In Vitro Evaluation of the Combinatorial Effect of Naringenin and Miltefosine against Leishmania amazonensis
Abstract
:1. Introduction
2. Results
2.1. In Silico Study
2.2. Growth Curve
2.3. Antipromastigote Activity In Vitro
3. Discussion
4. Materials and Methods
4.1. In Silico Study
4.2. Growth Curve
4.3. Antipromastigote Activity In Vitro
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; Boer, M.D.; the WHO Leishmaniasis Control Team. Leishmaniasis Worldwide and Global Estimates of Its Incidence. PLoS ONE 2012, 7, e35671. [Google Scholar] [CrossRef]
- Silveira, F.T.; Lainson, R.; Corbett, C.E. Clinical and Immunopathological Spectrum of American Cutaneous Leishmaniasis with Special Reference to the Disease in Amazonian Brazil: A Review. Mem. Inst. Oswaldo Cruz 2004, 99, 239–251. [Google Scholar] [CrossRef]
- Anversa, L.; Tiburcio, M.G.S.; Richini-Pereira, V.B.; Ramirez, L.E. Human Leishmaniasis in Brazil: A General Review. Rev. Assoc. Med. Bras. 2018, 64, 281–289. [Google Scholar] [CrossRef]
- De Oliveira, A.L.L.; Brustoloni, Y.M.; Fernandes, T.D.; Dorval, M.E.C.; Da Cunha, R.V.; Bóia, M.N. Severe Adverse Reactions to Meglumine Antimoniate in the Treatment of Visceral Leishmaniasis: A Report of 13 Cases in the Southwestern Region of Brazil. Trop. Doct. 2009, 39, 180–182. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 Update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef]
- Machado, P.R.; Ampuero, J.; Guimarães, L.H.; Villasboas, L.; Rocha, A.T.; Schriefer, A.; Sousa, R.S.; Talhari, A.; Penna, G.; Carvalho, E.M. Miltefosine in the Treatment of Cutaneous Leishmaniasis Caused by Leishmania Braziliensis in Brazil: A Randomized and Controlled Trial. PLoS Negl. Trop. Dis. 2010, 4, e912. [Google Scholar] [CrossRef]
- Lewin, G.; Cojean, S.; Gupta, S.; Verma, A.; Puri, S.K.; Loiseau, P.M. In Vitro Antileishmanial Properties of New Flavonoids against Leishmania Donovani. Biomed. Prev. Nutr. 2011, 1, 168–171. [Google Scholar] [CrossRef]
- Morel, S.; Helesbeux, J.-J.; Séraphin, D.; Derbré, S.; Gatto, J.; Aumond, M.-C.; Abatuci, Y.; Grellier, P.; Beniddir, M.A.; Le Pape, P.; et al. Anti-AGEs and Antiparasitic Activity of an Original Prenylated Isoflavonoid and Flavanones Isolated from Derris Ferruginea. Phytochem. Lett. 2013, 6, 498–503. [Google Scholar] [CrossRef]
- Lin, C.; Zeng, Z.; Lin, Y.; Wang, P.; Cao, D.; Xie, K.; Luo, Y.; Yang, H.; Yang, J.; Wang, W.; et al. Naringenin Suppresses Epithelial Ovarian Cancer by Inhibiting Proliferation and Modulating Gut Microbiota. Phytomedicine 2022, 106, 154401. [Google Scholar] [CrossRef]
- Kaur, G.; Chauhan, K.; Kaur, S. Immunotherapeutic Potential of Codonopsis Clematidea and Naringenin against Visceral Leishmaniasis. Biomed. Pharmacother. 2018, 108, 1048–1061. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 7 May 2024).
- Jean, S.-S.; Hsieh, T.-C.; Hsu, C.-W.; Lee, W.-S.; Bai, K.-J.; Lam, C. Comparison of the Clinical Efficacy between Tigecycline plus Extended-Infusion Imipenem and Sulbactam plus Imipenem against Ventilator-Associated Pneumonia with Pneumonic Extensively Drug-Resistant Acinetobacter Baumannii Bacteremia, and Correlation of Clinical Efficacy with in Vitro Synergy Tests. J. Microbiol. Immunol. Infect. 2016, 49, 924–933. [Google Scholar] [CrossRef]
- Fisusi, F.A.; Akala, E.O. Drug Combinations in Breast Cancer Therapy. Pharm. Nanotechnol. 2019, 7, 3–23. [Google Scholar] [CrossRef]
- Shyr, Z.A.; Cheng, Y.-S.; Lo, D.C.; Zheng, W. Drug Combination Therapy for Emerging Viral Diseases. Drug Discov. Today 2021, 26, 2367–2376. [Google Scholar] [CrossRef]
- van Griensven, J.; Balasegaram, M.; Meheus, F.; Alvar, J.; Lynen, L.; Boelaert, M. Combination Therapy for Visceral Leishmaniasis. Lancet Infect. Dis. 2010, 10, 184–194. [Google Scholar] [CrossRef]
- Gervazoni, L.F.O.; Barcellos, G.B.; Ferreira-Paes, T.; Almeida-Amaral, E.E. Use of Natural Products in Leishmaniasis Chemotherapy: An Overview. Front. Chem. 2020, 8, 579891. [Google Scholar] [CrossRef]
- Emiliano, Y.S.S.; Almeida-Amaral, E.E. Efficacy of Apigenin and Miltefosine Combination Therapy against Experimental Cutaneous Leishmaniasis. J. Nat. Prod. 2018, 81, 1910–1913. [Google Scholar] [CrossRef]
- Foucquier, J.; Guedj, M. Analysis of Drug Combinations: Current Methodological Landscape. Pharmacol. Res. Perspect. 2015, 3, e00149. [Google Scholar] [CrossRef]
- Wang, C.; Wu, P.; Shen, X.-L.; Wei, X.-Y.; Jiang, Z.-H. Synthesis, Cytotoxic Activity and Drug Combination Study of Tertiary Amine Derivatives of 2′,4′-Dihydroxyl-6′-Methoxyl-3′,5′-Dimethylchalcone. RSC Adv. 2017, 7, 48031–48038. [Google Scholar] [CrossRef]
- Gonçalves-Oliveira, L.F.; Souza-Silva, F.; De Castro Côrtes, L.M.; Veloso, L.B.; Santini Pereira, B.A.; Cysne-Finkelstein, L.; Lechuga, G.C.; Bourguignon, S.C.; Almeida-Souza, F.; Da Silva Calabrese, K.; et al. The Combination Therapy of Meglumine Antimoniate and Oxiranes (Epoxy-α-Lapachone and Epoxymethyl-Lawsone) Enhance the Leishmanicidal Effect in Mice Infected by Leishmania (Leishmania) Amazonensis. Int. J. Parasitol. Drugs Drug Resist. 2019, 10, 101–108. [Google Scholar] [CrossRef]
- Murphy, M.P.; Bayir, H.; Belousov, V.; Chang, C.J.; Davies, K.J.A.; Davies, M.J.; Dick, T.P.; Finkel, T.; Forman, H.J.; Janssen-Heininger, Y.; et al. Guidelines for Measuring Reactive Oxygen Species and Oxidative Damage in Cells and in Vivo. Nat. Metab. 2022, 4, 651–662. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Fumarola, L.; Spinelli, R.; Brandonisio, O. In Vitro Assays for Evaluation of Drug Activity against Leishmania spp. Res. Microbiol. 2004, 155, 224–230. [Google Scholar] [CrossRef]
- Vitale, R.G.; Afeltra, J.; Dannaoui, E. Antifungal Combinations. In Antifungal Agents; Humana Press: Totowa, NJ, USA, 2005; Volume 118, pp. 143–152. ISBN 978-1-59259-943-1. [Google Scholar]
- Seifert, K.; Croft, S.L. In Vitro and In Vivo Interactions between Miltefosine and Other Antileishmanial Drugs. Antimicrob. Agents Chemother. 2006, 50, 73–79. [Google Scholar] [CrossRef]
Naringenin | Miltefosine | Limit | |
---|---|---|---|
MW | 272.25 g/mol | 407.57 g/mol | ≤500 |
Log Po/w | 1.84 | 3.35 | ≤5 |
RB | 1 | 20 | ≤10 |
H-Acc | 5 | 4 | ≤10 |
H-Don | 3 | 0 | ≤5 |
tPSA (Å2) | 86.99 Å2 | 68.4 Å2 | ≤140 |
PAINS | 0 | 0 | - |
Violations | 0 | 1 | - |
Proportion | IC50 Miltefosine (µM) | IC50 Naringenin (µM) | FICI | DRI |
---|---|---|---|---|
01:01 | 6.65 ± 0.9543 | 6.657 ± 0.9543 | 0.53 | 1.984277 |
02:01 | 6.73 ± 3.512 | 13.468 ± 7.029 | 0.57 | 1.961879 |
04:01 | 10.27 ± 3.832 | 41.08 ± 15.32 | 0.96 | 1.285955 |
06:01 | 11.12 ± 3.834 | 66.77 ± 23.00 | 1.14 | 1.186965 |
00:00 | 13.21 ± 3.125 | 219.9 ± 12.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lessa, V.L.; Gonçalves, G.; Santos, B.; Cavalari, V.C.; da Costa Vieira, R.F.; Figueiredo, F.B. In Vitro Evaluation of the Combinatorial Effect of Naringenin and Miltefosine against Leishmania amazonensis. Pharmaceuticals 2024, 17, 1014. https://doi.org/10.3390/ph17081014
Lessa VL, Gonçalves G, Santos B, Cavalari VC, da Costa Vieira RF, Figueiredo FB. In Vitro Evaluation of the Combinatorial Effect of Naringenin and Miltefosine against Leishmania amazonensis. Pharmaceuticals. 2024; 17(8):1014. https://doi.org/10.3390/ph17081014
Chicago/Turabian StyleLessa, Vinícius Lopes, Gustavo Gonçalves, Beatriz Santos, Victoria Cruz Cavalari, Rafael Felipe da Costa Vieira, and Fabiano Borges Figueiredo. 2024. "In Vitro Evaluation of the Combinatorial Effect of Naringenin and Miltefosine against Leishmania amazonensis" Pharmaceuticals 17, no. 8: 1014. https://doi.org/10.3390/ph17081014
APA StyleLessa, V. L., Gonçalves, G., Santos, B., Cavalari, V. C., da Costa Vieira, R. F., & Figueiredo, F. B. (2024). In Vitro Evaluation of the Combinatorial Effect of Naringenin and Miltefosine against Leishmania amazonensis. Pharmaceuticals, 17(8), 1014. https://doi.org/10.3390/ph17081014