Botany, Traditional Use, Phytochemistry, Pharmacology and Quality Control of Taraxaci herba: Comprehensive Review
Abstract
:1. Introduction
2. Materials and Methods
3. Botanical Features and Distribution
4. Traditional Uses
5. Phytochemistry
5.1. Flavonoid
5.2. Terpenoids and Steroids
5.3. Phenolic Acid
5.4. Others
6. Pharmacology
6.1. Anti-Inflammatory and Liver Protection
6.2. Anti-Oxidation
6.3. Anti-Bacterial Activity
6.4. Anti-Tumor and Anti-Cancer
6.4.1. Breast Cancer
6.4.2. Prostate Cancer
6.4.3. Liver Cancer
6.4.4. Gastric Cancer
6.4.5. Others Cancer
6.5. Other Pharmacological Effects
7. Artificial Cultivations
7.1. Sowing and Harvesting
7.2. Cultivation
8. Quality Control and Toxicology
8.1. Quality Control
8.2. Toxicology
9. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Glossary
TS | Taraxasterol | TDS | Taraxaci herba polysaccharides |
TF | Taraxaci herba flavone | Bcl2 | B-cell lymphoma-2 |
STAT | Signal transducer and activator of transcription | JAK | Janus kinase |
JNK | c-Jun N-terminal kinase | SOCS3 | Cytokine signaling pathway inhibitor 3 |
APAP | Acetaminophen | HO-1 | Heme Oxygenase-1 |
Nrf2 | Nuclearrespiratoty factor 2 | PGE2 | Prostaglandin E2 |
Hint1 | Histidine triad nucleotide-binding protein 1 | IL-1 | Interleukin-1 |
IL-6 | Interleukin-6 | NF-κB | Nuclear factor-κB |
MAPK | Mitogen-activated protein kinase | TIMP | Tissue inhibitor of matrix metalloproteinases |
Cox-2 | Cyclooxygenase-2 | TNF-α | Tumor necrosis factor alpha |
IL-1β | Interleukin—1β | MPO | Myeloperoxidase |
SOD | Superoxide dismutase | GSH | Glutathione |
MDA | Malondialdehyde | MAO | Monoamine oxidase |
LPF | Leukocytosis promoting factor | ROS | Reactive oxygen species |
MMP | Matrix metallopeptidase | CAT | Catalase |
MIC | Minimum inhibitory concentration | TNBC | Triple negative breast cancer |
IL-10 | Interleukin-10 | ERK | Extracellular signal-regulated kinase |
MAPK | Activated protein kinase | BAX | Bcl2 Associated x protein |
References
- Ge, X.; Lin, Y.; Zhai, D. Preliminary arrangement of Taraxacum plants in China. Plant Res. 1998, 4, 1–21. [Google Scholar]
- Gong, Z.; Zhang, W.; Liu, C.; He, B.; Tan, R. Resources of Taraxacum in China. Wild Plant Resour. China 2001, 3, 9–14+15. [Google Scholar]
- Shanghai Scientific and Technical Publishers. Dictionary of Traditional Chinese Medicine; Jiangsu New Medical College: Shanghai, China, 2020. [Google Scholar]
- Li, L.; Liu, Q.; Liu, T.; Cui, X.; Ning, W. Expression of putative luteolin biosynthesis genes and WRKY transcription factors in Taraxacum antungense kitag. Plant Cell Tissue Organ Cult. (PCTOC) 2021, 145, 1–17. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2020. [Google Scholar]
- Sergiu, P.; Sonia, A.; Gheorghe, G.; Beniamin, P. The Evaluation of Dandelion (Taraxacum officinale) Properties as a Valuable Food Ingredient. Rom. Biotechnol. Lett. 2016, 21, 11569–11575. [Google Scholar]
- Hu, C. Taraxacum: Phytochemistry and health benefits. Chin. Herb. Med. 2018, 10, 353–361. [Google Scholar] [CrossRef]
- Laura, G.; Stefano, E.; Bruna, D.F.; Virginia, L.; Giuliano, B. Common dandelion: A review of its botanical, phytochemical and pharmacological profiles. Phytochem. Rev. 2019, 18, 1115–1132. [Google Scholar] [CrossRef]
- Schütz, K.; Carle, R.; Schieber, A. Taraxacum—A review on its phytochemical and pharmacological profile. J. Ethnopharmacol. 2006, 107, 313–323. [Google Scholar] [CrossRef]
- Martinez, M.; Poirrier, P.; Chamy, R.; Prüfer, D.; Schulze-Gronover, C.; Jorquera, L.; Ruiz, G. Taraxacum officinale and related species-An ethnopharmacological review and its potential as a commercial medicinal plant. J. Ethnopharmacol. 2015, 169, 244–262. [Google Scholar] [CrossRef]
- Hao, F.; Deng, X.; Yu, X.; Wen, W.; Yan, W.; Zhao, X.; Wang, X.; Bai, C.; Lu, H. Taraxacum: A Review of Ethnopharmacology, Phytochemistry and Pharmacological Activity. Am. J. Chin. Med. 2024, 52, 183–215. [Google Scholar] [CrossRef]
- Murtaza, I.; Laila, O.; Drabu, I.; Ahmad, A.; Charifi, W.; Popescu, S.M.; Mansoor, S. Nutritional Profiling, Phytochemical Composition and Antidiabetic Potential of Taraxacum officinale, an Underutilized Herb. Molecules 2022, 27, 5380. [Google Scholar] [CrossRef]
- Ruiz-Juarez, D.; Melo-Ruiz, V.E.; Gutierrez-Rojas, M.; Sanchez-Herrera, K.; Cuamatzi-Tapia, O. Nutrient value in dandelion flower (taraxacum officinale). Ann. Nutr. Metab. 2020, 76, 102. [Google Scholar]
- Chen, G.; Li, R. Investigation on the Current Situation of Medicinal Plant Resources in Shandong Province. Chin. Herb. Med. 2023, 46, 2155–2159. [Google Scholar] [CrossRef]
- Ning, W.; Wu, J.; Zhao, T.; Zhao, X.; Li, T. Karyotype study on seven species of Taraxacum mongolicum in Northeast China. China J. Tradit. Chin. Med. 2012, 37, 771–776. [Google Scholar]
- Qiao, Y.; Wang, Y.; Cao, Y.; He, J. Cluster analysis of karyotype similarity coefficient of 13 species of Taraxacum. Acta Agrestia Sin. 2020, 28, 285–290. [Google Scholar]
- Li, Z.; Zhang, T.; Yang, M.; Sun, L. Investigation and Analysis of Medicinal Plant Resources in Shandong Province. Chin. Herb. Med. 2024, 2, 313–318. [Google Scholar] [CrossRef]
- Sun, H.; Jiang, S.; Liu, J.; Guo, Y. Leaf structure changes and ecological adaptability of three compositae plants at different altitudes in Qinghai-Tibet Plateau. Acta Ecol. Sin. 2016, 36, 1559–1570. [Google Scholar]
- Wu, J.; Liu, Q.; Haitao, C.; Wei, N.; Wei, C. Evaluation and identification of morphological characters suitable for delimitation of Taraxacum species distributed in northeastern China. Food Sci. Nutr. 2022, 10, 2999–3008. [Google Scholar] [CrossRef]
- Li, H.; Zhao, X.; Jia, Q.; Li, T.; Ning, W. Achene morphology cluster analysis of Taraxacum F. H. Wigg. from northeast China and molecule systematics evidence determined by SRAP. Yao xue xue bao = Acta Pharm. Sin. 2012, 47, 1063–1069. [Google Scholar]
- Qi, J.; Jia, Q.; Guo, X.; Fan, X. Clinical application of dandelion external application in acute mastitis. Guizhou Med. J. 2014, 38, 360–361. [Google Scholar]
- Qiao, N.; Ding, X.; Ni, S. Clinical observation on treatment of acute lactation mastitis complicated with abscess formation with combination of traditional Chinese and western medicine. China J. Tradit. Chin. Med. Pharm. 2020, 35, 1580–1582. [Google Scholar]
- Yuan, Y.; Weichen, H. Clinical observation on the treatment of ulcerative colitis with Gegen Qinlian decoction and dandelion enema. Prog. Mod. Biomed. 2007, 9, 1336–1337. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, L.; Chen, S. Clinical observation on treatment of acute suppurative tonsillitis with compound dandelion decoction. J. Anhui Tradit. Chin. Med. Coll. 2010, 29, 9–12. [Google Scholar]
- Wang, C.; Xu, M. Clinical observation on the treatment of 38 cases of intestinal obstruction in the elderly with twelve dandelion syrup. Hebei J. Tradit. Chin. Med. 2013, 35, 1146–1147. [Google Scholar]
- Li, S. Grass chapter. In Bencao Gangmu; Plant Part; 1596; Volume 16. [Google Scholar]
- Chen, S. Strange prescription middle volume. In Secret Record of Surgery; 1694; Volume 15. [Google Scholar]
- Inner Mongolia Autonomous Region Revolutionary Committee Health Bureau. Selected Materials of New Medical Treatment of Chinese Herbal Medicine; Inner Mongolia Autonomous Region Revolutionary Committee Health Bureau: Inner Mongolia, China, 1971; pp. 162–164.
- Lan, M. Herbal Medicine in Southern Yunnan; 1436; Volume 1. [Google Scholar]
- Ge, H.; Tao, H.; Yang, Y. Breast prescription. In Meishi Prescription; 820; Volume 5. [Google Scholar]
- Xie, Z.; Fan, C.; Zhu, Z. Compilation of Chinese Herbal Medicine in China; People’s Health Publishing House: Beijing, China, 1994; pp. 898–899. [Google Scholar]
- Ministry of Health, L.D.o.N.M.R. Commonly Used Chinese Herbal Medicines in Nanjing; Jiangsu Revolutionary Committee Publishing Bureau: Nanjing, China, 1969; pp. 464–465. [Google Scholar]
- Chen, S. Strange prescription rolled up. In Secret Record of Surgery; 1694; Volume 14. [Google Scholar]
- China Anhui Provincial Revolutionary Committee Health Bureau. Anhui Chinese Herbal Medicine; Anhui People’s Publishing House: Hefei, China, 1975; pp. 49–51.
- He, Z. Summary of prescription addition and subtraction changes. In Heshijishenglun; 1672; Volume 7. [Google Scholar]
- China Qingdao Chinese Herbal Medicine Manual Compilation Group. Qingdao Handbook of Chinese Herbal Medicine; People’s Health Publishing House: Qingdao, China, 1975; pp. 255–257. [Google Scholar]
- China Jilin Provincial Institute of Traditional Chinese Medicine. Flora of Changbai Mountain; Jilin People’s Publishing House: Jilin, China, 1982; pp. 1259–1260. [Google Scholar]
- Hasnat, H.; Shompa, S.A.; Islam, M.M.; Alam, S.; Richi, F.T.; Emon, N.U.; Ashrafi, S.; Ahmed, N.U.; Chowdhury, M.N.R.; Fatema, N.; et al. Flavonoids: A treasure house of prospective pharmacological potentials. Heliyon 2024, 10, e27533. [Google Scholar] [CrossRef]
- Choi, J.; Yoon, K.D.; Kim, J. Chemical constituents from Taraxacum officinale and their α-glucosidase inhibitory activities. Bioorganic Med. Chem. Lett. 2018, 28, 476–481. [Google Scholar] [CrossRef]
- Xie, S.; Yang, X.; Ding, Z.; Li, M. Chemical constituents and pharmacological effects of Taraxacum mongolicum. Nat. Prod. Res. Dev. 2012, 24, 141–151. [Google Scholar] [CrossRef]
- Bao, T.; Ke, Y.; Wang, Y.; Wang, W.; Li, Y.; Wang, Y.; Kui, X.; Zhou, Q.; Zhou, H.; Zhang, C.; et al. Taraxasterol suppresses the growth of human liver cancer by upregulating Hint1 expression. J. Mol. Med. 2018, 96, 661–672. [Google Scholar] [CrossRef]
- Ling, Y.; Zhou, Y.; Chen, S. Studies on chemical constituents of Taraxacum mongolicum in alkali land. China J. Chin. Mater. Medica 1998, 4, 40–64. [Google Scholar]
- Ling, Y.; Bo, Y. Studies on chemical constituents of Taraxacum mongolicum. J. Nav. Gen. Hosp. 1998, 2, 167–169. [Google Scholar]
- Wei, Y.; Wenyan, L.; Changxin, Z. Studies on chemical constituents of Taraxacum mongolicum. China J. Chin. Mater. Medica 2007, 10, 926–929. [Google Scholar]
- Rong, W.; Weihua, L.; Cao, F.; Xinxin, Z.; Chao, L.; Qing, H. Extraction and identification of new flavonoid compounds in dandelion Taraxacum mongolicum Hand.-Mazz. with evaluation of antioxidant activities. Sci. Rep. 2023, 13, 2166. [Google Scholar] [CrossRef]
- Stoja, M.; Agnieszka, G.; Łukasz, Ś.; Agnieszka, D.; Katarzyna, T.; Marcin, K. Dandelion seeds as a new and valuable source of bioactive extracts obtained using the supercritical fluid extraction technique. Sustain. Chem. Pharm. 2022, 29, 100796. [Google Scholar]
- Wang, Y.; Li, Y.; Yang, N. Research progress on chemical constituents and pharmacological effects of Taraxacum plants. Spec. Res. 2017, 39, 67–75. [Google Scholar] [CrossRef]
- Songbao, Z.; Chao, L.; Wei, G.; Rongli, Q.; Jianguo, C.; Lingfeng, P.; Lijie, M.; Yangfang, G.; Rong, T. Metabolomics analysis of dandelions from different geographical regions in China. Phytochem. Anal. 2021, 32, 899–906. [Google Scholar] [CrossRef]
- Xiaoyan, L.; Feng, L.; Yu, Z.; Xue, L.; Xian, Z. Research progress on anti-tumor mechanism of effective components in dandelion. Chin. Herb. Med. 2023, 54, 3391–3400. [Google Scholar]
- Wu, X.; Du, S.; Chen, H. Research and application of Taraxacum mongolicum. J. Pharm. Pract. 2002, 4, 246–248. [Google Scholar]
- Yang, Y.; Li, T.; Wang, X. Ultrasonic Assisted Extraction- Gas Chromatography-mass Spectrometry Analysis of Chemical Components of Dandelion Root. Chem. Eng. Trans. (CET J.) 2018, 66. [Google Scholar] [CrossRef]
- Albert, B.; Manuel, R.-C. Terpenoid biosynthesis in prokaryotes. Adv. Biochem. Eng./Biotechnol. 2015, 148, 3–18. [Google Scholar] [CrossRef]
- D, M. Triterpene alcohols from Taraxacum pollen. C R Acad. Sci. Ser. D 1969. [Google Scholar]
- Ling, Y.; Xu, Y.; Zhang, J. Studies on triterpenoids from Taraxacum mongolicum. Chin. Herb. Med. 1998, 4, 224–225. [Google Scholar]
- Anne, B.; Maik, B.; Alberto, M.; Giovanni, A.; Wolfgang, M. Broad tuning of the human bitter taste receptor hTAS2R46 to various sesquiterpene lactones, clerodane and labdane diterpenoids, strychnine, and denatonium. J. Agric. Food Chem. 2007, 55, 6236–6243. [Google Scholar] [CrossRef]
- Ming, Z.; Xu, S. Chemistry and Pharmacology of Taraxacum mongolicum. J. Shenyang Pharm. Univ. 1997, 2, 62–68. [Google Scholar]
- Kenny, O.; Brunton, N.P.; Walsh, D.; Hewage, C.M.; McLoughlin, P.; Smyth, T.J. Characterisation of antimicrobial extracts from dandelion root (Taraxacum officinale) using LC-SPE-NMR. Phytother. Res. PTR 2015, 29, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Huber, M.; Triebwasser-Freese, D.; Reichelt, M.; Heiling, S.; Paetz, C.; Chandran, J.N.; Bartram, S.; Schneider, B.; Gershenzon, J.; Erb, M. Identification, quantification, spatiotemporal distribution and genetic variation of major latex secondary metabolites in the common dandelion (Taraxacum officinale agg.). Phytochemistry 2015, 115, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, J. The effects of Taraxacum officinale extracts (TOE) supplementation on physical fatigue in mice. Afr. J. Tradit. Complement. Altern. Med. AJTCAM 2011, 8, 128–133. [Google Scholar] [CrossRef]
- Liu, T.; Liao, J.; Shi, M.; Li, L.; Liu, Q.; Cui, X.; Ning, W.; Kai, G. A Jasmonate-Responsive bHLH Transcription Factor TaMYC2 Positively Regulates Triterpenes Biosynthesis in Taraxacum antungense Kitag. Plant Sci. Int. J. Exp. Plant Biol. 2022, 326, 111506. [Google Scholar] [CrossRef]
- Shuyun, S.; Changxin, Z.; Yan, X.; Qiaofeng, T. Studies on chemical constituents of Taraxacum mongolicum. China J. Chin. Mater. Medica 2008, 10, 1147–1157. [Google Scholar]
- Sharifi-Rad, M.; Roberts, T.H.; Matthews, K.R.; Bezerra, C.F.; Morais-Braga, M.F.B.; Coutinho, H.D.M.; Sharopov, F.; Salehi, B.; Yousaf, Z.; Sharifi-Rad, M.; et al. Ethnobotany of the genus Taraxacum-Phytochemicals and antimicrobial activity. Phytother. Res. 2018, 32, 2131–2145. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, B.; Kuang, H. Studies on Chemical Constituents of Taraxacum mongolicum Root in Northeast China. Chin. Pat. Med. 2023, 45, 1887–1891. [Google Scholar]
- Wu, Z.; Yang, Y.; Li, Z.; Lu, X.; Wang, X. Development of dandelion (Taraxacum spp.) quality evaluation technology based on phenolic acids. Folia Hortic. 2022, 34, 187–209. [Google Scholar] [CrossRef]
- Chen, H.; Qiao, H.; Sun, T. Study on antitumor activity of Taraxacum mongolicum flower extract in vitro. Chin. Remedies Clin. 2014, 14, 1179–1181+1309. [Google Scholar]
- Shi, S.; Zhou, H. Studies on chemical constituents of Taraxacum tubulosa. China J. Tradit. Chin. Med. 2009, 34, 1002–1004. [Google Scholar]
- Shi, S.; Zhang, C.; Xu, Y.; Tiao, Q.; Bai, H.; Lu, F.; Lin, W.; Li, X.; Qu, J. Studies on chemical constituents from herbs of Taraxacum mongolicum. Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China J. Chin. Mater. Medica 2008, 33, 1147–1157. [Google Scholar]
- Peng, D.; Gao, J.; Guo, X.; Wang, J. Studies on the chemical constituents of Taraxacum mongolicum roots. Chin. Pat. Med. 2014, 36, 1462–1466. [Google Scholar]
- Ren, H.; Zhang, W.; Zhang, Y.; Zhang, Z. Research progress on functional components and biological activities of Taraxacum mongolicum. Food Drug 2022, 24, 193–201. [Google Scholar] [CrossRef]
- Liu, X.; Guan, J.; Zhang, G.; Wang, J. Effect of Taraxasterol on Proliferation of Human Tongue Cancer CAL-27 Cells and Its Mechanism. Trace Elem. Health Res. 2020, 37, 39–41. [Google Scholar]
- Yang, C.; Yan, Q.; Tao, J.; Xia, B. Analysis of volatile oil from Taraxacum mongolicum and its anti-inflammatory and anti-tumor activities. China J. Tradit. Chin. Med. Pharm. 2018, 33, 3106–3111. [Google Scholar]
- Shouxun, Z.; Bingqian, H. Chemical constituents and pharmacological effects of Taraxacum mongolicum. In Wild Plant Resources in China; 2001; pp. 1–3. [Google Scholar]
- Jin, Y.; Zhu, G. Study on extraction technology of total alkaloids from Taraxacum mongolicum by orthogonal test. Jiangsu Agric. Sci. 2009, 3, 329–330. [Google Scholar]
- Xue, H.; Nima, L.; Wang, S.; Tan, J. Ultrasound assisted hot water extraction of polysaccharides from Taraxacum mongolicum: Optimization, purification, structure characterization, and antioxidant activity. J. Food Sci. 2024, 89, 2827–2842. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, Y.; Zou, J.; Zhang, X.; Zhai, B.; Guo, D.; Sun, J.; Luan, F. Extraction, purification, structural features, biological activities, modifications, and applications from Taraxacum mongolicum polysaccharides: A review. Int. J. Biol. Macromol. 2024, 259, 129193. [Google Scholar] [CrossRef]
- Ahmad, V.U.; Yasmeen, S.; Ali, Z.; Khan, M.A.; Choudhary, M.I.; Akhtar, F.; Miana, G.A.; Zahid, M. Taraxacin, a new guaianolide from Taraxacum wallichii. J. Nat. Prod. 2000, 63, 1010–1011. [Google Scholar] [CrossRef]
- Ling, Y.; Bo, Y. Analysis of Trace Elements in Dandelion. Trace Elem. Health Res. 1998, 2, 54–56. [Google Scholar]
- Che, L. Protective Effect of Dandelion Sterol on Ulcerative Colitis and Its Mechanism. Ph.D. Thesis, Zhengzhou University, Zhengzhou, China, 2020. [Google Scholar]
- Zhang, Y.; Bin Shaari, R.; Nawi, M.A.B.A.; Bin Hassan, A.; Cui, C. Pharmacological Action and Research Progress of Taraxasterol. Curr. Pharm. Biotechnol. 2024, 25, 1767–1777. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xiong, H.; Liu, L. Effects of taraxasterol on inflammatory responses in lipopolysaccharide-induced RAW 264.7 macrophages. J. Ethnopharmacol. 2012, 141, 206–211. [Google Scholar] [CrossRef] [PubMed]
- San, Z. Study on Anti-Inflammatory Effect and Regulatory Mechanism of Taraxasterol on LPS-Induced Mastitis. Ph.D. Thesis, Jilin University, Jilin, China, 2014. [Google Scholar]
- Zheng, F.; Dong, X.; Meng, X. Anti-Inflammatory Effects of Taraxasterol on LPS-Stimulated Human Umbilical Vein Endothelial Cells. Inflammation 2018, 41, 1755–1761. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Li, H.; Tao, T.; Xu, B. Study on the protective effect of Taraxasterol on acute severe hepatitis based on JAK2/STAT3 and JNK signaling pathway. Pharmacol. Clin. Chin. Mater. Medica 2023, 39, 57–61. [Google Scholar] [CrossRef]
- Bingjie, G.; Rui, S.; Wei, W.; Kexin, Y.; Yifan, Y.; Lin, K.; Minghong, Y.; Xinman, L.; Xuemei, Z. Protection of taraxasterol against acetaminophen-induced liver injury elucidated through network pharmacology and in vitro and in vivo experiments. Phytomedicine 2023, 116, 154872. [Google Scholar] [CrossRef]
- Park, C.M.; Cho, C.W.; Song, Y.S. TOP 1 and 2, polysaccharides from Taraxacum officinale, inhibit NFκB-mediated inflammation and accelerate Nrf2-induced antioxidative potential through the modulation of PI3K-Akt signaling pathway in RAW 264.7 cells. Food Chem. Toxicol. 2014, 66, 56–64. [Google Scholar] [CrossRef]
- Chaoyong, X.; Yu, Z.; Yuliang, W. Extraction, Purification and in vitro Anti-inflammatory Activity Analysis of Total Polysaccharides from Taraxacum mongolicum. Chin. J. Exp. Tradit. Med. Formulae 2016, 22, 25–28. [Google Scholar] [CrossRef]
- Hee, H.S.; HakDong, L.; Sanghyun, L.; Young, L.A. Taraxacum coreanum Nakai extract attenuates lipopolysaccharide-induced inflammatory responses and intestinal barrier dysfunction in Caco-2 cells. J. Ethnopharmacol. 2023, 319, 117105. [Google Scholar] [CrossRef]
- An, L. Clinical study on dandelion granules combined with cefradine in the treatment of acute mastitis. Drugs Clin. 2021, 36, 796–798. [Google Scholar]
- Sui, H.; Wang, Y.; Luan, H. Antioxidant effect of Taraxacum mongolicum total flavonoids extract on brain tissue of aging model mice. Chin. Pat. Med. 2009, 31, 1289–1290. [Google Scholar]
- Pang, M.; Li, T.; Chen, W.; Long, S. Study on antioxidant active components and mechanism of Taraxacum mongolicum based on HPLC and network pharmacology. J. Jilin Univ. 2023, 61, 437–442. [Google Scholar] [CrossRef]
- Hu, C.; Kitts, D.D. Dandelion (Taraxacum officinale) flower extract suppresses both reactive oxygen species and nitric oxide and prevents lipid oxidation in vitro. Phytomedicine Int. J. Phytother. Phytopharm. 2005, 12, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lin, F. Antioxidant activity participates in the protective effect of Taraxacum mongolicum on experimental gastric ulcer in mice. World Chin. Med. 2018, 13, 993–996. [Google Scholar]
- Shu, Y.; Lu, J.; Chen, X. Study on extraction and antioxidant activity of dandelion polysaccharide. Mod. Agric. Sci. Technol. 2022, 186–189+193. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, Z.; Hao, Y.; An, P.; Luo, J.; Luo, Y. Dandelion Polysaccharides Ameliorate High-Fat-Diet-Induced Atherosclerosis in Mice through Antioxidant and Anti-Inflammatory Capabilities. Nutrients 2023, 15, 4120. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Shi, P.; Li, P.; Fu, Y.; Tan, G.; Zhou, J.; Zeng, J.; Huang, P. Modulation of Acute Intestinal Inflammation by Dandelion Polysaccharides: An In-Depth Analysis of Antioxidative, Anti-Inflammatory Effects and Gut Microbiota Regulation. Int. J. Mol. Sci. 2024, 25, 1429. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, J.-L.; Bai, Z.; Du, J.; Shi, Y.; Wang, Y.; Wang, Y.; Liu, Y.; Yu, Z.; Li, M.-Y. Polysaccharide from dandelion enriched nutritional composition, antioxidant capacity, and inhibited bioaccumulation and inflammation in Channa asiatica under hexavalent chromium exposure. Int. J. Biol. Macromol. 2022, 201, 557–568. [Google Scholar] [CrossRef]
- Gao, D. Analysis of nutritional components of Taraxacum mongolicum and its antibacterial activity. Pharmacogn. J. 2010, 2, 502–505. [Google Scholar]
- Han, Q.; Sun, T. Antibacterial activity of ethanol extract and fractions obtained from Taraxacum mongolicum flower. Res. J. Pharmacogn. 2014, 1, 35–39. [Google Scholar]
- Katy, D.; Luis, E.; Alejandro, M.; Leonardo, P.; Rolando, C. Isolation and Identification of Compounds from Bioactive Extracts of Taraxacum officinale Weber ex F. H. Wigg. (Dandelion) as a Potential Source of Antibacterial Agents. Evid.-Based Complement. Altern. Med. eCAM 2018, 2018, 2706417. [Google Scholar] [CrossRef]
- Xu, X.; Wang, X.; Xie, P. Screening and unveiling antibacterial mechanism of dandelion phenolic extracts against Staphylococcus aureus by inhibiting intracellular Na+-K+ ATPase based on molecular docking and molecular dynamics simulation. J. Biomol. Struct. Dyn. 2024, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Duan, H.; Zhang, P.; Han, H.; Gao, F.; Li, Y.; Xu, Z. Extraction and isolation of the active ingredients of dandelion and its antifungal activity against Candida albicans. Mol. Med. Rep. 2020, 21, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Guo, R.; Wang, Y. Taraxacum mongolicum extract exhibits a protective effect on hepatocytes and an antiviral effect against hepatitis B virus in animal and human cells. Mol. Med. Rep. 2014, 9, 1381–1387. [Google Scholar] [CrossRef]
- Han, H.; He, W.; Wang, W.; Gao, B. Inhibitory effect of aqueous dandelion extract on HIV-1 replication and reverse transcriptase activity. BMC Complement. Altern. Med. 2011, 11, 112. [Google Scholar] [CrossRef]
- Tu, G. Chemical constituents, pharmacological effects and clinical application of Taraxacum mongolicum. Strait Pharm. J. 2012, 24, 33–35. [Google Scholar]
- Qi, X.; Gao, P.; Qiao, T. Research progress on anti-tumor effect of Taraxacum mongolicum. China Cancer 2015, 24, 53–56. [Google Scholar]
- Sun, Y.; Liu, X. Understanding of breast cancer in traditional Chinese medicine and principles of postoperative treatment. Chin. Arch. Tradit. Chin. Med. 2005, 180–182. [Google Scholar] [CrossRef]
- Veronesi, U.; Boyle, P.; Goldhirsch, A.; Orecchia, R.; Viale, G. Breast cancer. Lancet 2005, 365, 1727–1741. [Google Scholar] [CrossRef]
- Qu, J.; Ke, F.; Liu, Z.; Yang, X.; Li, X.; Xu, H.; Li, Q.; Bi, K. Uncovering the mechanisms of dandelion against triple-negative breast cancer using a combined network pharmacology, molecular pharmacology and metabolomics approach. Phytomedicine 2022, 99, 153986. [Google Scholar] [CrossRef] [PubMed]
- Sigstedt, S.C.; Hooten, C.J.; Callewaert, M.C.; Jenkins, A.R.; Romero, A.E.; Pullin, M.J.; Kornienko, A.; Lowrey, T.K.; Slambrouck, S.V.; Steelant, W.F. Evaluation of aqueous extracts of Taraxacum officinale on growth and invasion of breast and prostate cancer cells. Int. J. Oncol. 2008, 32, 1085–1090. [Google Scholar] [CrossRef]
- Li, X.; He, X.; Zhou, Y.; Zhao, H.; Zheng, W.; Jiang, S.; Zhou, Q.; Li, P.; Han, S. Taraxacum mongolicum extract induced endoplasmic reticulum stress associated-apoptosis in triple-negative breast cancer cells. J. Ethnopharmacol. 2017, 206, 55–64. [Google Scholar] [CrossRef]
- Wang, S.; Hao, H.; Jiao, Y.; Fu, J.; Guo, Z.; Guo, Y.; Yuan, Y.; Li, P.; Han, S. Dandelion extract inhibits triple-negative breast cancer cell proliferation by interfering with glycerophospholipids and unsaturated fatty acids metabolism. Front. Pharmacol. 2022, 13, 942996. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Jiao, Y.; Hao, H.; Xue, D.; Bai, C.; Han, S. Taraxacum mongolicum extract inhibited malignant phenotype of triple-negative breast cancer cells in tumor-associated macrophages microenvironment through suppressing IL-10/STAT3/PD-L1 signaling pathways. J. Ethnopharmacol. 2021, 274, 113978. [Google Scholar] [CrossRef]
- Niu, H.; Fan, J.; Wang, G.; Wang, J.; Chu, Y.; Yang, Q.; Wang, L.; Tian, B. Anti-tumor effect of polysaccharides isolated from Taraxacum mongolicum Hand-Mazz on MCF-7 human breast cancer cells. Trop. J. Pharm. Res. 2017, 16, 83. [Google Scholar] [CrossRef]
- Sun, Y. Taraxacum flavonoids Also Have Inhibitory Effect on Human Breast Cancer Cells. Master’s Thesis, Qinghai University, Xining, China, 2020. [Google Scholar]
- Hamed, R.; Reza, A.M.; Farhad, J.; CT, C.C.; Vahideh, A.; Ali, N. Combined dandelion extract and all-trans retinoic acid induces cytotoxicity in human breast cancer cells. Sci. Rep. 2023, 13, 15074. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, Y.; Che, L.; Min, L.; Huang, D.; Zhang, Y.; Li, C.; Li, Z. Suppression of migration and invasion by taraxerol in the triple-negative breast cancer cell line MDA-MB-231 via the ERK/Slug axis. PLoS ONE 2023, 18, e0291693. [Google Scholar] [CrossRef]
- He, J.; Cao, W.; Lin, N. Guidelines for screening, early diagnosis and early treatment of prostate cancer in China (2022, Beijing). China Cancer 2022, 31, 1–30. [Google Scholar]
- Nguyen, C.; Mehaidli, A.; Baskaran, K.; Grewal, S.; Pupulin, A.; Ruvinov, I.; Scaria, B.; Parashar, K.; Vegh, C.; Pandey, S. Dandelion Root and Lemongrass Extracts Induce Apoptosis, Enhance Chemotherapeutic Efficacy, and Reduce Tumour Xenograft Growth In Vivo in Prostate Cancer. Evid.-Based Complement. Altern. Med. eCAM 2019. [Google Scholar] [CrossRef]
- Yang, J.; Xin, C.; Yin, G.; Li, J. Taraxasterol suppresses the proliferation and tumor growth of androgen-independent prostate cancer cells through the FGFR2-PI3K/AKT signaling pathway. Sci. Rep. 2023, 13, 13072. [Google Scholar] [CrossRef] [PubMed]
- Morteza, M.; Mona, P.; Gouvarchin, G.H.E.; Jalali, K.B. Anti-metastatic effect of taraxasterol on prostate cancer cell lines. Res. Pharm. Sci. 2023, 18, 439–448. [Google Scholar] [CrossRef]
- Wu, M.; Tang, Z.; Liu, T. Guidelines for standardized pathological diagnosis of primary liver cancer (2015 edition). J. Clin. Hepatol. 2015, 31, 833–839. [Google Scholar]
- Ren, F.; Li, J.; Yuan, X.; Wang, Y.; Wu, K.; Kang, L.; Luo, Y.; Zhang, H.; Yuan, Z. Dandelion polysaccharides exert anticancer effect on Hepatocellular carcinoma by inhibiting PI3K/AKT/mTOR pathway and enhancing immune response. J. Funct. Foods 2019, 55, 263–274. [Google Scholar] [CrossRef]
- Ren, F.; Wu, K.; Yang, Y.; Yang, Y.; Wang, Y.; Li, J. Dandelion Polysaccharide Exerts Anti-Angiogenesis Effect on Hepatocellular Carcinoma by Regulating VEGF/HIF-1α Expression. Front. Pharmacol. 2020, 11, 460. [Google Scholar] [CrossRef]
- Ren, F.; Zhang, Y.; Qin, Y.; Shang, J.; Wang, Y.; Wei, P.; Guo, J.; Jia, H.; Zhao, T. Taraxasterol prompted the anti-tumor effect in mice burden hepatocellular carcinoma by regulating T lymphocytes. Cell Death Discov. 2022, 8, 264. [Google Scholar] [CrossRef]
- Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; van Grieken, N.C.; Lordick, F. Gastric cancer. Lancet 2020, 396, 635–648. [Google Scholar] [CrossRef]
- Hui, H.; Zhen, C.G.; Kang, Z.S.; Ru, X.R.; Liang, W.C. In vitro anti-tumor activity in SGC-7901 human gastric cancer cells treated with dandelion extract. Trop. J. Pharm. Res. 2018, 17, 65. [Google Scholar]
- Zhu, H.; Zhao, H.; Zhang, L.; Xu, J.; Zhu, C.; Zhao, H.; Lv, G. Dandelion root extract suppressed gastric cancer cells proliferation and migration through targeting lncRNA-CCAT1. Biomed. Pharmacother. 2017, 93, 1010–1017. [Google Scholar] [CrossRef]
- Chen, W.; Li, J.; Chen, L.; Fan, H.; Zhang, J.; Zhu, J. Network pharmacology-based identification of the antitumor effects of taraxasterol in gastric cancer. Int. J. Immunopathol. Pharmacol. 2020, 34, 2058738420933107. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, L.; Guo, M.; Yang, H. Taraxasterol suppresses cell proliferation and boosts cell apoptosis via inhibiting GPD2-mediated glycolysis in gastric cancer. Cytotechnology 2021, 73, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Zheng, R.; Zhang, S. Analysis of Incidence and Death of Malignant Tumors in China in 2015. China Cancer 2019, 28, 1–11. [Google Scholar]
- Tao, T.; Yang, J.; Liu, Z.; Chen, Y.; Zeng, C. Taraxasterol acetate targets RNF31 to inhibit RNF31/p53 axis-driven cell proliferation in colorectal cancer. Cell Death Discov. 2021, 7, 66. [Google Scholar] [CrossRef]
- Tang, C. Study on the Mechanism of Dandelion Sterol Regulating the Occurrence and Development of Colon Cancer through Activating Autophagy and Mediating RNF31/p53 Signal Axis. Ph.D. Thesis, Nanchang University, Nanchang, China, 2022. [Google Scholar]
- Kang, L.; Mang, M.; Song, Y.; Fang, X.; Zhang, J.; Zhang, Y.; Miao, J. Total flavonoids of Taraxacum mongolicum inhibit non-small cell lung cancer by regulating immune function. J. Ethnopharmacol. 2021, 281, 114514. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Fu, X. Study on Ant-itumor and Anti-mutagenic effects of dandelion polysaccharide in vitro. Lishizhen Med. Mater. Medica Res. 2009, 20, 2470–2471. [Google Scholar]
- Li, Y.; Deng, Y.; Zhang, X.; Wang, T. Dandelion Seed Extract Affects Tumor Progression and Enhances the Sensitivity of Cisplatin in Esophageal Squamous Cell Carcinoma. Front. Pharmacol. 2022, 13, 897465. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, R.; He, Y.; Mao, G.; Kong, Z. Taraxasterol enhanced bladder cancer cells radiosensitivity via inhibiting the COX-2/PGE2/JAK2/STAT3/MMP pathway. Int. J. Radiat. Biol. 2024, 100, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Chen, W.; He, Y. Effect of Taraxacum mongolicum polysaccharide on immune organs in mice. Prog. Vet. Med. 2008, 10–12. [Google Scholar] [CrossRef]
- Natchanok, T.; Subramanian, P.; ChangSheng, L.; Nan, M.; Marimuthu, P.N.; SangGuan, Y. Polysaccharide extracted from Taraxacum platycarpum root exerts immunomodulatory activity via MAPK and NF-κB pathways in RAW264.7 cells. J. Ethnopharmacol. 2021, 281, 114519. [Google Scholar] [CrossRef]
- Gu, W.; Sun, M.; Wang, L.; Chen, Z. Effects of four common Chinese medicines on immune function and intestinal flora in immunosuppressed mice. China Anim. Husb. Vet. Med. 2019, 46, 147–156. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, W.; Chen, G. Study on decolorization and deproteinization of dandelion polysaccharide and its hypoglycemic activity. Food Res. Dev. 2020, 41, 24–28. [Google Scholar]
- Li, J.; Luo, J.; Chai, Y.; Guo, Y.; Tianzhi, Y.; Bao, Y. Hypoglycemic effect of Taraxacum officinale root extract and its synergism with Radix Astragali extract. Food Sci. Nutr. 2021, 9, 2075–2085. [Google Scholar] [CrossRef] [PubMed]
- Shuang, Y.; Guangyao, L.; Congshu, D.; Haozhen, C. Effect of Taraxacum mongolicum extract on lowering blood sugar in type 2 diabetic rats. Food Mach. 2020, 36, 138–142. [Google Scholar] [CrossRef]
- Carrasco, B.G.; Dacosta, R.F.; Dávalos, A.; Ordovás, J.M.; Casado, A.R. In vitro Hypolipidemic and Antioxidant Effects of Leaf and Root Extracts of Taraxacum officinale. Med. Sci. 2015, 3, 38–54. [Google Scholar] [CrossRef]
- Sui, H.; Zhao, X.; Qi, S. Effect of dandelion on monoamine oxidase and monoamine neurotransmitters in brain tissue of aging model mice. Chin. Pat. Med. 2007, 08, 1223–1225. [Google Scholar]
- Mbarka, H.; Dalel, B.; Lazhar, Z. Hepatoprotective effect of Taraxacum officinale leaf extract on sodium dichromate-induced liver injury in rats. Environ. Toxicol. 2016, 31, 339–349. [Google Scholar] [CrossRef]
- Mahboubi, M.; Mahboubi, M. Hepatoprotection by dandelion (Taraxacum officinale) and mechanisms. Asian Pac. J. Trop. Biomed. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Jifeng, L.; Nenling, Z.; Mengqi, L. A new inositol triester from Taraxacum mongolicum. Nat. Prod. Res. 2014, 28, 420–423. [Google Scholar] [CrossRef]
- Chen, M.; Wu, J.; Shi, S.; Chen, Y.; Wang, H.; Fan, H.; Wang, S. Structure analysis of a heteropolysaccharide from Taraxacum mongolicum Hand.-Mazz. and anticomplementary activity of its sulfated derivatives. Carbohydr. Polym. 2016, 152, 241–252. [Google Scholar] [CrossRef]
- Berté, T.E.; Dalmagro, A.P.; Zimath, P.L.; Gonçalves, A.E.; Meyre-Silva, C.; Bürger, C.; Weber, C.J.; Santos, D.A.d.; Cechinel-Filho, V.; Souza, M.M.d. Taraxerol as a possible therapeutic agent on memory impairments and Alzheimer’s disease: Effects against scopolamine and streptozotocin-induced cognitive dysfunctions. Steroids 2018, 132, 5–11. [Google Scholar] [CrossRef]
- Lemos, J.d.A.; Oliveira, A.E.M.; Araujo, R.S.; Townsend, D.M.; Ferreira, L.A.M.; de Barros, A.L.B. Recent progress in micro and nano-encapsulation of bioactive derivatives of the Brazilian genus Pterodon. Biomed Pharmacother 2021, 143, 112137. [Google Scholar] [CrossRef]
- Li, Z.; Wu, C.; Xu, B. Investigation on the Collection, Primary Processing, Storage and Packaging of Taraxacum mongolicum. J. Basic Chin. Med. 2021, 27, 498–501. [Google Scholar] [CrossRef]
- Li, S.; Sun, M. Content changes of effective components in dandelion at different harvest times. J. Jilin Agric. Univ. 2013, 35, 438–441. [Google Scholar] [CrossRef]
- Hu, R.; Wang, J.; Yu, H. Study on the Effect of Harvest Time on Chemical Constituents in Dandelion Roots Based on Characteristic Atlas. J. Jilin Agric. Univ. 2023. [Google Scholar] [CrossRef]
- Zhang, Z.; Meng, Q.; Wang, Y.; Han, L. Research progress on pharmacological substance basis of Taraxacum mongolicum. Chin. Arch. Tradit. Chin. Med. 2022, 40, 148–152. [Google Scholar] [CrossRef]
- Xue, Z. Effects of Shading on Growth and Accumulation of Main Active Components of Taraxacum mongolicum. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2023. [Google Scholar]
- Xu, Y.; Xie, X.; Guo, Y. Effects of illumination on photosynthetic efficiency and main flavonoids content of Taraxacum mongolicum. Hubei Agric. Sci. 2021. [Google Scholar] [CrossRef]
- Zhao, L. Effects of Light Intensity, Nitrogen Level and Storage Temperature on Quality and Physiological Metabolism of Taraxacum mongolicum. Master’s Thesis, Qingdao Agricultural University, Qingdao, China, 2008. [Google Scholar]
- Su, Y. Study on the Influence of Storage Temperature and Cooking Methods on the Quality of Dandelion. Master’s Thesis, Shenyang Agricultural University, Shenyang, China, 2016. [Google Scholar]
- Zhao, L.; Yang, Y.; Lin, D. Effect of storage temperature on postharvest physiology and quality of Taraxacum mongolicum. J. N. China Agric. 2008, 3, 143–145. [Google Scholar]
- Qin, Y. Analysis of Some Functional Components and Nutritional Components of Dry and Wet Dandelion. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2014. [Google Scholar]
- Zhu, Y.; Gu, W.; Qiu, R.; Tang, J. Effects of salt stress on growth characteristics, accumulation of effective components and ion absorption and distribution of medicinal dandelion. Subtrop. Plant Sci. 2022, 2, 81–91. [Google Scholar]
- Jia, M. Effects of Saline-Alkali Stress on Growth and Quality of Taraxacum mongolicum. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2023. [Google Scholar]
- European Pharmacopoeia Committee. European Pharmacopoeia (11.0 Edition) European Directorate for the Quality of Medicines and HealthCare; EU: Brussels, Belgium, 2023. [Google Scholar]
- Yan, H.; Zhou, C. Application progress and prospect of fingerprints (characteristics) of traditional Chinese medicine in China Pharmacopoeia (2010 edition~2020 edition). J. South. Med. Univ. 2022, 42, 150–155. [Google Scholar]
- Li, Q.; Du, S.; Zhang, Z.; Lü, C. Technical progress and future development prospect of fingerprint of traditional Chinese Medicine. Chin. Herb. Med. 2013, 44, 3095–3104. [Google Scholar]
- Liu, A.; Guo, L.; Xue, Z. Study on quality control of Taraxacum mongolicum based on fingerprint and multi-component content determination. China J. Chin. Mater. Medica 2018, 43, 3715–3721. [Google Scholar] [CrossRef]
- Hong, B.; Liu, R.; Hou, Y. UPLC Fingerprint of Taraxacum mongolicum and Determination of 10 Components. Chin. J. Pharm. Anal. 2023, 43, 1858–1865. [Google Scholar] [CrossRef]
- Ran, M.; Wu, Z.; Feng, W. Quality evaluation of Taraxacum mongolicum based on HPLC fingerprint combined with chemical pattern recognition and multi-component quantification. Chin. Herb. Med. 2022, 53, 7887–7896. [Google Scholar]
- Liu, F.; Yang, J.; Chen, X.; Yu, T.; Ni, H.; Feng, L.; Li, P.; Li, H. Chemometrics integrated with in silico pharmacology to reveal antioxidative and anti-inflammatory markers of dandelion for its quality control. Chin. Med. 2022, 17, 125. [Google Scholar] [CrossRef]
- Niu, K.; Wang, J. A case of allergic reaction caused by decoction. Chin. J. Inf. Tradit. Chin. Med. 2009, 16, 110. [Google Scholar]
- Hu, Y. Acute allergic reaction caused by compound houttuynia cordata syrup: A case report. Chin. J. Clin. Ration. Drug Use 2014, 7, 2. [Google Scholar] [CrossRef]
- Wang, Y. A case report of allergic reaction caused by taking Paishi decoction. Bull. Tradit. Chin. Med. 1988, 11, 52. [Google Scholar]
No. | Latin Name | Distribution Area | Altitude |
---|---|---|---|
1 | Taraxacum mongolicum | Heilongjiang, Jilin, Liaoning, Inner Mongolia, Hebei, Shandong, China; Mongolia; North Korea; Russia | 100–1500 m |
2 | Taraxacum brassicaefolium | Heilongjiang, Jilin, Liaoning, Inner Mongolia, Hebei, China; | 500–1570 m |
3 | Taraxacum coreanum | Heilongjiang, Jilin, Liaoning, Inner Mongolia, Hebei, China; Russia; North Korea | 70–500 m |
4 | Taraxacum variegatum | Heilongjiang, Jilin, Liaoning, Inner Mongolia, Hebei, China; | 800–1600 m |
5 | Taraxacum scariosum | Heilongjiang, Jilin, Liaoning, Inner Mongolia, Hebei, Shanxi, Shaanxi, China; Russia; Mongolia | 1380–3380 m |
6 | Taraxacum borealisinense | Heilongjiang, Jilin, Liaoning, Inner Mongolia, Hebei, Shanxi, Shaanxi, Gansu, Qinghai, Henan, Sichuan, and Yunnan; China; Mongolia; Russia | 300–2900 m |
7 | Taraxacum scariosum | Heilongjiang, Inner Mongolia, Shanxi, Xinjiang, Tibet, China; Kazakhstan; Mongolia; Russia | 900–3000 m |
8 | Taraxacum apargiaeforme | Heilongjiang, Jilin, Liaoning, China | 50–600 m |
9 | Taraxacum lamprolepis | Heilongjiang, Jilin, Liaoning, Inner Mongolia, China | 230–810 m |
10 | Taraxacum sinicum | Heilongjiang, Jilin, Liaoning, Inner Mongolia, China; Mongolia; Russia | 120–2900 m |
11 | Taraxacum ohwianum | Heilongjiang, Jilin, Liaoning, China; North Korea, Russian Far East | 50–1370 m |
12 | Taraxacum erythropodium | Heilongjiang, Jilin, Liaoning, Inner Mongolia, China | 620–4900 m |
13 | Taraxacum platypecidum | Heilongjiang, Jilin, Liaoning, Inner Mongolia, Hebei, Shanxi, Shaanxi, Henan, Hubei, Sichuan, China; North Korea; Russia; Japan | 1900–3400 m |
14 | Taraxacum antungense | Heilongjiang, Jilin, Liaoning, China | 1200–1400 m |
15 | Taraxacum altaicum | Xinjiang (Urumqi, Qitai, Altay), China; Kazakhstan; Russia | 2000–2500 m |
16 | Taraxacum alatopetiolum | Xinjiang (Urumqi), China | 3400 m |
17 | Taraxacum bessarabicum | Xinjiang (Urumqi, Yili), China; Mongolia; Kazakhstan; Iran; Parts of Europe | 2300–2800 m |
18 | Taraxacum bicorne | Xinjiang, China, Gansu; Kazakhstan; Afghanistan; Pakistan; India; Iran | 2050–3300 m |
19 | Taraxacum centrasiaticum | Xinjiang, China | 3500 m |
20 | Taraxacum compactum | Xinjiang, China; Kazakhstan | 700–1700 m |
21 | Taraxacum dealbatum | Xinjiang, China; Russia; Kazakhstan; Mongolia | 1300–4390 m |
22 | Taraxacum dissectum | Xinjiang, China; Russia | 3600 m |
23 | Taraxacum ecornutum | Xinjiang (Urumqi, Yining), China; Kazakhstan | 600–800 m |
24 | Taraxacum erythrospermum | Xinjiang, China; Kazakhstan | 3400 m |
25 | Taraxacum glabrum | Xinjiang (Urumqi, Fukang, Nilek, Heshuo, Luntai, Kuqa, Artux, Yecheng), China; Kazakhstan; Russia | 2300–4200 m |
26 | Taraxacum goloskokovii | Xinjiang (Tashkurgan), China; Kazakhstan, Kyrgyzstan | 3000–3700 m |
27 | Taraxacum kok-saghyz | Xinjiang, China; Kazakhstan | 1100–4050 m |
28 | Taraxacum lilacinum | Xinjiang (Urumqi, Fukang, Brzin), China; Kazakhstan; Kyrgyzstan | 2500 m |
29 | Taraxacum lipskyi | Xinjiang (Qinghe, Fuyun), China; Kazakhstan; Kyrgyzstan | 3358 m |
30 | Taraxacum longipyramidatum | Xinjiang (Urumqi, Manas, Tacheng), China; Kazakhstan; Kyrgyzstan | 1500 m |
31 | Taraxacum luridum | Xinjiang (Tashkurgan), China; Russia; Kazakhstan; Pakistan; Afghanistan; Iran | 3000 m |
32 | Taraxacum minutilobum | Xinjiang (Tashkurgan), China; Kazakhstan; Kyrgyzstan, Uzbekistan | 3000–3700 m |
33 | Taraxacum monochlamydeum | Xinjiang, Gansu, China; Kazakhstan; Afghanistan; Pakistan; India; Iran | Not applicable |
34 | Taraxacum multiscaposum | Xinjiang (Urumqi, Wusu), China; Kazakhstan; Kyrgyzstan; Afghanistan; Iran | 800–1000 m |
35 | Taraxacum officinale | Xinjiang, China; Kazakhstan; Kyrgyzstan; Europe; North America | 700–2200 m |
36 | Taraxacum pingue | Xinjiang (Hejing, Tashkurgan), China, Kazakhstan, Kyrgyzstan, Russia | 3950–4500 m |
37 | Taraxacum potaninii | Xinjiang, China | 2000–2400 m |
38 | Taraxacum przevalskii | Xinjiang, Tibet, China | 5000 m |
39 | Taraxacum xinyuanicum | Xinjiang (Xinyuan), China | 1500 m |
40 | Taraxacum tianschanicum | Xinjiang (Tianshan), China; Kazakhstan | 900–2500 m |
41 | Taraxacum sumneviczii | Xinjiang (Huocheng), China; Kazakhstan; Kyrgyzstan; Russia | 1400 m |
42 | Taraxacum subglaciale | Xinjiang (Tashkurgan), China; Kazakhstan | 3500–4500 m |
43 | Taraxacum stenolobum | Xinjiang (Qinghe, Altay, Habahe, Brzin), China; Russia; Kazakhstan | 3100–3800 m |
44 | Taraxacum stanjukoviczii | Xinjiang (Hotan), China; Kazakhstan; Kyrgyzstan; Iran; Afghanistan | 3000–4000 m |
45 | Taraxacum sinotianschanicum | Xinjiang, China | 3440 m |
46 | Taraxacum roborovskyi | Xinjiang (East Tianshan), China | 5000 m |
47 | Taraxacum repandum | Xinjiang (Aheqi), China; Kazakhstan; Kyrgyzstan | 2900 m |
48 | Taraxacum qirae | Xinjiang (Cele), China | 3000 m |
49 | Taraxacum pseudoroseum | Xinjiang (Urumqi, Fukang, Shawan, Qitai, Altay, Yining, Nilek), China; Kazakhstan | 2500–3300 m |
50 | Taraxacum pseudominutilobum | Xinjiang (Tashkurgan, Artux), China; Kazakhstan; Uzbekistan | 3000–3700 m |
51 | Taraxacum pseudoatratum | Xinjiang (Tacheng, Miquan, Balikun, Tex, Zhaosu and Jingjing), China; Kazakhstan; Russia | 3700–5000 m |
52 | Taraxacum pseudoalpinum | Xinjiang (Qinghe and Xinyuan), China; Kazakhstan; Kyrgyzstan | 900–1300 m |
53 | Taraxacum abax Kirschner | Xinjiang, Hebei, China | 1500–1600 m |
54 | Taraxacum apargiaeforme | Tibet, Sichuan (Lixian, Wenchuan, Marcand), China | 3000–3800 m |
55 | Taraxacum brevirostre | Tibet, Gansu, Qinghai, China; Afghanistan; Pakistan; Iraq; Iran; Turkey | 1700–5000 m |
56 | Taraxacum calanthodium | Tibet, Shaanxi, Gansu, Qinghai, Sichuan, China | 2500–4300 m |
57 | Taraxacum eriopodum | Tibet, Gansu, Qinghai, Yunnan (Lijiang, Zhongdian and Yongsheng), Sichuan, China; Sikkim; Bhutan; Nepal; India | 3000–5300 m |
58 | Taraxacum forrestii | Tibet, Yunnan, China; India | 4200 m |
59 | Taraxacum glaucophyllum | Tibet, Qinghai, Sichuan, Yunnan, China | 2800–4300 m |
60 | Taraxacum grypodon | Tibet, Sichuan, China | 1430–4200 m |
61 | Taraxacum lanigerum | Tibet, Qinghai, China; Nepal | 3900–4600 m |
62 | Taraxacum albiflos | Tibet, Gansu, Qinghai, Xinjiang, China; India; Iran; Pakistan; Russia | 2500–6000 m |
63 | Taraxacum ludlowii | Tibet (Lhasa, Dangxiong, Linzhou); China | 3900–5300 m |
64 | Taraxacum lugubre | Tibet, Gansu, Qinghai, Sichuan, China. | 2800–4200 m |
65 | Taraxacum maurocarpum | Tibet, Qinghai, Sichuan (Ganzi, Aba), China; Russia; Iran; Afghanistan; Pakistan | 3000–4500 m |
66 | Taraxorum mitalii | Tibet, China; Bhutan; Sikkim; Nepal | 2400–4500 m |
67 | Taraxacum parvulum | Tibet, Shanxi, Qinghai, Sichuan, Yunnan, China; Bhutan, India, Pakistan | 1500–4500 m |
68 | Taraxacum tibetanum | Tibet, Qinghai, Sichuan (Ganzi, Aba), Yunnan, China; Sikkim; Bhutan | 3600–5300 m |
69 | Taraxacum subcoronatum | Tibet, China | 4500 m |
70 | Taraxacum sikkimense | Tibet, Qinghai, Sichuan, Yunnan (Lijiang, Zhongdian), China; Sikkim; Nepal; Pakistan | 2800–4800 m |
71 | Taraxacum sherriffii | Tibet, Qinghai, Yunnan, China; Kashmir | 2300–4500 m |
72 | Taraxacum roseoflavescens | Tibet, China | 4300 m |
73 | Taraxacum stenoceras | Tibet, Gansu, Qinghai, Sichuan, China. | 3000–4500 m |
74 | Taraxacum sinomongolicum | Beijing, Inner Mongolia, Hebei, China | 512 m |
75 | Taraxacum chionophilum | Sichuan (Lixian, Marcand, Songpan), China | 2700–4600 m |
76 | Taraxacum indicum | Sichuan, Yunnan, China; India; Viet Nam | 1300–3800 m |
77 | Taraxacum kozlovii | Gansu, China | 2300 m |
78 | Taraxacum pseudostenoceras | Gansu (Xiahe), Qinghai (Zeku, Tongren, Guide), China; Nepal | 2300–3500 m |
79 | Taraxacum suberiopodum | Yunnan (Zhongdian, Ninglang), China | 3100–3400 m |
80 | Taraxacum dasypodum | Yunnan (Lijiang, Deqin, Zhongdian, Jingdong), China | 1900–3200 m |
81 | Taraxacum duplex | Shandong; China | 40–200 m |
82 | Taraxacum platypecidum | Shanxi, China | 2200 m |
83 | Taraxacum nutans | Shanxi, Ningxia (Haiyuan), Hebei (Fuping); China | 1100–3200 m |
84 | Taraxacum scariosum | Heilongjiang, Jilin, Liaoning, Inner Mongolia, Hebei, China; Russia | 70–1750 m |
Traditional Uses | Major Component | Formulation | Ref. |
---|---|---|---|
Acute mastitis | Pugongying, Baijili | Apply externally | Bencao Gangmu (Ming Dynasty, AD 1578–1596) [26] |
Acute mastitis | Pugongying, Rendong, Gancao | Decoction | Secret record of surgery (Qing Dynasty, AD 1694) [27] |
Acute mastitis | Pugongying, Xiangfu | Decoction | Selected materials of new medical treatment of Chinese herbal medicine [28] |
Scrofula, Phlegm nucleus | Pugongying, Xiangfu, Yangtigen, Dajin, Shancigu, Huzhangcao | Decoction | Diannan Bencao (Ming Dynasty, AD 1436) [29] |
Accumulates milk | Pugongying | Apply externally | Meishi Prescription (Song Dynasty, AD 785–820) [30] |
Acute suppurative infection | Pugongying, Ruxiang, Moyao, Gancao | Decoction | National Chinese herbal medicine compilation [31] |
Hepatitis, cholecystitis | Pugongying, Yinchenhao, Chaihu, Zhizi, Yujin, Fuling | Decoction | Commonly used Chinese herbal medicines in Nanjing [32] |
Chronic gastritis, Gastric ulcer | Pugongying, Diyu, Baiji | Pulverization | Commonly used Chinese herbal medicines in Nanjing [32] |
Carbuncle of lung, Acute appendicitis, Suppurative infection of back | Pugongying, Jinyinhua, Xuanshen, Danggui | Decoction | Secret record of surgery (Qing Dynasty, AD 1694) [33] |
Acute conjunctivitis | Pugongying, Juhua, Bohe, Cheqianzi | Decoction | Anhui Chinese herbal medicine [34] |
Defecate haemorrhage | Pugongying, Huaijiaozi, Shibing, Heimuer, Shenqu | Decoction | He Shi prescription (Qing Dynasty, AD 1672) [35] |
Urethritis | Pugongying, Cheqiancao, Qumai, Rendongteng, Shiwei | Decoction | Handbook of Chinese Herbal Medicine in Qingdao [36] |
Fixing teeth | Pugongying, Qingyan, Shiyan, Huaijiaozi | Apply externally | He Shi prescription (Qing Dynasty, AD 1672) [35] |
Acute icteric hepatitis | Pugongying, Yinchenhao, Tufuling, Baimaogen, Diercao | Decoction | Herbology of Changbai Mountain [37] |
Acute biliary tract infection | Pugongying, Zhencicao, Haijinsha, Lianqiancao, Yujin, Chuanlianzi | Decoction | National Chinese herbal medicine compilation [31] |
Acute appendicitis | Pugongying, Diercao, Banbianlian, Zelan, Qingmuxiang | Decoction | National Chinese herbal medicine compilation [31] |
No. | Names | Extract Source | Molecular Formula | CAS | Refs. |
---|---|---|---|---|---|
1 | Luteolin | T. Mongolicum, T. Sinicum, T. officinale | C15H10O6 | 491-70-3 | [42,43,47] |
2 | Quercetin | T. Mongolicum, T. Sinicum, T. officinale | C15H10O7 | 117-39-5 | |
3 | Quercetin-7-O-β-D-glucoside | T. Mongolicum, T. officinale | C21H20O12 | 491-50-9 | |
4 | Luteolin 7-rutcoside | T. Mongolicum, T. officinale, T. falcilobum | C27H30O15 | 20633-84-5 | |
5 | lsorhamnetin 3,7-0-diglucoside | T. Mongolicum, T. officinale | C28H32O17 | 6758-51-6 | |
6 | Isoquercitrin | T. Mongolicum, T. officinale | C21H20O12 | 482-35-9 | [42,43,47,48] |
7 | Diosmetin | T. Mongolicum, T. officinale | C16H12O6 | 520-34-3 | |
8 | Luteolin-7-O-β-D-glucoside | T. Mongolicum, T. officinale | C21H20O11 | 5373-11-5 | |
9 | Hesperidin | T. Mongolicum, T. officinale, T. Sinicum | C28H34O15 | 520-26-3 | |
10 | Apigenin 7-glucoside | T. Mongolicum, T. Sinicum, T. officinale | C21H20O10 | 578-74-5 | [47,49,50] |
11 | Apigenin | T. Mongolicum, T. Sinicum, T. officinale | C15H10O5 | 520-36-5 | |
12 | Rutin | T. Mongolicum, T. Sinicum, T. officinale | C27H30O16 | 153-18-4 | |
13 | Calquiquelignan E | T. Mongolicum, T. Sinicum | C26H24O10 | 1292294-31-5 | [39,51] |
14 | Calquiquelignan D | T. Mongolicum, T. Sinicum | C26H24O10 | 1928715-38-1 | |
15 | Genistin | T. Mongolicum, T. Sinicum | C21H20O10 | 529-59-9 | |
16 | Chrysoeriol | T. Mongolicum, T. Sinicum | C16H12O6 | 491-71-4 | |
17 | Isorhamnetin | T. Mongolicum, T. Sinicum | C16H12O7 | 480-19-3 | |
18 | Isorhamnetin-3-O-glucoside | T. officinale | C22H22O12 | 6743-92-6 | |
19 | Hesperetin 7-O-β-D-glucuronide | T. mongolicum | C22H22O12 | 1237479-09-2 | [45] |
20 | Hesperetin 5-O-glucoside | T. mongolicum | C22H24O11 | 69651-80-5 |
No. | Names | Extract Source | Molecular Formula | CAS | Refs. |
---|---|---|---|---|---|
1 | Psi-taraxasterol acetate | T. mongolicum, T. officinale, T. falcilobum | C32H52O2 | 4586-65-6 | [54] |
2 | Paradiol | T. mongolicum, T. officinale | C30H50O2 | 20554-95-4 | [9] |
3 | Taraxasterol | T. mongolicum, T. officinale | C30H50O | 1059-14-9 | |
4 | Psi-taraxasterol | T. mongolicum, T. officinale | C30H50O | 464-98-2 | |
5 | Arnidiol | T. Mongolicum, T. officinale | C30H50O2 | 6750-30-7 | |
6 | Taraxasteryl acetate | T. mongolicum, T. officinale | C32H5202 | 6426-43-3 | [44,57] |
7 | Artemisinin | T. mongolicum, T. officinale | C15H22O5 | 63968-64-9 | |
8 | α-Amyrin | T. mongolicum, T. officinale | C30H50O | 5937-48-4 | [58,59] |
9 | β-Amyrin acetate | T. mongolicum, T. officinale | C32H52O2 | 1616-93-9 | |
10 | α-Amyrin acetate | T. mongolicum, T. officinale | C32H52O2 | 863-76-3 | |
11 | β-Sitosterol | T. mongolicum, T. officinale, T. antungense | C29H50O | 83-46-5 | [50,60] |
12 | Lupeol | T. mongolicum, T. officinale T. antungense | C30H50O | 545-47-1 | |
13 | Stigmasterol | T. mongolicum, T. officinale T. antungense | C29H48O | 83-48-7 | |
14 | Cryptomeridiol | T. mongolicum, T. officinale | C15H28O2 | 4666-84-6 | [61] |
15 | Campesterol | T. mongolicum, T. officinale | C28H48O | 474-62-4 | [56,62] |
16 | Daucosterol | T. mongolicum, T. officinale | C35H60O6 | 474-58-8 | [50,59,63] |
17 | Germacranolide sonchuside A | T. mongolicum, T. officinale | C21H32O8 | 111618-82-7 | |
18 | β-Amyrin | T. mongolicum, T. officinale | C30H50O | 559-70-6 | |
19 | sesquiterpene lactone | T. officinale, T. obovatum | C34H50O12 | 67526-95-8 | [55] |
20 | Sonchuside A | T. officinale, T. obovatum | C21H32O8 | 111618-82-7 |
No. | Names | Extract Source | Molecular Formula | CAS | Refs. |
---|---|---|---|---|---|
1 | Chlorogenic acid | T. mongolicum, T. officinale, T. falcilobum, T. siphonanthum | C16H18O9 | 327-97-9 | [43,65] |
2 | Chicoric Acid | T. mongolicum, T. officinale | C22H18O12 | 6537-80-0 | |
3 | Caffeic acid | T. mongolicum, T. officinale, T. falcilobum, T. siphonanthum | C9H8O4 | 331-39-5 | |
4 | 4-Hydroxybenzoic acid | T. mongolicum, T. officinale | C7H6O3 | 99-96-7 | |
5 | Vanillic acid | T. mongolicum, T. officinale | C8H8O4 | 121-34-6 | [49,69] |
6 | Protocatechuic acid | T. mongolicum T. officinale | C7H6O4 | 99-50-3 | |
7 | 3,5-Dihydroxybenzoic acid | T. mongolicum T. officinale | C7H6O4 | 99-10-5 | |
8 | 3,5-di-O-caffeoylquinic acid | T. mongolicum T. officinale | C25H24O12 | 89919-62-0 | |
9 | Isochlorogenic acid B | T. mongolicum T. officinale | C25H24O12 | 14534-61-3 | |
10 | Ferulic acid | T. mongolicum, T. officinale | C10H10O4 | 331-39-5 | [61,66] |
11 | Gallic acid | T. mongolicum, T. officinale | C7H6O5 | 149-91-7 | |
12 | Caftaric acid | T. mongolicum, T. officinale | C13H12O9 | 67879-58-7 | |
13 | Methyl caffeate acid | T. mongolicum | C10H10O4 | 3843-74-1 | [68] |
14 | Ethyl 2-(4-hydroxyphenyl) acetate | T. mongolicum | C10H12O3 | 17138-28-2 | |
15 | Methyl 4-Hydroxyphenylacetate | T. mongolicum | C9H10O3 | 22446-37-3 | |
16 | Phenylacetic acid | T. mongolicum | C8H8O2 | 103-82-2 | |
17 | Vanillin | T. mongolicum, T. officinale | C8H8O3 | 121-33-5 | [70] |
18 | Coniferaldehyde | T. mongolicum, T. officinale | C10H10O3 | 458-36-6 | |
19 | P-methoxyphenylglyoxylic acid | T. mongolicum, T. officinale | C9H8O4 | 7099-91-4 | |
20 | Isovanillin | T. mongolicum, T. officinale | C8H8O3 | 86884-84-6 | |
21 | Butyl rosmarinate | T. mongolicum | C22H24O8 | 222713-83-9 | [63] |
22 | 3,4-Di-O-caffeoylquinic acid methyl ester | T. mongolicum | C26H26O12 | 114637-83-1 | |
23 | Butylchlorogenate | T. mongolicum | C20H26O9 | 132741-56-1 |
Influencing Factor | Research Objects | Summary |
---|---|---|
Illumination intensity | Plant growth; Active ingredient content | Under natural light: The contents of choline and flavonoids were the highest at 80% transmittance. The content of triterpenoids was the highest under full light. Taraxaci herba with light transmittance of 60~80% has the strongest antioxidant capacity in vitro; 60% light transmittance is beneficial to the growth of Taraxaci herba leaves, and more than 60% light transmittance inhibits the growth of its aboveground parts [154,155,156]. |
Fertilizer use; Cultivation season | Yield and quality | Planting should be carried out in spring and autumn. Proper application of nitrogen fertilizer can improve the yield and nutritional quality of Taraxaci herba [157]. |
Reserve temperature | Physiological metabolism | Taraxaci herba stored at 2 °C has the highest active ingredient content, MDA content, and high SOD activity, suggesting that storage at 2 °C significantly delays its aging process and prolongs its storage life [158,159]. |
Soil environment | Plant growth; Active ingredient content | The contents of flavonoids, saponins, and chlorogenic acid in Taraxaci herba leaves were increased by low salt, alkali stress, and moderate alkali stress. High salt stress (≥0.2% NaCl) significantly inhibited the growth of leaves and roots of Taraxaci herba and significantly reduced the content of cichoric acid. Arsenic inhibits the synthesis of chlorogenic acid in Taraxaci herba, and elements such as calcium and zinc are inversely related to the contents of chlorogenic acid and caffeic acid in Taraxaci herba. The contents of phenolic acids (chlorogenic acid, caffeic acid, ferulic acid) and flavonoids (rutin, luteolin, quercetin) in Taraxaci herba grass in a soil environment are higher than those in the wet environment [154,160,161,162]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Sun, J.; Liu, M.; Zhang, X.; Kong, L.; Ma, L.; Jiang, S.; Liu, X.; Ma, W. Botany, Traditional Use, Phytochemistry, Pharmacology and Quality Control of Taraxaci herba: Comprehensive Review. Pharmaceuticals 2024, 17, 1113. https://doi.org/10.3390/ph17091113
Wu J, Sun J, Liu M, Zhang X, Kong L, Ma L, Jiang S, Liu X, Ma W. Botany, Traditional Use, Phytochemistry, Pharmacology and Quality Control of Taraxaci herba: Comprehensive Review. Pharmaceuticals. 2024; 17(9):1113. https://doi.org/10.3390/ph17091113
Chicago/Turabian StyleWu, Jianhao, Jialin Sun, Meiqi Liu, Xiaozhuang Zhang, Lingyang Kong, Lengleng Ma, Shan Jiang, Xiubo Liu, and Wei Ma. 2024. "Botany, Traditional Use, Phytochemistry, Pharmacology and Quality Control of Taraxaci herba: Comprehensive Review" Pharmaceuticals 17, no. 9: 1113. https://doi.org/10.3390/ph17091113
APA StyleWu, J., Sun, J., Liu, M., Zhang, X., Kong, L., Ma, L., Jiang, S., Liu, X., & Ma, W. (2024). Botany, Traditional Use, Phytochemistry, Pharmacology and Quality Control of Taraxaci herba: Comprehensive Review. Pharmaceuticals, 17(9), 1113. https://doi.org/10.3390/ph17091113