution NMR Toolset to Probe the Molecular Mechanisms of Amyloid Inhibitors. Chem. Commun. 2018, 54, 4644–4652. [Google Scholar] [CrossRef]
- Rho, T.; Choi, M.S.; Jung, M.; Kil, H.W.; Hong, Y.D.; Yoon, K.D. Identification of Fermented Tea (Camellia Sinensis) Polyphenols and Their Inhibitory Activities against Amyloid-Beta Aggregation. Phytochemistry 2019, 160, 11–18. [Google Scholar] [CrossRef]
- Chang, X.; Rong, C.; Chen, Y.; Yang, C.; Hu, Q.; Mo, Y.; Zhang, C.; Gu, X.; Zhang, L.; He, W.; et al. (−)-Epigallocatechin-3-Gallate Attenuates Cognitive Deterioration in Alzheimer’s Disease Model Mice by Upregulating Neprilysin Expression. Exp. Cell Res. 2015, 334, 136–145. [Google Scholar] [CrossRef]
- Palhano, F.L.; Lee, J.; Grimster, N.P.; Kelly, J.W. Toward the Molecular Mechanism(s) by Which EGCG Treatment Remodels Mature Amyloid Fibrils. J. Am. Chem. Soc. 2013, 135, 7503–7510. [Google Scholar] [CrossRef]
- Semwal, D.; Semwal, R.; Combrinck, S.; Viljoen, A. Myricetin: A Dietary Molecule with Diverse Biological Activities. Nutrients 2016, 8, 90. [Google Scholar] [CrossRef]
- Lau-Cam, C.A.; Chan, H.H. Flavonoids from Comptonia Peregrina. Phytochemistry 1973, 12, 1829. [Google Scholar] [CrossRef]
- Jones, J.R.; Lebar, M.D.; Jinwal, U.K.; Abisambra, J.F.; Koren, J.; Blair, L.; O’Leary, J.C.; Davey, Z.; Trotter, J.; Johnson, A.G.; et al. The Diarylheptanoid (+)-aR,11S-Myricanol and Two Flavones from Bayberry (Myrica Cerifera) Destabilize the Microtubule-Associated Protein Tau. J. Nat. Prod. 2011, 74, 38–44. [Google Scholar] [CrossRef]
- Umadevi, I.; Daniel, M.; Sabnis, S.D. Chemotaxonomic Studies on Some Members of Anacardiaceae. Proc. Indian Acad. Sci. Plant Sci. 1988, 98, 205–208. [Google Scholar] [CrossRef]
- Abd El-kader, A.M.; El-Readi, M.Z.; Ahmed, A.S.; Nafady, A.M.; Wink, M.; Ibraheim, Z.Z. Polyphenols from Aerial Parts of Polygonum Bellardiiand Their Biological Activities. Pharm. Biol. 2013, 51, 1026–1034. [Google Scholar] [CrossRef] [PubMed]
- Hergert, H.L. The Flavonoids of Lodgepole Pine Bark. J. Org. Chem. 1956, 21, 534–537. [Google Scholar] [CrossRef]
- Chua, L.S.; Latiff, N.A.; Lee, S.Y.; Lee, C.T.; Sarmidi, M.R.; Aziz, R.A. Flavonoids and Phenolic Acids from Labisia Pumila (Kacip Fatimah). Food Chem. 2011, 127, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- De Leo, M.; Braca, A.; Sanogo, R.; Cardile, V.; DeTommasi, N.; Russo, A. Antiproliferative Activity of Pteleopsis Suberosa Leaf Extract and Its Flavonoid Components in Human Prostate Carcinoma Cells. Planta Med. 2006, 72, 604–610. [Google Scholar] [CrossRef]
- Ong, K.C.; Khoo, H.-E. Biological Effects of Myricetin. Gen. Pharmacol. Vasc. Syst. 1997, 29, 121–126. [Google Scholar] [CrossRef]
- Imran, M.; Saeed, F.; Hussain, G.; Imran, A.; Mehmood, Z.; Gondal, T.A.; El-Ghorab, A.; Ahmad, I.; Pezzani, R.; Arshad, M.U.; et al. Myricetin: A Comprehensive Review on Its Biological Potentials. Food Sci. Nutr. 2021, 9, 5854–5868. [Google Scholar] [CrossRef]
- Xiang, D.; Wang, C.; Wang, W.; Shi, C.; Xiong, W.; Wang, M.; Fang, J. Gastrointestinal Stability of Dihydromyricetin, Myricetin, and Myricitrin: An in Vitro Investigation. Int. J. Food Sci. Nutr. 2017, 68, 704–711. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.; Lin, G.; Xie, Y.; Duan, J.; Ma, P.; Li, G.; Ji, G. Quantitative Determination of Myricetin in Rat Plasma by Ultra Performance Liquid Chromatography Tandem Mass Spectrometry and Its Absolute Bioavailability. Drug Res. 2013, 64, 516–522. [Google Scholar] [CrossRef]
- Hong, C.; Dang, Y.; Lin, G.; Yao, Y.; Li, G.; Ji, G.; Shen, H.; Xie, Y. Effects of Stabilizing Agents on the Development of Myricetin Nanosuspension and Its Characterization: An in Vitro and in Vivo Evaluation. Int. J. Pharm. 2014, 477, 251–260. [Google Scholar] [CrossRef]
- Li, J.; Xiang, H.; Huang, C.; Lu, J. Pharmacological Actions of Myricetin in the Nervous System: A Comprehensive Review of Preclinical Studies in Animals and Cell Models. Front. Pharmacol. 2021, 12, 797298. [Google Scholar] [CrossRef]
- Agraharam, G.; Girigoswami, A.; Girigoswami, K. Myricetin: A Multifunctional Flavonol in Biomedicine. Curr. Pharmacol. Rep. 2022, 8, 48–61. [Google Scholar] [CrossRef]
- Taheri, Y.; Suleria, H.A.R.; Martins, N.; Sytar, O.; Beyatli, A.; Yeskaliyeva, B.; Seitimova, G.; Salehi, B.; Semwal, P.; Painuli, S.; et al. Myricetin Bioactive Effects: Moving from Preclinical Evidence to Potential Clinical Applications. BMC Complement. Med. Ther. 2020, 20, 241. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, M.; Darbandi, N.; Khodagholi, F.; Hashemi, A. Myricetin Protects Hippocampal CA3 Pyramidal Neurons and Improves Learning and Memory Impairments in Rats with Alzheimer’s Disease. Neural Regen. Res. 2016, 11, 1976. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Chen, J.; Zhang, W.; Fu, W.; Wu, G.; Wei, H.; Wang, Q.; Ruan, J. In Vivo Investigation on the Potential of Galangin, Kaempferol and Myricetin for Protection of d-Galactose-Induced Cognitive Impairment. Food Chem. 2012, 135, 2702–2707. [Google Scholar] [CrossRef]
- Wang, B.; Zhong, Y.; Gao, C.; Li, J. Myricetin Ameliorates Scopolamine-Induced Memory Impairment in Mice via Inhibiting Acetylcholinesterase and down-Regulating Brain Iron. Biochem. Biophys. Res. Commun. 2017, 490, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Shimmyo, Y.; Kihara, T.; Akaike, A.; Niidome, T.; Sugimoto, H. Multifunction of Myricetin on Aβ: Neuroprotection via a Conformational Change of Aβ and Reduction of Aβ via the Interference of Secretases. J. Neurosci. Res. 2008, 86, 368–377. [Google Scholar] [CrossRef]
- Ono, K.; Yoshiike, Y.; Takashima, A.; Hasegawa, K.; Naiki, H.; Yamada, M. Expression of Concern: Potent Anti-amyloidogenic and Fibril-destabilizing Effects of Polyphenols in Vitro: Implications for the Prevention and Therapeutics of Alzheimer’s Disease. J. Neurochem. 2003, 87, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Ladiwala, A.R.A.; Dordick, J.S.; Tessier, P.M. Aromatic Small Molecules Remodel Toxic Soluble Oligomers of Amyloid β through Three Independent Pathways. J. Biol. Chem. 2010, 286, 3209–3218. [Google Scholar] [CrossRef] [PubMed]
- Parasuraman, S.; Anand David, A.; Arulmoli, R. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Phcog Rev. 2016, 10, 84. [Google Scholar] [CrossRef]
- Suganthy, N.; Devi, K.P.; Nabavi, S.F.; Braidy, N.; Nabavi, S.M. Bioactive Effects of Quercetin in the Central Nervous System: Focusing on the Mechanisms of Actions. Biomed. Pharmacother. 2016, 84, 892–908. [Google Scholar] [CrossRef]
- Aghababaei, F.; Hadidi, M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals 2023, 16, 1020. [Google Scholar] [CrossRef]
- Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S.M.; Salem, M.A.; Merghany, R.M.; El Mahdy, N.M.; Kılıç, C.S.; Sytar, O.; et al. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS Omega 2020, 5, 11849–11872. [Google Scholar] [CrossRef]
- Jiménez-Aliaga, K.; Bermejo-Bescós, P.; Benedí, J.; Martín-Aragón, S. Quercetin and Rutin Exhibit Antiamyloidogenic and Fibril-Disaggregating Effects in Vitro and Potent Antioxidant Activity in APPswe Cells. Life Sci. 2011, 89, 939–945. [Google Scholar] [CrossRef]
- Liu, L.; Barber, E.; Kellow, N.J.; Williamson, G. Improving Quercetin Bioavailability: A Systematic Review and Meta-Analysis of Human Intervention Studies. Food Chem. 2025, 477, 143630. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, H.; Deng, C.; Xie, C.; Huang, M.; Zheng, F. Improving Stability and Accessibility of Quercetin in Olive Oil-in-Soy Protein Isolate/Pectin Stabilized O/W Emulsion. Foods 2020, 9, 123. [Google Scholar] [CrossRef] [PubMed]
- Kandemir, K.; Tomas, M.; McClements, D.J.; Capanoglu, E. Recent Advances on the Improvement of Quercetin Bioavailability. Trends Food Sci. Technol. 2022, 119, 192–200. [Google Scholar] [CrossRef]
- Li, H.; Li, M.; Fu, J.; Ao, H.; Wang, W.; Wang, X. Enhancement of Oral Bioavailability of Quercetin by Metabolic Inhibitory Nanosuspensions Compared to Conventional Nanosuspensions. Drug Deliv. 2021, 28, 1226–1236. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.; Hu, X.; Lu, S.; Xu, B.; Ma, T.; Song, Y. Recent Advances and Application Challenges of Quercetin-Loaded Delivery Systems: From Material Selection to Bioavailability. J. Future Foods 2025. [Google Scholar] [CrossRef]
- Rajput, S.A.; Wang, X.; Yan, H.-C. Morin Hydrate: A Comprehensive Review on Novel Natural Dietary Bioactive Compound with Versatile Biological and Pharmacological Potential. Biomed. Pharmacother. 2021, 138, 111511. [Google Scholar] [CrossRef]
- Caselli, A.; Cirri, P.; Santi, A.; Paoli, P. Morin: A Promising Natural Drug. Curr. Med. Chem. 2016, 23, 774–791. [Google Scholar] [CrossRef]
- Omar, S.H. Chapter 4—Biophenols: Impacts and Prospects in Anti-Alzheimer Drug Discovery In Discovery and Development of Neuroprotective Agents from Natural Products; Elsevier: Amsterdam, The Netherlands, 2018; pp. 103–148. ISBN 978-0-12-809593-5. [Google Scholar]
- Li, J.; Yang, Y.; Ning, E.; Peng, Y.; Zhang, J. Mechanisms of Poor Oral Bioavailability of Flavonoid Morin in Rats: From Physicochemical to Biopharmaceutical Evaluations. Eur. J. Pharm. Sci. 2019, 128, 290–298. [Google Scholar] [CrossRef]
- Karamchedu, S.; Tunki, L.; Kulhari, H.; Pooja, D. Morin Hydrate Loaded Solid Lipid Nanoparticles: Characterization, Stability, Anticancer Activity, and Bioavailability. Chem. Phys. Lipids 2020, 233, 104988. [Google Scholar] [CrossRef]
- Cunha, C.; Marinheiro, D.; Ferreira, B.J.M.L.; Oliveira, H.; Daniel-da-Silva, A.L. Morin Hydrate Encapsulation and Release from Mesoporous Silica Nanoparticles for Melanoma Therapy. Molecules 2023, 28, 4776. [Google Scholar] [CrossRef] [PubMed]
- Vijay, V.; Panneerselvam, A.; Manjunatha, J.R.; Perumal, M.K. Morin/Hydroxypropyl-β-Cyclodextrin Inclusion Complex Showed Higher in Vivo Oral Bioavailability and Inhibition on LX-2 Cell Growth. Food Biosci. 2024, 61, 104897. [Google Scholar] [CrossRef]
- Mas-Bargues, C.; Borrás, C.; Viña, J. The Multimodal Action of Genistein in Alzheimer’s and Other Age-Related Diseases. Free Radic. Biol. Med. 2022, 183, 127–137. [Google Scholar] [CrossRef]
- Mas- Bargues, C.; Borrás, C.; Viña, J. Genistein, a Tool for Geroscience. Mech. Ageing Dev. 2022, 204, 111665. [Google Scholar] [CrossRef]
- Mamun, A.A.; Sufian, M.A.; Uddin, M.S.; Sumsuzzman, D.M.; Jeandet, P.; Islam, M.S.; Zhang, H.-J.; Kong, A.-N.; Sarwar, M.S. Exploring the Role of Senescence Inducers and Senotherapeutics as Targets for Anticancer Natural Products. Eur. J. Pharmacol. 2022, 928, 174991. [Google Scholar] [CrossRef]
- Obulesu, M. Chapter 1—Effect of Plant Extracts against Alzheimer’s Disease. In Plant Extracts in Neurodegenerative Diseases; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–15. ISBN 978-0-323-95762-5. [Google Scholar]
- Bonet-Costa, V.; Herranz-Pérez, V.; Blanco-Gandía, M.; Mas-Bargues, C.; Inglés, M.; Garcia-Tarraga, P.; Rodriguez-Arias, M.; Miñarro, J.; Borras, C.; Garcia-Verdugo, J.M.; et al. Clearing Amyloid-β through PPARγ/ApoE Activation by Genistein Is a Treatment of Experimental Alzheimer’s Disease. J. Alzheimer’s Dis. 2016, 51, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, R.; Torquato, P.; Bartolini, D.; Mas-Bargues, C.; Bellezza, G.; Gioiello, A.; Borras, C.; De Luca, A.; Fallarino, F.; Sebastiani, B.; et al. Garcinoic Acid Prevents β-Amyloid (Aβ) Deposition in the Mouse Brain. J. Biol. Chem. 2020, 295, 11866–11876. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; He, P.; Cui, J.; Staufenbiel, M.; Harada, N.; Shen, Y. Brain Endogenous Estrogen Levels Determine Responses to Estrogen Replacement Therapy via Regulation of BACE1 and NEP in Female Alzheimer’s Transgenic Mice. Mol. Neurobiol. 2013, 47, 857–867. [Google Scholar] [CrossRef]
- Youn, K.; Park, J.-H.; Lee, S.; Lee, S.; Lee, J.; Yun, E.-Y.; Jeong, W.-S.; Jun, M. BACE1 Inhibition by Genistein: Biological Evaluation, Kinetic Analysis, and Molecular Docking Simulation. J. Med. Food 2018, 21, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Jin, G.; Zhao, M.; Yang, H. The Effect of Genistein on the Content and Activity of A- and β-Secretase and Protein Kinase C in Aβ-Injured Hippocampal Neurons. Basic. Clin. Pharma Tox 2013, 112, 182–185. [Google Scholar] [CrossRef]
- Matsuda, S. Genistein Downregulates Presenilin 1 and Ubiquilin 1 Expression. Mol. Med. Rep. 2011, 5, 559–561. [Google Scholar] [CrossRef]
- Yang, Z.; Kulkarni, K.; Zhu, W.; Hu, M. Bioavailability and Pharmacokinetics of Genistein: Mechanistic Studies on Its ADME. Anti-Cancer Agents Med. Chem. 2012, 12, 1264–1280. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Shen, X.; Tong, C.; Zhang, S.; Chen, Q.; Li, Y.; Li, S. Gossypin: A Flavonoid with Diverse Pharmacological Effects. Chem. Biol. Drug Des. 2023, 101, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Nair, H.; Veerapaneni, P.; Sophie, D.; Kirma, N.; Perla, R.; Tekmal, R. Nano-Gossypin, a Novel Cdk2/VEGF Inhibitor Formulation against Breast Cancer. Cancer Res. 2009, 69, 3080. [Google Scholar] [CrossRef]
- Jejurkar, G.; Chavan, M. Therapeutic Benefits of Gossypin as an Emerging Phytoconstituents of Hibiscus spp.: A Critical Review. Futur. J. Pharm. Sci. 2023, 9, 95. [Google Scholar] [CrossRef]
- Ganapaty, S.; Chandrashekhar, V.; Chitme, H.; Narsu, M.L. Free Radical Scavenging Activity of Gossypin and Nevadensin: An in-Vitro Evaluation. Indian. J. Pharmacol. 2007, 39, 281. [Google Scholar] [CrossRef]
- Chandrashekhar, V.; Ganapaty, S.; Ramkishan, A.; Narsu, M.L. Neuroprotective Activity of Gossypin from Hibiscus Vitifolius against Global Cerebral Ischemia Model in Rats. Indian. J. Pharmacol. 2013, 45, 575. [Google Scholar] [CrossRef]
- Rao, K.V.; Seshadri, T.R. Constitution of Gossypin—Part I. Proc. Indian Acad. Sci. Math. Sci. 1946, 24, 375. [Google Scholar] [CrossRef]
- EC: 613-767-7; Gossypin from Hibiscus Vitifolius. European Chemicals Agency (ECHA): Year 2023; p. 5. Available online: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/62885 (accessed on 25 September 2025).
- Jo, K.W.; Lee, D.; Cha, D.G.; Oh, E.; Choi, Y.H.; Kim, S.; Park, E.S.; Kim, J.K.; Kim, K.-T. Gossypetin Ameliorates 5xFAD Spatial Learning and Memory through Enhanced Phagocytosis against Aβ. Alzheimer’s Res. Ther. 2022, 14, 158. [Google Scholar] [CrossRef]
- Taniguchi, S.; Suzuki, N.; Masuda, M.; Hisanaga, S.; Iwatsubo, T.; Goedert, M.; Hasegawa, M. Inhibition of Heparin-Induced Tau Filament Formation by Phenothiazines, Polyphenols, and Porphyrins. J. Biol. Chem. 2005, 280, 7614–7623. [Google Scholar] [CrossRef]
- Sasaki, H.; Miki, K.; Kinoshita, K.; Koyama, K.; Juliawaty, L.D.; Achmad, S.A.; Hakim, E.H.; Kaneda, M.; Takahashi, K. β-Secretase (BACE-1) Inhibitory Effect of Biflavonoids. Bioorganic Med. Chem. Lett. 2010, 20, 4558–4560. [Google Scholar] [CrossRef]
- Lin, Y.-M.; Flavin, M.T.; Schure, R.; Chen, F.-C.; Sidwell, R.; Barnard, D.I.; Huffmann, J.H.; Kern, E.R. Antiviral Activities of Biflavonoids. Planta Med. 1999, 65, 120–125. [Google Scholar] [CrossRef]
- Miki, K.; Nagai, T.; Suzuki, K.; Tsujimura, R.; Koyama, K.; Kinoshita, K.; Furuhata, K.; Yamada, H.; Takahashi, K. Anti-Influenza Virus Activity of Biflavonoids. Bioorganic Med. Chem. Lett. 2007, 17, 772–775. [Google Scholar] [CrossRef]
- Kwak, W.-J.; Han, C.K.; Son, K.H.; Chang, H.W.; Kang, S.S.; Park, B.K.; Kim, H.P. Effects of Ginkgetin from Ginkgo Biloba Leaves on Cyclooxygenases and In Vivo Skin Inflammation. Planta Med. 2002, 68, 316–321. [Google Scholar] [CrossRef]
- Kang, S.S.; Lee, J.Y.; Choi, Y.K.; Song, S.S.; Kim, J.S.; Jeon, S.J.; Han, Y.N.; Son, K.H.; Han, B.H. Neuroprotective Effects of Naturally Occurring Biflavonoids. Bioorganic Med. Chem. Lett. 2005, 15, 3588–3591. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, H.; Kitoh, Y.; Tsukada, M.; Miki, K.; Koyama, K.; Juliawaty, L.D.; Hakim, E.H.; Takahashi, K.; Kinoshita, K. Inhibitory Activities of Biflavonoids against Amyloid-β Peptide 42 Cytotoxicity in PC-12 Cells. Bioorganic Med. Chem. Lett. 2015, 25, 2831–2833. [Google Scholar] [CrossRef]
- Chen, C.; Li, B.; Cheng, G.; Yang, X.; Zhao, N.; Shi, R. Amentoflavone Ameliorates Aβ1–42-Induced Memory Deficits and Oxidative Stress in Cellular and Rat Model. Neurochem. Res. 2018, 43, 857–868. [Google Scholar] [CrossRef]
- Sirimangkalakitti, N.; Juliawaty, L.D.; Hakim, E.H.; Waliana, I.; Saito, N.; Koyama, K.; Kinoshita, K. Naturally Occurring Biflavonoids with Amyloid β Aggregation Inhibitory Activity for Development of Anti-Alzheimer Agents. Bioorganic Med. Chem. Lett. 2019, 29, 1994–1997. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Sharma, A.K.; Han, B.-H.; Mirica, L.M. Amentoflavone: A Bifunctional Metal Chelator That Controls the Formation of Neurotoxic Soluble Aβ42 Oligomers. ACS Chem. Neurosci. 2020, 11, 2741–2752. [Google Scholar] [CrossRef]
- Qiu, H.; Guo, Z.; Xu, Q.; Mao, S.; Wu, W. Evaluation on Absorption Risks of Amentoflavone after Oral Administration in Rats. Biopharm. Drug Disp. 2021, 42, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wang, X.; Zhang, Y.; Huang, K.; Liu, H.; Xu, D.; Li, S.; Liu, Q.; Huang, J.; Yao, H.; et al. Improved Solubility, Dissolution Rate, and Oral Bioavailability of Main Biflavonoids from Selaginella Doederleinii Extract by Amorphous Solid Dispersion. Drug Deliv. 2020, 27, 309–322. [Google Scholar] [CrossRef]
- Choi, E.Y.; Kang, S.S.; Lee, S.K.; Han, B.H. Polyphenolic Biflavonoids Inhibit Amyloid-Beta Fibrillation and Disaggregate Preformed Amyloid-Beta Fibrils. Biomol. Ther. 2020, 28, 145–151. [Google Scholar] [CrossRef]
- Dapson, R.; Bain, C. Brazilwood, Sappanwood, Brazilin and the Red Dye Brazilein: From Textile Dyeing and Folk Medicine to Biological Staining and Musical Instruments. Biotech. Histochem. 2015, 90, 401–423. [Google Scholar] [CrossRef] [PubMed]
- Bae, I.-K.; Min, H.-Y.; Han, A.-R.; Seo, E.-K.; Lee, S.K. Suppression of Lipopolysaccharide-Induced Expression of Inducible Nitric Oxide Synthase by Brazilin in RAW 264.7 Macrophage Cells. Eur. J. Pharmacol. 2005, 513, 237–242. [Google Scholar] [CrossRef]
- Hikino, H.; Taguchi, T.; Fujimura, H.; Hiramatsu, Y. Antiinflammatory Principles of Caesalpinia Sappan Wood and of Haematoxylon Campechianum Wood. Planta Med. 1977, 31, 214–220. [Google Scholar] [CrossRef]
- Moon, C.-K.; Lee, S.H.; Lee, M.O.; Kim, S.G. Effects of Brazilin on Glucose Oxidation, Lipogenesis and Therein Involved Enzymes in Adipose Tissues from Diabetic KK-Mice. Life Sci. 1993, 53, 1291–1297. [Google Scholar] [CrossRef]
- Kim, S.-G.; Kim, Y.-M.; Khil, L.-Y.; Jeon, S.-D.; So, D.-S.; Moon, C.-H.; Moon, C.-K. Brazilin Inhibits Activities of Protein Kinase C and Insulin Receptor Serine Kinase in Rat Liver. Arch. Pharm. Res. 1998, 21, 140–146. [Google Scholar] [CrossRef]
- Moon, C.-K.; Park, K.-S.; Kim, S.-G.; Won, H.-S.; Chung, J.-H. Brazilin Protects Cultured Rat Hepatocytes from BrCCl3-Induced Toxicity. Drug Chem. Toxicol. 1992, 15, 81–91. [Google Scholar] [CrossRef]
- Nava-Tapia, D.A.; Cayetano-Salazar, L.; Herrera-Zúñiga, L.D.; Bello-Martínez, J.; Mendoza-Catalán, M.A.; Navarro-Tito, N. Brazilin: Biological Activities and Therapeutic Potential in Chronic Degenerative Diseases and Cancer. Pharmacol. Res. 2022, 175, 106023. [Google Scholar] [CrossRef] [PubMed]
- Hwang, G.-S.; Kim, J.-Y.; Chang, T.-S.; Jeon, S.-D.; So, D.-S.; Moon, C.-K. Effects of Brazilin on the Phospholipase A2 Activity and Changes of Intracellular Free Calcium Concentration in Rat Platelets. Arch. Pharm. Res. 1998, 21, 774–778. [Google Scholar] [CrossRef] [PubMed]
- Yan-yan, J.; Yan, L.; Ying, S.; Jinyi, Z.; Fang, D.; Yuan, S.; Ai-dong, W. A Simple High-Performance Liquid Chromatographic Method for the Determination of Brazilin and Its Application to a Pharmacokinetic Study in Rats. J. Ethnopharmacol. 2014, 151, 108–113. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, X.; Zhao, H.; Cui, S.; Yao, Q.; Bai, H. A Validated LC-MS/MS Method for Rapid Determination of Brazilin in Rat Plasma and Its Application to a Pharmacokinetic Study. Biomed. Chromatogr. 2013, 27, 802–806. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Wang, H.; Song, Y.; Liu, K.; Dou, F.; Lu, C.; Ge, J.; Chi, N.; Ding, Y.; Hai, W.; et al. Application of a Liquid Chromatography–Tandem Mass Spectrometry Method to the Pharmacokinetics, Tissue Distribution and Excretion Studies of Brazilin in Rats. J. Chromatogr. B 2013, 931, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Gao, W.; Huang, L. Tanshinones, Critical Pharmacological Components in Salvia Miltiorrhiza. Front. Pharmacol. 2019, 10. [Google Scholar] [CrossRef]
- Wison, R.B.; Lee, J.J.; Pickering, J.G.; Borradaile, N.M. Chapter 30—Natural Products in Regeneration. In Regenerative Nephrology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 419–437. ISBN 978-0-12-823318-4. [Google Scholar]
- Xing, L.; Tan, Z.-R.; Cheng, J.-L.; Huang, W.-H.; Zhang, W.; Deng, W.; Yuan, C.-S.; Zhou, H.-H. Bioavailability and Pharmacokinetic Comparison of Tanshinones between Two Formulations of Salvia Miltiorrhiza in Healthy Volunteers. Sci. Rep. 2017, 7, 4709. [Google Scholar] [CrossRef]
- Jiang, P.; Li, C.; Xiang, Z.; Jiao, B. Tanshinone IIA Reduces the Risk of Alzheimer’s Disease by Inhibiting iNOS, MMP-2 and NF-κBp65 Transcription and Translation in the Temporal Lobes of Rat Models of Alzheimer’s Disease. Mol. Med. Rep. 2014, 10, 689–694. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, X.; Patal, K.; Hu, R.; Chuang, S.; Zhang, G.; Zheng, J. Tanshinones Inhibit Amyloid Aggregation by Amyloid-β Peptide, Disaggregate Amyloid Fibrils, and Protect Cultured Cells. ACS Chem. Neurosci. 2013, 4, 1004–1015. [Google Scholar] [CrossRef]
- Dong, M.; Zhao, W.; Hu, D.; Ai, H.; Kang, B. N-Terminus Binding Preference for Either Tanshinone or Analogue in Both Inhibition of Amyloid Aggregation and Disaggregation of Preformed Amyloid Fibrils—Toward Introducing a Kind of Novel Anti-Alzheimer Compounds. ACS Chem. Neurosci. 2017, 8, 1577–1588. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, J.; Geng, G.; Shi, Q.; Sauriol, F.; Wu, J.H. Antiandrogenic, Maspin Induction, and Antiprostate Cancer Activities of Tanshinone IIA and Its Novel Derivatives with Modification in Ring A. J. Med. Chem. 2012, 55, 971–975. [Google Scholar] [CrossRef]
- Horner, W.H.; Thaker, I.H. The Metabolism of Scyllo-Inositol in Streptomyces Griseus. Biochim. Biophys. Acta (BBA)—Gen. Subj. 1968, 165, 306–308. [Google Scholar] [CrossRef]
- George, E.F.; Hall, M.A.; Klerk, G.-J. The Components of Plant Tissue Culture Media II: Organic Additions, Osmotic and pH Effects, and Support Systems. In Plant Propagation by Tissue Culture; Springer: Dordrecht, The Netherlands; pp. 115–173. ISBN 978-1-4020-5004-6.
- Yamaoka, M.; Osawa, S.; Morinaga, T.; Takenaka, S.; Yoshida, K. A Cell Factory of Bacillus Subtilis Engineered for the Simple Bioconversion of Myo-Inositol to Scyllo-Inositol, a Potential Therapeutic Agent for Alzheimer’s Disease. Microb. Cell Factories 2011, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Michell, R.H. Inositol Derivatives: Evolution and Functions. Nat. Rev. Mol. Cell Biol. 2008, 9, 151–161. [Google Scholar] [CrossRef]
- Michaelis, T.; Helms, G.; Merboldt, K.; Hänicke, W.; Bruhn, H.; Frahm, J. Identification of Scyllo-inositol in Proton NMR Spectra of Human Brain in Vivo. NMR Biomed. 1993, 6, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Fisher, S.K.; Novak, J.E.; Agranoff, B.W. Inositol and Higher Inositol Phosphates in Neural Tissues: Homeostasis, Metabolism and Functional Significance. J. Neurochem. 2002, 82, 736–754. [Google Scholar] [CrossRef]
- McLaurin, J.; Golomb, R.; Jurewicz, A.; Antel, J.P.; Fraser, P.E. Inositol Stereoisomers Stabilize an Oligomeric Aggregate of Alzheimer Amyloid β Peptide and Inhibit Aβ-Induced Toxicity. J. Biol. Chem. 2000, 275, 18495–18502. [Google Scholar] [CrossRef]
- McLaurin, J.; Kierstead, M.E.; Brown, M.E.; Hawkes, C.A.; Lambermon, M.H.L.; Phinney, A.L.; Darabie, A.A.; Cousins, J.E.; French, J.E.; Lan, M.F.; et al. Cyclohexanehexol Inhibitors of Aβ Aggregation Prevent and Reverse Alzheimer Phenotype in a Mouse Model. Nat. Med. 2006, 12, 801–808. [Google Scholar] [CrossRef]
- Townsend, M.; Cleary, J.P.; Mehta, T.; Hofmeister, J.; Lesne, S.; O’Hare, E.; Walsh, D.M.; Selkoe, D.J. Orally Available Compound Prevents Deficits in Memory Caused by the Alzheimer Amyloid-β Oligomers. Ann. Neurol. 2006, 60, 668–676. [Google Scholar] [CrossRef]
- Fenili, D.; Brown, M.; Rappaport, R.; McLaurin, J. Properties of Scyllo–Inositol as a Therapeutic Treatment of AD-like Pathology. J. Mol. Med. 2007, 85, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Salloway, S.; Sperling, R.; Keren, R.; Porsteinsson, A.P.; Van Dyck, C.H.; Tariot, P.N.; Gilman, S.; Arnold, D.; Abushakra, S.; Hernandez, C.; et al. A Phase 2 Randomized Trial of ELND005, Scyllo-Inositol, in Mild to Moderate Alzheimer Disease. Neurology 2011, 77, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Pomès, R. Binding Mechanism of Inositol Stereoisomers to Monomers and Aggregates of Aβ(16-22). J. Phys. Chem. B 2013, 117, 6603–6613. [Google Scholar] [CrossRef]
- Gupta, S.; Dasmahapatra, A.K. Caffeine Destabilizes Preformed Aβ Protofilaments: Insights from All Atom Molecular Dynamics Simulations. Phys. Chem. Chem. Phys. 2019, 21, 22067–22080. [Google Scholar] [CrossRef]
- Butt, M.S.; Sultan, M.T. Coffee and Its Consumption: Benefits and Risks. Crit. Rev. Food Sci. Nutr. 2011, 51, 363–373. [Google Scholar] [CrossRef]
- Cano-Marquina, A.; Tarín, J.J.; Cano, A. The Impact of Coffee on Health. Maturitas 2013, 75, 7–21. [Google Scholar] [CrossRef]
- Heckman, M.A.; Weil, J.; De Mejia, E.G. Caffeine (1,3,7-trimethylxanthine) in Foods: A Comprehensive Review on Consumption, Functionality, Safety, and Regulatory Matters. J. Food Sci. 2010, 75, R77–R87. [Google Scholar] [CrossRef]
- Fisone, G.; Borgkvist, A.; Usiello, A. Caffeine as a Psychomotor Stimulant: Mechanism of Action. Cell. Mol. Life Sci. 2004, 61, 857–872. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, M.; Farrokhi, M.R.; Amiri, A. Caffeine Neuroprotective Mechanism Against β-Amyloid Neurotoxicity in SHSY5Y Cell Line: Involvement of Adenosine, Ryanodine, and N-Methyl-D-Aspartate Receptors. Adv. Pharm. Bull. 2017, 7, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Qosa, H.; Abuznait, A.H.; Hill, R.A.; Kaddoumi, A. Enhanced Brain Amyloid-β Clearance by Rifampicin and Caffeine as a Possible Protective Mechanism Against Alzheimer’s Disease. J. Alzheimer’s Dis. 2012, 31, 151–165. [Google Scholar] [CrossRef]
- Ullah, F.; Ali, T.; Ullah, N.; Kim, M.O. Caffeine Prevents D-Galactose-Induced Cognitive Deficits, Oxidative Stress, Neuroinflammation and Neurodegeneration in the Adult Rat Brain. Neurochem. Int. 2015, 90, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Arendash, G.W.; Schleif, W.; Rezai-Zadeh, K.; Jackson, E.K.; Zacharia, L.C.; Cracchiolo, J.R.; Shippy, D.; Tan, J. Caffeine Protects Alzheimer’s Mice against Cognitive Impairment and Reduces Brain β-Amyloid Production. Neuroscience 2006, 142, 941–952. [Google Scholar] [CrossRef] [PubMed]
- Arendash, G.W.; Mori, T.; Cao, C.; Mamcarz, M.; Runfeldt, M.; Dickson, A.; Rezai-Zadeh, K.; Tan, J.; Citron, B.A.; Lin, X.; et al. Caffeine Reverses Cognitive Impairment and Decreases Brain Amyloid-β Levels in Aged Alzheimer’s Disease Mice. J. Alzheimer’s Dis. 2009, 17, 661–680. [Google Scholar] [CrossRef]
- Cao, C.; Cirrito, J.R.; Lin, X.; Wang, L.; Verges, D.K.; Dickson, A.; Mamcarz, M.; Zhang, C.; Mori, T.; Arendash, G.W.; et al. Caffeine Suppresses Amyloid-β Levels in Plasma and Brain of Alzheimer’s Disease Transgenic Mice. J. Alzheimer’s Dis. 2009, 17, 681–697. [Google Scholar] [CrossRef]
- Kim, J.W.; Byun, M.S.; Yi, D.; Lee, J.H.; Jeon, S.Y.; Jung, G.; Lee, H.N.; Sohn, B.K.; Lee, J.-Y.; Kim, Y.K.; et al. Coffee Intake and Decreased Amyloid Pathology in Human Brain. Transl. Psychiatry 2019, 9, 270. [Google Scholar] [CrossRef]
- Zheng, Y.-B.; Sun, J.; Shi, L.; Su, S.-Z.; Chen, X.; Wang, Q.-W.; Huang, Y.-T.; Wang, Y.-J.; Zhu, X.-M.; Que, J.-Y.; et al. Association of Caffeine Consumption and Brain Amyloid Positivity in Cognitively Normal Older Adults. J. Alzheimer’s Dis. 2023, 93, 483–493. [Google Scholar] [CrossRef]
- Haniadka, R.; Rajeev, A.G.; Palatty, P.L.; Arora, R.; Baliga, M.S. Zingiber Officinale(Ginger) as an Anti-Emetic in Cancer Chemotherapy: A Review. J. Altern. Complement. Med. 2012, 18, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Bischoff-Kont, I.; Fürst, R. Benefits of Ginger and Its Constituent 6-Shogaol in Inhibiting Inflammatory Processes. Pharmaceuticals 2021, 14, 571. [Google Scholar] [CrossRef] [PubMed]
- Bischoff-Kont, I.; Primke, T.; Niebergall, L.S.; Zech, T.; Fürst, R. Ginger Constituent 6-Shogaol Inhibits Inflammation- and Angiogenesis-Related Cell Functions in Primary Human Endothelial Cells. Front. Pharmacol. 2022, 13, 844767. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-González, G.; Quintas-Granados, L.I.; Reyes-Hernández, O.D.; Caballero-Florán, I.H.; Peña-Corona, S.I.; Cortés, H.; Leyva-Gómez, G.; Habtemariam, S.; Sharifi-Rad, J. Review of the Anticancer Properties of 6-shogaol: Mechanisms of Action in Cancer Cells and Future Research Opportunities. Food Sci. Nutr. 2024, 12, 4513–4533. [Google Scholar] [CrossRef]
- Shim, S.; Kim, S.; Choi, D.-S.; Kwon, Y.-B.; Kwon, J. Anti-Inflammatory Effects of [6]-Shogaol: Potential Roles of HDAC Inhibition and HSP70 Induction. Food Chem. Toxicol. 2011, 49, 2734–2740. [Google Scholar] [CrossRef]
- Shim, S.; Kwon, J. Effects of [6]-Shogaol on Cholinergic Signaling in HT22 Cells Following Neuronal Damage Induced by Hydrogen Peroxide. Food Chem. Toxicol. 2012, 50, 1454–1459. [Google Scholar] [CrossRef]
- Moon, M.; Kim, H.G.; Choi, J.G.; Oh, H.; Lee, P.K.; Ha, S.K.; Kim, S.Y.; Park, Y.; Huh, Y.; Oh, M.S. 6-Shogaol, an Active Constituent of Ginger, Attenuates Neuroinflammation and Cognitive Deficits in Animal Models of Dementia. Biochem. Biophys. Res. Commun. 2014, 449, 8–13. [Google Scholar] [CrossRef]
- Na, J.-Y.; Song, K.; Lee, J.-W.; Kim, S.; Kwon, J. 6-Shogaol Has Anti-Amyloidogenic Activity and Ameliorates Alzheimer’s Disease via CysLT1R-Mediated Inhibition of Cathepsin B. Biochem. Biophys. Res. Commun. 2016, 477, 96–102. [Google Scholar] [CrossRef]
- Zeng, G.; Zong, S.; Zhang, Z.; Fu, S.; Li, K.; Fang, Y.; Lu, L.; Xiao, D. The Role of 6-Gingerol on Inhibiting Amyloid β Protein-Induced Apoptosis in PC12 Cells. Rejuvenation Res. 2015, 18, 413–421. [Google Scholar] [CrossRef] [PubMed]
Category | Method | Principle | Advantages | Limitations/Challenges | Refs. |
---|---|---|---|---|---|
Generalized-ensemble methods | Simulated Tempering (ST) | Involves the initial calculation of probability weight factors | Improves sampling efficiency | Computationally expensive weight calculations | [127,128] |
Replica Exchange Method (REM) (Parallel Tempering)/Replica Monte Carlo/Multiple Markov Chain | Uses predefined probability weight factors; runs multiple non-interacting replicas at different temperatures with periodic exchanges via Metropolis criterion | Avoids weight calculation; effective barrier crossing | Very computationally demanding; needs parallel computing | [84,85,124,129,130,131,132,133,134] | |
Replica Exchange MD (REMD) | REM adapted to MD (accounts for momenta/velocities) | Powerful for biomolecular sampling | Extremely costly for large/complex systems; needs parallel computing | [135] | |
Simulated Tempering Distributed Replica (STDR) | Optimized for distributed/heterogeneous computing | Minimal initial simulation; unaffected by replica synchronization or a fixed number of temperatures | Same risk of non-physical transitions causing a loss of dynamic information as all generalized-ensemble methods | [121,136] | |
Coarse-graining/reduced resolution | Coarse-Grained (CG) Modeling (e.g., MARTINI, implicit solvent) | Groups atoms into single particles | Longer simulations possible; reduced degrees of freedom | Reduced accuracy vs. atomistic MD | [137,138] |
Biasing potential methods | Conformational flooding | disrupt local energy minima, enabling the system to escape energy wells more efficiently | Accelerated transitions; lowered free energy barriers | Requires fine-tuning | [139,140] |
Metadynamics | Adds Gaussian bias to Hamiltonian; pushes system away from visited states | Efficient exploration of new conformations | Choice of parameters critical | [141,142,143,144,145] | |
Umbrella Sampling | Applies bias to specific regions | Focused sampling of rare events | Needs prior knowledge of reaction coordinate | [146,147] | |
Accelerated MD (aMD) | Modifies the system’s potential energy landscape; raises energy minimum of the wells, lowering barriers between states | No predefined reaction coordinate; long-timescale accessible | Accuracy decreases in large systems; bias artifacts | [148,149] | |
aMD Variants (replica exchange aMD (REXAMD) and selective aMD | Refinements of aMD (replica-based, region-specific) | Balances accuracy and efficiency | Still under refinement for large/complex systems | [150,151] |
FF/Water Model | Duration per System, ns | Aβ Length/PDB ID/Type (Monomer/Dimer/ (Proto-) Fibril) | Inhibitor * | Main Findings | Year Ref. |
---|---|---|---|---|---|
GROMOS96 53a6/SPC | 500 | Aβ1-42/1IYT/generated dimer | CCN | reduces β-sheet structure; forms π–π stacking with F19; travels around Aβ, frequently close to L34 | 2012 [199] |
Amber99SB/TIP3P | 200 | Aβ1-42/1Z0Q/monomer | (1) CCN (2) CCN + Cu2+ located at (i) H13 and (ii) H13δ | (1) forms H-bonds with K16, F19, and F20; (2) (i) the secondary structure is altered, as CCN interacts with the F4–D7 α-helix and turn region Y10–V12 initially, followed by interaction with the C-terminal unfolded region I32–A42; Cu2+ interacts with D7 and D23; (ii) CCN stabilizes the Y10–D23 α-helix and prevents formation of β-sheet structures at the C-terminal; interacts with Y10, H13, L17, F20, V24, K28, and I32; forms H-bonds with S8, G9, Y10, and K28; Cu2+ initially was chelated by CCN and later interacts with D7 | 2015 [200] |
Amber ff14SB/TIP3P | 1000 | Aβ1-42/1IYT/monomer | CCN | stabilizes the monomer structure; increases the propensity of α -helices and decreases the propensities of β-turns; numerous diverse interactions—including H-bonds (with F4, H13, E11, G33, and L24), hydrophobic contacts (with E3, F4, R5, H6, D7, Y10, and H13), π–π (with F4, Y10, H13, H14, and F20), and cation–π (with R5 and K16)—across all regions of the Aβ peptide | 2021 [201] |
Amber ff14SB/TIP3P | 1000 | Aβ1-42/1IYT/12 monomers | 12 CCN 36 CCN | contacts the ensemble of monomers via numerous interactions—hydrophobic, H-bonds, with F4, Y10, F19, and F20; and cation–π with R5, K16, and K28; decreases inter-peptide contact number; increases peptide disorder; decreases peptide flexibility | 2020 [202] |
REST/GROMOS 54a7/SPC | 100–800 | Aβ1-40/2M9R/1, 2, and 3 monomers | CCN in ratio 1:1 | decreases β-sheet, increases turn and helical structures; hydrophobic contacts with the CHC of Aβ | 2020 [203] |
OPLS_2005 (Desmond)/TIP3P | 150 | Aβ17-42/2BEG/pentamer, protofibril | CCN | binds to the C-terminal residues; contacts with F19 (π–π stacking), and with E22, M35, and G37 (H-bonds); destabilizes the peripheral chains; results in highly distorted distances between D23 and K28 in all chains; disturbs the protofibril structure | 2015 [204] |
CHARMM27 * (NAMD2.9)/TIP3P | 100 | Aβ17-42/2BEG/pentamer, protofibril | CCN | reduces β-sheet structure; increases unorganized regions of the outermost chains; decreases number of intermolecular backbone H-bonds; could lead to destruction of oligomers | 2017 [205] |
Amber99-ILDN/TIP3P | 150 | Aβ11-42/2MXU/pentamer, fibril | CCN | binds to E11–F19 and I32–L24 areas; affects the whole peptide conformation; decreases β-sheet content, fibril order and inter-chain interaction surface | 2020 [206] |
CHARM36/TIP3P | 100 | Aβ11-42/2MXU/hexamer, fibril | CCN | partial dissociation of the fibril structure; breakdown of all β-sheets within the 12 VHHQKLVFF 20 residue domain of the outermost peptide | 2020 [207] |
DMD + CGM/PRIME20/implicit solvent effects | 50,000 | Aβ17-36/NA/ (1) monomer (2) 8 monomers (3) preformed protofilament (octamer) (4) preformed protofilament (octamer) + 8 monomers | (1) 10 CCN (2) 30 CCN (3) 30 CCN (4) 30 CCN | (1) interacts with L17, F19, F20, A21, I31, I32, L34, and M35 (2) prevent fibrilization by forming disordered complexes (3) binds, but cannot disrupt protofilament structure (4) slows the rate of elongation process | 2017 [208] |
REMD/GROMOS 57a7/SPC | 50 per replica | Aβ1-40/2LMN/decamer, protofibril | CCN | primary binds to β-2 BS, and moderate to strong binding to other BSs—β-1, Elbow (loop β-1 and β-2 22EDVGSN27), Over (top of the protofibril), and C-terminal; disrupts the secondary structure of the double-layer protofilament; perturbs secondary structure | 2018 [209] |
GROMOS96 53a6/SPCE/360 K | (1) 200 (2) 100 (3) 100 | (1) Aβ1-42/1IYT/monomer (2) Aβ1-42/1IYT/24 monomers (3) Aβ17-42/2BEG/25-mer, fibril | (1) 1 and 4 CCN (2) 2, 5, 19, 77, and 308 CCN (3) 4 and 30 CCN | (1) 1:1 ratio—nonspecific interactions, CCN moves around Aβ; multiple contacts with F, L, V, A, and I; 1:4 ratio—disrupts the β-sheet and increases random coil content (2) forms coarse and disordered structures, lacking β-sheets; at high concentrations—initially self-aggregates before incorporating with Aβ to coarse-grained structures (3) highly specific interactions—individual or stacked CCN molecules that deposit parallel- (predominant) or perpendicular to the fibril axis; enter the fibril hydrophobic core by the open ends or bind to the loop region between two β-strands | 2022 [210] |
REMD/GROMOS 57a7/SPC | 50 per replica | Aβ1-40/2LMN/decamer, protofibril | RA | preferably binds to N-terminal and β-1 BS; most stable complexes are at β-2 and β-1 BSs; interacts with M35, G33, and I31 at β-2, and with K16, V18, and F20 at β-1; disrupts the secondary structure of the double-layer protofilament | 2018 [209] |
RPMD/AMBER parm14SB/TIP3P | 100 per replica | Aβ16-22/NA/monomer | (1) 1 RA (2) 4 RA | (1) and (2) bind to E22 and K16 via H-bonds, disrupting critical K16–E22 contact, and thus inhibiting oligomerization and preventing the formation and stabilization of cross-β-sheet structure | 2020 [211] |
AMBER ff03/TIP3P | 150 several repeats at 300 and 320 K | Aβ17-42/2BEG/pentamer, protofibril | wgx-50 | the most probable BS is located inside the U-shaped β-strand-loop-β-strand motif; destabilizes the protofibril; increases the distances between peptides; diminishes the number of the interchain backbone H-bonds; extends the hydrophobic contact distances between A21 and V36; partially disrupts the D23–K28 salt bridges | 2015 [212] |
DMD + CGM/PRIME20/implicit solvent effects | 50,000 | Aβ17-36/NA/ (1) monomer (2) 8 monomers (3) pre—formed protofilament (octamer) (4) pre + formed protofilament (octamer) + 8 monomers | (1) 10 RESV (2) 30 RESV (3) 30 RESV (4) 30 RESV | (1) strongly binds aromatic amino acids; forms contacts with L17, F19, F20, A21, I31, I32, L34, and M35 (2) prevents fibrilization, forming disordered complexes (3) disrupts the protofilament structure by forming a disordered oligomer (4) stops elongation of protofilament | 2017 [208] |
GROMOS96/SPC | 100 | (1) Aβ1-42/1IYT/monomer (2) Aβ17-42/2BEG/pentamer, protofibril | RESV | significantly reduces the extended β-sheet of both systems; (1) forms H-bonds with Q15 and D23; contacts with V12, H13, Q15, K16, F19, F20, D23, V24, N27, A30, I31, and L34; prevents monomeric aggregation; alters the distance between M35 and I31, leading to destabilization of α-helical structure (2) H-bonds with F19, F20, A21, V36, G37, and G38; interacts with F19, F20, A21, L34, M35, V36, G37, G38, and A40; destabilizes fibrils, leading to unordered non-toxic aggregates | 2023 [213] |
Amber99-ILDN/TIP3P | 150 | Aβ11-42/2MXU/pentamer, fibril | PCT | disrupts the fibril by inserting into a pocket formed by the S-shaped fibril; induces conformational disorder of the entire fibril structure; reduces β-sheet content and inter-chain interaction surfaces | 2020 [206] |
Amber99-ILDN/TIP3P | 150 | Aβ11-42/2MXU/pentamer, fibril | OLEU | destabilizes the whole fibril as intercalates between adjacent peptide chains; reduces β -sheet content and inter-chain interaction surfaces; contacts V18–V24 and N27–I31 | 2020 [206] |
OPLS/TIP3P | 5000 (5 µs) | Aβ1-42/2BEG/pentamer, protofibril | OleuA | strongly destabilizes and perturbs preformed fibrils, leading to their complete disassembly; disrupts the critical D23–K28 salt bridge; increases interchain distances while reducing the number of inter-backbone hydrogen bonds; causes a dramatic reduction in β-sheet content accompanied by an increase in unstructured peptide conformations; primarily targets residues L17–D23, K28, and I31–L34 | 2020 [214] |
FF/Water Model | Duration per System, ns | Aβ Length/PDB ID/Type (Monomer/Dimer/ (Proto-) Fibril) | Inhibitor * | Main Findings | Year, Ref. |
---|---|---|---|---|---|
OPLS-AA/L/TIP3P | (1) 5 (1117 replicas) (2) 15 (550 replicas) (3) (i) and (iii) 200, (ii) 180 (4) (j) 30, (jj) and (jjj) 100 | Aβ16-22/STDR—simulated/ (1) monomer—1117 conformations (2) monomer—550 conformations (3) four dispersed monomers (tetramer); (4) manually constructed β-oligomer (16-mer) | sINO (1) in ratio 2:1 (2) in ratio 15:1 (3) in ratios (i) 1:2, (ii) 15:4, and (iii) 45:4 (4) in ratios (j) 4:16, and 64:16 at concentrations (jj) 15 mM and (jjj) 52 mM of the peptide | (1) and (2) bind weakly and reversibly, do not bind cooperatively; predominantly form nonpolar contacts with F; H-bonds with E (3) disordered oligomers are formed despite sINO ratio and concentrations, mostly in random coil conformation, with unaffected morphology and no effect on the aggregation kinetics (4) (j) binds predominantly at the faces of the β-oligomer with nonpolar groups of F and K and with the charged groups of K and E; does not penetrate the β-sheet core; at (jj) and (jjj) forms clusters that bind to oligomer | 2013 [420] |
CHARMM22 */SPC | 100 | Aβ17-42/2BEG/pentamer | CAF | destabilizes fibril structure; decreases β-sheet content, predominantly the β2 region; reduces H-bonds; interrupts the D23–K28 salt bridges, decreases inter-residual hydrophobic contacts | 2019 [421] |
Amber99-ILDN/TIP3P | 150 | Aβ11-42/2MXU/pentamer, fibril | SGL | intercalated between adjacent peptide chains, leading to fibril destabilization; reduces the β-structure content, fibril order, and inter-chain interaction surface; interacts with H14–G25 region | 2020 [206] |
Scaffold | Cmpd | Monomeric | U-Shaped | S-Shaped | LS-Shaped |
---|---|---|---|---|---|
CCN | moves around monomeric Aβ; multiple contacts like H-bonds, π–π stacking, hydrophobic and cation–π interactions with numerous residues: F4–D7, Y10, E11, H13, H14, K16, L17, F19–A21, L24, K28, I31, G33–M35 [199,200,201,202,210] | destabilizes peripheral chains than central ones; disrupts the D23–K28 salt bridge; binds preferably to the C-terminal residues; specific interactions to F19 (π–π stacking) and H-bonds with E22 (from the loop), M35 (from β2), and G37 (from the C-terminal) [204]; reduces β-sheet; increases unorganized regions of the outermost chains; decreases number of intermolecular backbone H-bonds [205]; at higher concentration: individual or stacked CCN molecules deposit parallel- (predominant) or perpendicular-mode the fibril axis; enters the fibril hydrophobic core by the open ends or binds to the loop region between two β-strands [210]. | breaks down all β-sheets within the 12 VHHQKLVFF 20 domain of the outermost peptide; partial dissociation of the fibril structure; [207]; inserts into a pocked within the fibril, disrupts the ordered fibril structure, decreases β-sheet content, fibril order and inter-chain interaction surface, binds to E11–F19 and I32–L24 areas [206] | ||
Wgx-50 | binds in the concave region of β-strand–loop–β-strand motif; disrupted the cross-β-sheet subunit, structural distortion between the first two peptide subunits; increased inter-peptide distances; promoted protofibril destabilization; a reduced number of interchain backbone H-bonds, increased hydrophobic contact distances between A21 and V36, and partial disruption of the D23–K28 salt bridge [212] | ||||
RESV | prevents monomer aggregation; significantly reduces β-sheet; H-bonds with Q15 and D23; contacts with V12, H13, Q15, K16, F19, F20, D23, V24, N27, A30, I31, and L34; alters the distance between M35 and I31, leading to destabilization of α-helical structure [213] | disrupts fibrillar structure, leading to unordered non-toxic aggregates; reduces the β-sheet; reduces α-helix and β-sheet content; H-bonds with F19, F20, A21, V36, G37, and G38; interacts with F19, F20, A21, L34, M35, V36, G37, G38, and A40; increases the distance between the S atom of M35 and the carbonyl O of I31; helical destabilization, reducing the likelihood of sulfuranyl radical formation [213] | |||
PCT | disrupts the fibril by inserting into a pocket formed by the S-shaped fibril; induces conformational disorder of the entire fibril structure; reduces β-sheet content and inter-chain interaction surfaces; binds to E11–F19 and I32–L24 areas [206] | ||||
OLEU | destabilizes the whole fibril as it intercalates between adjacent peptide chains; reduces β-sheet content and inter-chain interaction surfaces; contacts V18–V24 and N27–I31 [206] | ||||
OleuA | strongly destabilizes and perturbs preformed fibrils, complete fibril disassembly; disrupts the D23–K28 salt bridge; increases interchain distances and unstructured peptide conformations; reduces the number of inter-backbone H-bonds and significantly the β-sheet content; primarily interacts with residues L17–D23, K28, and I31–L34 [214] | ||||
EGCG | inhibits β-sheet dose-dependently; key contact residues: F4, R5, F19, F20, K28, G29, L34, M35, V36, G37, and I41; H- bonds with F20, K28, G29, G37, and I41; hydrophobic contacts with F4, F20, K28, G29, M35, and I41 [302] | located on the surface; disrupts N-terminal (D1–G9) and C-terminal (K28–A42) segments; increases the kink angle around Y10; decreases H-bonds in the H6–E11 segment, increasing them in the E11–H13; interrupts the stabilizing K28–A42 salt bridge; interacts with F4, R5, D7, Y10, E11, H13, H14, K28, L34, I41, and A42; key interactions: H-bonds with E11, π–π stacking with H14 and Y10, with the COO− group of A42 and a cation–π contact with K28 [308]; 4 BSs defined by residues: F19 for BS1 (inside the fibril), E3—for BS2 (near the N-terminus), I41—BS3 (near the C-terminus), and E11 and H13 for BS4 (within the fibril) [310] | |||
MYR | destabilizes the U-shaped monomer; H-bonding is dominant; changes β-sheet content into coil; penetrates Aβ core; interacts with CO and NH groups; forms self-clustered Aβ–MYR complexes at higher molar ratios [30,311] | remodels rigid, toxic protofibrils into expanded, fragile, and nontoxic amorphous aggregates by reducing the number of interchain hydrogen bonds; the β-sheets remained intact, but the rigid “steric-zipper” motif was significantly disrupted [30] | |||
MOR | destabilizes the U-shaped monomer; H-bonding is dominant; changes β-sheet content into bends or coils; penetrates Aβ core; interacts with CO and NH groups; forms self-clustered Aβ–MOR complexes at higher molar ratios [30,311]; minimal impact on the monomeric structure at low molar ratio; at the higher molar ratio: significantly alters both the secondary and tertiary structures; covers Aβ1-42, restricting it from collapse and α-helix and β-sheet interconversion; altered structures may represent the early formation of “off-pathway” aggregates [297] | remodels rigid, toxic protofibrils into expanded, fragile, and nontoxic amorphous aggregates by reducing the number of interchain hydrogen bonds; the β-sheets remained intact, but the rigid “steric-zipper” motif was significantly disrupted [30] | |||
GEN | stabilizes protofibril; reduces β-sheet content; contacts L17, F20, E22, I31, G33, M35, and V39; preferably locates at the C-terminal β-sheet groove near G33 and M35 [314] | ||||
GOS | inserts into a pocket within the fibril, disrupts the ordered fibril structure, decreases β-sheet content, fibril order and inter-chain interaction surface, binds to E11–F19 and I32–L24 areas [206] | ||||
biflavonouds | induces conformational changes in the fibril, leading to disaggregation; form π–π interactions with F4, H6, Y10, H13, and H14; significant reduction in β-sheet content with a key OH group at the R2 and R3 positions involved in H-bonds with the peptide backbone [315] | ||||
TS1 | binds to DR; decreases β-sheet content, contacts with F4, D7, Y10, K16, F20, K28, and V40 [407] | inhibit Aβ aggregation through multiple mechanisms; two BSs: A1—at the β-sheet groove at on the external surface of the hydrophobic C-terminal β-sheet (I31–M35); A2—near the N-terminus (F4–H6); forms contacts with: F4, H6, I31, G33, L34, M35; [406]; inhibits fibril growth as disrupts β-sheet integrity; reduces fibril stability; hinders lateral association of Aβ aggregates; mainly locates in DR; increases twist angle; disappears the bend region (37 GGV 39) [407] | |||
TS2 | inhibit Aβ aggregation through multiple mechanisms; seven BSs (B1–B7), BS1(≡A1 for TS1) and BS6 (≡A2 for TS2), cover ~ 30% of pose population, forms contacts with F4, H6, Y10, V39, F40, I41 [406] | ||||
brazilin | fibril destabilization and remodelling, preventing further fibril formation; multiple BSs; preferentially interacting with residues L17, F19, F20, and K28; strong hydrophobic interactions between the phenyl rings of brazilin and F20; OH groups formed over ten H-bonds; disrupts the D23–K28 salt bridge as forms H-bond with K28; reduces the interchain backbone H-bonds [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atanasova, M. Small-Molecule Inhibitors of Amyloid Beta: Insights from Molecular Dynamics—Part B: Natural Compounds. Pharmaceuticals 2025, 18, 1457. https://doi.org/10.3390/ph18101457
Atanasova M. Small-Molecule Inhibitors of Amyloid Beta: Insights from Molecular Dynamics—Part B: Natural Compounds. Pharmaceuticals. 2025; 18(10):1457. https://doi.org/10.3390/ph18101457
Chicago/Turabian StyleAtanasova, Mariyana. 2025. "Small-Molecule Inhibitors of Amyloid Beta: Insights from Molecular Dynamics—Part B: Natural Compounds" Pharmaceuticals 18, no. 10: 1457. https://doi.org/10.3390/ph18101457
APA StyleAtanasova, M. (2025). Small-Molecule Inhibitors of Amyloid Beta: Insights from Molecular Dynamics—Part B: Natural Compounds. Pharmaceuticals, 18(10), 1457. https://doi.org/10.3390/ph18101457