Development and Optimization of Dipyridamole- and Roflumilast-Loaded Nanoemulsion and Nanoemulgel for Enhanced Skin Permeation: Formulation, Characterization, and In Vitro Assessment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Dipyridamole Solubility in Oils, Surfactants, and Co-Surfactants
2.2. Roflumilast Solubility in Oils, Surfactants, and Co-Surfactants
2.3. Compatibility Study of Dipyridamole and Roflumilast and Drug-Excipients Mixtures Using FTIR Analysis
2.3.1. FTIR Spectra Dipyridamole
2.3.2. FTIR Spectra Roflumilast
2.3.3. Drug and Excipient FTIR
2.4. Pseudo-Ternary Phase Diagrams of Nanoemulsion
2.4.1. Choose the Excipients for the Formulation (Oil (Oleic Acid), Surfactant (Tween 80), and Co-Surfactant (Ethanol)
2.4.2. Pseudo-Ternary Phase for the Optimal Nanoemulsion Formula
2.5. Droplet Size and Polydispersity Index of Nanoemulsions
2.5.1. Particle Size
2.5.2. Zeta Potential of Nanoemulsions
2.5.3. Suggested Nanoemulsion Formula
2.5.4. Parameters Considered for Selection of Suggested Formula
2.6. Thermodynamic Stability of Nanoemulsion
In Vitro Evaluation of Formulas (F1 to F4)
2.7. Nanoemulgel
2.8. Preparation of Nanoemulgel
2.9. Viscosity of Nanoemulgel
2.10. Calibration Curve
2.11. Ex Vivo Permeability Study
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Study Settings
3.2.2. Determination of Dipyridamole and Roflumilast Solubility in Oils, Surfactants, and Co-Surfactants
HPLC for Dipyridamole
HPLC for Roflumilast
3.2.3. Construction of Pseudo-Ternary Phase Diagrams
3.2.4. Preparation of Nanoemulsions
3.2.5. In Vitro Evaluation of Formulas (F1 to F4), Visual Transparency
Thermodynamic Stability Studies
Droplet Size, Polydispersity Index, and Zeta Potential Measurement
Drug and Excipient Compatibility Study by FTIR
3.2.6. Preparation of Nanoemulgel
3.2.7. Viscosity Measurements of Nanoemulgel
3.2.8. In Vivo Drug Delivery Study
Ex Vivo Permeability Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, N.; Qin, Y.; Dai, D.; Wang, P.; Shi, M.; Gao, J.; Yang, J.; Xiao, W.; Song, P.; Xu, R. Transdermal Delivery of Therapeutic Compounds With Nanotechnological Approaches in Psoriasis. Front. Bioeng. Biotechnol. 2021, 9, 804415. [Google Scholar] [CrossRef]
- Mohd Nordin, U.U.; Ahmad, N.; Salim, N.; Mohd Yusof, N.S. Lipid-based nanoparticles for psoriasis treatment: A review on conventional treatments, recent works, and future prospects. RSC Adv. 2021, 11, 29080–29101. [Google Scholar] [CrossRef]
- Bernardi, D.S.; Pereira, T.A.; Maciel, N.R.; Bortoloto, J.; Viera, G.S.; Oliveira, G.C.; Rocha-Filho, P.A. Formation and stability of oil-in-water nanoemulsions containing rice bran oil: In Vitro and in vivo assessments. J. Nanobiotechnol. 2011, 9, 44. [Google Scholar] [CrossRef]
- Lawrence, M.J.; Rees, G.D. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 2000, 45, 89–121. [Google Scholar] [CrossRef]
- Klang, V.; Matsko, N.B.; Valenta, C.; Hofer, F. Electron microscopy of nanoemulsions: An essential tool for characterisation and stability assessment. Micron 2012, 43, 85–103. [Google Scholar] [CrossRef]
- Khullar, R.; Saini, S.; Seth, N.; Rana, A. Emulgels: A surrogate approach for topically used hydrophobic drugs. Int. J. Pharm. Bio Sci. 2011, 1, 117–128. [Google Scholar]
- Pinheiro, M.S.; Marins, R.d.C.E.E.; Cabral, L.M.; de Sousa, V.P. Development and validation of a RP-HPLC method for Roflumilast and its degradation products. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 223–231. [Google Scholar] [CrossRef]
- Kwak, H.J.; Song, J.S.; Heo, J.Y.; Yang, S.D.; Nam, J.Y.; Cheon, H.G. Roflumilast inhibits lipopolysaccharide-induced inflammatory mediators via suppression of nuclear factor-kappaB, p38 mitogen-activated protein kinase, and c-Jun NH2-terminal kinase activation. J. Pharmacol. Exp. Ther. 2005, 315, 1188–1195. [Google Scholar] [CrossRef]
- Rahman, I. Oxidative stress in pathogenesis of chronic obstructive pulmonary disease: Cellular and molecular mechanisms. Cell Biochem. Biophys. 2005, 43, 167–188. [Google Scholar] [CrossRef]
- Hussein, Z.A.; Abu-Raghif, A.R.; Tahseen, N.J.; Rashed, K.A.; Shaker, N.S.; Fawzi, H.A. Vinpocetine alleviated alveolar epithelial cells injury in experimental pulmonary fibrosis by targeting PPAR-γ/NLRP3/NF-κB and TGF-β1/Smad2/3 pathways. Sci. Rep. 2024, 14, 11131. [Google Scholar] [CrossRef]
- McCulloch, T. FDA Approves Arcutis’ Zoryve (Roflumilast) Cream 0.3% for The treatment of Plaque Psoriasis in Individuals Age 12 and Older. Arcutis Biotherapeutics. 2022. Available online: https://www.arcutis.com/fda-approves-arcutis-zoryve-roflumilast-cream-0-3-for-the-treatment-of-plaque-psoriasis-in-individuals-age-12-and-older/ (accessed on 1 May 2024).
- Drakos, A.; Vender, R.; Torres, T. Topical roflumilast for the treatment of psoriasis. Expert Rev. Clin. Immunol. 2023, 19, 1053–1062. [Google Scholar] [CrossRef]
- Pixley, J.N.; Schaetzle, T.; Feldman, S.R. A Review of Topical Roflumilast for the Treatment of Plaque Psoriasis. Ann. Pharmacother. 2023, 57, 966–969. [Google Scholar] [CrossRef]
- Gresele, P.; Momi, S.; Falcinelli, E. Anti-platelet therapy: Phosphodiesterase inhibitors. Br. J. Clin. Pharmacol. 2011, 72, 634–646. [Google Scholar] [CrossRef]
- Melani, A.; Cipriani, S.; Corti, F.; Pedata, F. Effect of intravenous administration of dipyridamole in a rat model of chronic cerebral ischemia. Ann. N. Y. Acad. Sci. 2010, 1207, 89–96. [Google Scholar] [CrossRef]
- Cheng, J.; Zhu, J.B.; Wen, N.; Xiong, F. Stability and pharmacokinetic studies of O-palmitoyl amylopectin anchored dipyridamole liposomes. Int. J. Pharm. 2006, 313, 136–143. [Google Scholar] [CrossRef]
- Brozna, J.P.; Horan, M.; Carson, S.D. Dipyridamole inhibits O2− release and expression of tissue factor activity by peripheral blood monocytes stimulated with lipopolysaccharide. Thromb. Res. 1990, 60, 141–156. [Google Scholar] [CrossRef]
- Coeugniet, E.; Bendtzen, K.; Bendixen, G. Leucocyte migration inhibitory activity of concanavalin-A-stimulated human lymphocytes. Modification by dipyridamole, lysine-acetylsalicylate and heparin. Acta Med. Scand. 1976, 199, 99–104. [Google Scholar] [CrossRef]
- Dong, H.; Osmanova, V.; Epstein, P.M.; Brocke, S. Phosphodiesterase 8 (PDE8) regulates chemotaxis of activated lymphocytes. Biochem. Biophys. Res. Commun. 2006, 345, 713–719. [Google Scholar] [CrossRef]
- Kyttaris, V.C.; Zhang, Z.; Kampagianni, O.; Tsokos, G.C. Calcium signaling in systemic lupus erythematosus T cells: A treatment target. Arthritis Rheum. 2011, 63, 2058–2066. [Google Scholar] [CrossRef]
- Ahmed, N.; Al-Zubaidy, A.; Qasim, B. Effect of topical dipyridamole gel in comparison with clobetasol on induced psoriasis in mice. Int. J. Drug Deliv. Technol. 2021, 2, 524–529. [Google Scholar]
- De La Cruz, J.P.; Blanco, E.; Sánchez de la Cuesta, F. Effect of dipyridamole and aspirin on the platelet-neutrophil interaction via the nitric oxide pathway. Eur. J. Pharmacol. 2000, 397, 35–41. [Google Scholar] [CrossRef]
- De la Cruz, J.P.; Garcia, P.J.; de la Cuesta, F.S. Dipyridamole inhibits platelet aggregation induced by oxygen-derived free radicals. Thromb. Res. 1992, 66, 277–285. [Google Scholar] [CrossRef]
- Blake, A.D. Dipyridamole is neuroprotective for cultured rat embryonic cortical neurons. Biochem. Biophys. Res. Commun. 2004, 314, 501–504. [Google Scholar] [CrossRef]
- Kutlu, O.; Karaguzel, E.; Okatan, A.E.; Mentese, A.; Yulug, E.; Kazaz, I.O.; Kutlu, S.; Dil, E.; Eren, H.; Alver, A. Dipyridamole reduces penile apoptosis in a rat model of post-prostatectomy erectile dysfunction. Int. Braz. J. Urol. 2017, 43, 966–973. [Google Scholar] [CrossRef]
- Hung, K.Y.; Shyu, R.S.; Fang, C.C.; Tsai, C.C.; Lee, P.H.; Tsai, T.J.; Hsieh, B.S. Dipyridamole inhibits human peritoneal mesothelial cell proliferation in vitro and attenuates rat peritoneal fibrosis in vivo. Kidney Int. 2001, 59, 2316–2324. [Google Scholar] [CrossRef]
- Saleem, S.; Iqubal, M.K.; Garg, S.; Ali, J.; Baboota, S. Trends in nanotechnology-based delivery systems for dermal targeting of drugs: An enticing approach to offset psoriasis. Expert Opin. Drug Deliv. 2020, 17, 817–838. [Google Scholar] [CrossRef]
- Solè, I.; Maestro, A.; Gonzalez, C.; Solans, C.; Gutiérrez, J.M. Optimization of nano-emulsion preparation by low-energy methods in an ionic surfactant system. Langmuir 2006, 22, 8326–8332. [Google Scholar] [CrossRef]
- Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release Off. J. Control. Release Soc. 2017, 252, 28–49. [Google Scholar] [CrossRef]
- Ichikawa, H.; Watanabe, T.; Tokumitsu, H.; Fukumori, Y. Formulation considerations of gadolinium lipid nanoemulsion for intravenous delivery to tumors in neutron-capture therapy. Curr. Drug Deliv. 2007, 4, 131–140. [Google Scholar] [CrossRef]
- Shafiq, S.; Shakeel, F.; Khar, R.K. Enhanced stability of ramipril in nanoemulsion containing cremophor-EL: A technical note. AAPS PharmSciTech 2008, 9, 1097–1101. [Google Scholar] [CrossRef]
- Abd, E.; Benson, H.A.E.; Roberts, M.S.; Grice, J.E. Minoxidil Skin Delivery from Nanoemulsion Formulations Containing Eucalyptol or Oleic Acid: Enhanced Diffusivity and Follicular Targeting. Pharmaceutics 2018, 10, 19. [Google Scholar] [CrossRef]
- Schroeter, A.; Engelbrecht, T.; Neubert, R.H.; Goebel, A.S. New nanosized technologies for dermal and transdermal drug delivery. A review. J. Biomed. Nanotechnol. 2010, 6, 511–528. [Google Scholar] [CrossRef]
- Nafisi, S.; Maibach, H.I. Basic physical sciences for the formulation of cosmetic products. In Cosmetic Science and Technology: Theoretical Principles and Applications; Sakamoto, K., Lochhead, H., Maibach, H., Yamashita, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 337–369. [Google Scholar]
- Saxena, A.; Maity, T.; Paliwal, A.; Wadhwa, S. Chapter 7—Technological Aspects of Nanoemulsions and Their Applications in the Food Sector. In Nanotechnology Applications in Food; Oprea, A.E., Grumezescu, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 129–152. [Google Scholar] [CrossRef]
- Donthi, M.R.; Munnangi, S.R.; Krishna, K.V.; Saha, R.N.; Singhvi, G.; Dubey, S.K. Nanoemulgel: A Novel Nano Carrier as a Tool for Topical Drug Delivery. Pharmaceutics 2023, 15, 164. [Google Scholar] [CrossRef]
- Hamzah, M.L.; Kassab, H.J.; Alshahrani, S.M. Formulation and development of frovatriptan succinate in situ gel for nasal drug delivery: In Vitro and ex vivo evaluation. Pak. J. Pharm. Sci. 2024, 37, 515–525. [Google Scholar]
- Hamzah, M.L.; Kassab, H.J. Formulation and Characterization of Intranasal Drug Delivery of Frovatriptan-Loaded Binary Ethosomes Gel for Brain Targeting. Nanotechnol. Sci. Appl. 2024, 17, 1–19. [Google Scholar] [CrossRef]
- Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Pharm. Verfahrenstechnik 2000, 50, 27–46. [Google Scholar] [CrossRef]
- Barnes, H.A. Thixotropy—A review. J. Non-Newton. Fluid Mech. 1997, 70, 1–33. [Google Scholar] [CrossRef]
- Arora, R.; Aggarwal, G.; Harikumar, S.L.; Kaur, K. Nanoemulsion Based Hydrogel for Enhanced Transdermal Delivery of Ketoprofen. Adv. Pharm. 2014, 2014, 468456. [Google Scholar] [CrossRef]
- Gupta, S.K. Formulation and evaluation of nanoemulsion based nanoemulgel of aceclofenac. J. Pharm. Sci. Res. 2020, 12, 524–532. [Google Scholar]
- Anand, K.; Ray, S.; Rahman, M.; Shaharyar, A.; Bhowmik, R.; Bera, R.; Karmakar, S. Nano-emulgel: Emerging as a Smarter Topical Lipidic Emulsion-based Nanocarrier for Skin Healthcare Applications. Recent Pat. Anti-infect. Drug Discov. 2019, 14, 16–35. [Google Scholar] [CrossRef]
- Chen, Y.; Li, G.; Wu, X.; Chen, Z.; Hang, J.; Qin, B.; Chen, S.; Wang, R. Self-microemulsifying drug delivery system (SMEDDS) of vinpocetine: Formulation development and in vivo assessment. Biol. Pharm. Bull. 2008, 31, 118–125. [Google Scholar] [CrossRef]
- Bravo González, R.C.; Huwyler, J.; Walter, I.; Mountfield, R.; Bittner, B. Improved oral bioavailability of cyclosporin A in male Wistar rats. Comparison of a Solutol HS 15 containing self-dispersing formulation and a microsuspension. Int. J. Pharm. 2002, 245, 143–151. [Google Scholar] [CrossRef]
- Guo, F.; Zhong, H.; He, J.; Xie, B.; Liu, F.; Xu, H.; Liu, M.; Xu, C. Self-microemulsifying drug delivery system for improved oral bioavailability of dipyridamole: Preparation and evaluation. Arch. Pharm. Res. 2011, 34, 1113–1123. [Google Scholar] [CrossRef]
- Park, J.-B.; Lee, G.-H.; Kang, J.-W.; Jeon, I.-S.; Kim, J.-M.; Kim, K.-B.; Kang, C.-Y. Improvement of photostability and dissolution profile of isradipine using inclusion complex. J. Pharm. Investig. 2013, 43, 55–61. [Google Scholar] [CrossRef]
- Azeem, A.; Rizwan, M.; Ahmad, F.J.; Iqbal, Z.; Khar, R.K.; Aqil, M.; Talegaonkar, S. Nanoemulsion components screening and selection: A technical note. AAPS PharmSciTech 2009, 10, 69–76. [Google Scholar] [CrossRef]
- Allimalarkodi, S.; Ch, S.; Sujatha, M.; Ganesan, V. Formulation and In-vitro evaluation of transdermal patch of Lornoxicam by using hydrophilic and hydrophobic polymers. World J. Pharm. Sci. 2014, 2, 641–647. [Google Scholar]
- Washington, N.; Steele, R.J.; Jackson, S.J.; Bush, D.; Mason, J.; Gill, D.A.; Pitt, K.; Rawlins, D.A. Determination of baseline human nasal pH and the effect of intranasally administered buffers. Int. J. Pharm. 2000, 198, 139–146. [Google Scholar] [CrossRef]
- Soane, R.J.; Hinchcliffe, M.; Davis, S.S.; Illum, L. Clearance characteristics of chitosan based formulations in the sheep nasal cavity. Int. J. Pharm. 2001, 217, 183–191. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef]
- Komaiko, J.; McClements, D.J. Low-energy formation of edible nanoemulsions by spontaneous emulsification: Factors influencing particle size. J. Food Eng. 2015, 146, 122–128. [Google Scholar] [CrossRef]
- Wang, Z. Pseudo-Ternary Phase Diagrams of a Drug Delivery System; University of Waterloo: Waterloo, ON, Canada, 2009. [Google Scholar]
- Tenjarla, S. Microemulsions: An overview and pharmaceutical applications. Crit. Rev. Ther. Drug Carrier Syst. 1999, 16, 461–521. [Google Scholar] [CrossRef]
- Ben-Fadhel, Y.; Aragones, M.; Martinez, C.; Salmieri, S.; Allahdad, Z.; Lacroix, M. Food grade nanoemulsion development to control food spoilage microorganisms on bread surface. J. Food Sci. Technol. 2023, 60, 742–751. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef]
- Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M.J. Nano-emulsions. Curr. Opin. Colloid Interface Sci. 2005, 10, 102–110. [Google Scholar] [CrossRef]
- Taylor, P. Ostwald ripening in emulsions: Estimation of solution thermodynamics of the disperse phase. Adv. Colloid Interface Sci. 2003, 106, 261–285. [Google Scholar] [CrossRef]
- Akhter, S.; Jain, G.K.; Ahmad, F.J.; Khar, R.K.; Jain, N.; Khan, Z.I.; Talegaonkar, S. Investigation of Nanoemulsion System for Transdermal Delivery of Domperidone: Ex-Vivo and in vivo Studies. Curr. Nanosci. 2008, 4, 381–390. [Google Scholar] [CrossRef]
- Li, X.; Anton, N.; Ta, T.M.C.; Zhao, M.; Messaddeq, N.; Vandamme, T.F. Microencapsulation of nanoemulsions: Novel Trojan particles for bioactive lipid molecule delivery. Int. J. Nanomed. 2011, 6, 1313–1325. [Google Scholar] [CrossRef]
- Born, J.; Lange, T.; Kern, W.; McGregor, G.P.; Bickel, U.; Fehm, H.L. Sniffing neuropeptides: A transnasal approach to the human brain. Nat. Neurosci. 2002, 5, 514–516. [Google Scholar] [CrossRef]
- Moghimipour, E.; Salimi, A.; Eftekhari, S. Design and characterization of microemulsion systems for naproxen. Adv. Pharm. Bull. 2013, 3, 63–71. [Google Scholar] [CrossRef]
- Manyarara, T.E.; Khoza, S.; Dube, A.; Maponga, C.C. Formulation and characterization of a paediatric nanoemulsion dosage form with modified oral drug delivery system for improved dissolution rate of nevirapine. MRS Adv. 2018, 3, 2203–2219. [Google Scholar] [CrossRef]
- Joseph, E.; Singhvi, G. Chapter 4—Multifunctional nanocrystals for cancer therapy: A potential nanocarrier. In Nanomaterials for Drug Delivery and Therapy; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 91–116. [Google Scholar] [CrossRef]
- Bhatt, P.; Madhav, S. A detailed review on nanoemulsion drug delivery system. Int. J. Pharm. Sci. Res. 2011, 2, 2482. [Google Scholar]
- Tagne, J.B.; Kakumanu, S.; Ortiz, D.; Shea, T.; Nicolosi, R.J. A nanoemulsion formulation of tamoxifen increases its efficacy in a breast cancer cell line. Mol. Pharm. 2008, 5, 280–286. [Google Scholar] [CrossRef]
- Sakeena, M.H.; Muthanna, F.A.; Ghassan, Z.A.; Kanakal, M.M.; Elrashid, S.M.; Munavvar, A.S.; Azmin, M.N. Formulation and in vitro evaluation of ketoprofen in palm oil esters nanoemulsion for topical delivery. J. Oleo Sci. 2010, 59, 223–228. [Google Scholar] [CrossRef]
- Sohn, Y.; Lee, S.Y.; Lee, G.H.; Na, Y.J.; Kim, S.Y.; Seong, I.; Lee, B.J.; Kuh, H.J.; Lee, J. Development of self-microemulsifying bilayer tablets for pH-independent fast release of candesartan cilexetil. Pharmazie 2012, 67, 917–924. [Google Scholar]
- Kahraman, E.; Neşetoğlu, N.; Güngör, S.; Ünal, D.; Özsoy, Y. The combination of nanomicelles with terpenes for enhancement of skin drug delivery. Int. J. Pharm. 2018, 551, 133–140. [Google Scholar] [CrossRef]
- Chime, S.; Kenechukwu, F.; Attama, A. Nanoemulsions—Advances in formulation, characterization and applications in drug delivery. Appl. Nanotechnol. Drug Deliv. 2014, 3, 77–126. [Google Scholar]
- Kreilgaard, M.; Pedersen, E.J.; Jaroszewski, J.W. NMR characterisation and transdermal drug delivery potential of microemulsion systems. J. Control. Release Off. J. Control. Release Soc. 2000, 69, 421–433. [Google Scholar] [CrossRef]
- Miller, D.A.; McGinity, J.W. Aqueous polymeric film coating. In Pharmaceutical Dosage Forms-Tablets; CRC Press: Boca Raton, FL, USA, 2008; pp. 415–454. [Google Scholar]
- Fagerberg, J.H.; Al-Tikriti, Y.; Ragnarsson, G.; Bergström, C.A.S. Ethanol Effects on Apparent Solubility of Poorly Soluble Drugs in Simulated Intestinal Fluid. Mol. Pharm. 2012, 9, 1942–1952. [Google Scholar] [CrossRef]
- Madene, A.; Jacquot, M.; Scher, J.; Desobry, S. Flavour encapsulation and controlled release—A review. Int. J. Food Sci. Technol. 2006, 41, 1–21. [Google Scholar] [CrossRef]
- Ait-Touchente, Z.; Zine, N.; Jaffrezic-Renault, N.; Errachid, A.; Lebaz, N.; Fessi, H.; Elaissari, A. Exploring the Versatility of Microemulsions in Cutaneous Drug Delivery: Opportunities and Challenges. Nanomaterials 2023, 13, 1688. [Google Scholar] [CrossRef]
- Sowjanya, G.; Bandhavi, P. Nanoemulsions an emerging trend: A review. Int. J. Periodontics Restor. Dent. 2012, 4, 137–152. [Google Scholar]
- Nukolova, N.V.; Oberoi, H.S.; Cohen, S.M.; Kabanov, A.V.; Bronich, T.K. Folate-decorated nanogels for targeted therapy of ovarian cancer. Biomaterials 2011, 32, 5417–5426. [Google Scholar] [CrossRef]
- Cuggino, J.C.; Blanco, E.R.O.; Gugliotta, L.M.; Alvarez Igarzabal, C.I.; Calderón, M. Crossing biological barriers with nanogels to improve drug delivery performance. J. Control. Release Off. J. Control. Release Soc. 2019, 307, 221–246. [Google Scholar] [CrossRef]
- Kapoor, M.; Cloyd, J.C.; Siegel, R.A. A review of intranasal formulations for the treatment of seizure emergencies. J. Control. Release Off. J. Control. Release Soc. 2016, 237, 147–159. [Google Scholar] [CrossRef]
- Küchler, S.; Herrmann, W.; Panek-Minkin, G.; Blaschke, T.; Zoschke, C.; Kramer, K.D.; Bittl, R.; Schäfer-Korting, M. SLN for topical application in skin diseases—Characterization of drug-carrier and carrier-target interactions. Int. J. Pharm. 2010, 390, 225–233. [Google Scholar] [CrossRef]
- Matos, A.P.S.; Costa, J.S.; Boniatti, J.; Seiceira, R.C.; Pitaluga, A.; Oliveira, D.L.; Viçosa, A.L.; Holandino, C. Compatibility study between diazepam and tablet excipients. J. Therm. Anal. Calorim. 2017, 127, 1675–1682. [Google Scholar] [CrossRef]
- Teaima, M.H.; Badawi, N.M.; Attia, D.A.; El-Nabarawi, M.A.; Elmazar, M.M.; Mousa, S.A. Efficacy of pomegranate extract loaded solid lipid nanoparticles transdermal emulgel against Ehrlich ascites carcinoma. Nanomedicine 2022, 39, 102466. [Google Scholar] [CrossRef]
- Lal, D.K.; Kumar, B.; Saeedan, A.S.; Ansari, M.N. An Overview of Nanoemulgels for Bioavailability Enhancement in Inflammatory Conditions via Topical Delivery. Pharmaceutics 2023, 15, 1187. [Google Scholar] [CrossRef]
- Zeng, Y.C.; Li, S.; Liu, C.; Gong, T.; Sun, X.; Fu, Y.; Zhang, Z.R. Soluplus micelles for improving the oral bioavailability of scopoletin and their hypouricemic effect in vivo. Acta Pharmacol. Sin. 2017, 38, 424–433. [Google Scholar] [CrossRef]
- Baka, E.; Comer, J.E.; Takács-Novák, K. Study of equilibrium solubility measurement by saturation shake-flask method using hydrochlorothiazide as model compound. J. Pharm. Biomed. Anal. 2008, 46, 335–341. [Google Scholar] [CrossRef]
- Yeramwar, S.; Patil, S.; Sharma, P.; Bhargava, A. Design & development of solid self micro-emulsifying osmotic drug delivery system for isradipine. J. Drug Deliv. Ther. 2014, 4, 28–41. Available online: https://jddtonline.info/index.php/jddt/article/view/903 (accessed on 1 May 2024).
- Prakash, K.; Kalakuntla, R.R.; Sama, J.R. Rapid and simultaneous determination of aspirin and dipyridamole in pharmaceutical formulations by reversed-phase high performance liquid chromatography (RP-HPLC) method. Afr. J. Pharm. Pharmacol. 2011, 5, 244–251. [Google Scholar]
- Rao, A.S.; Rao, M.K.; Dadichand, A.S.; Rao, A.P.; Balaswami, B. Development and validation of RP-HPLC method for assay of dipyridamole in formulations. J. Pharm. Sci. Res. 2016, 8, 256. [Google Scholar]
- Padma, J.; Hamalatha, R.; Manikanteswari, D.D.V.S.N.N.; Davudala, C.; Vathi, U.S.; Kuchi, R. A Novel RP-HPLC Method for the Quantification of Roflumilast in Formulations. Experiment 2014, 7, 388–394. Available online: http://experimentjournal.com/article/novel-rp-hplc-method-quantification-roflumilast-formulations (accessed on 1 May 2024).
- Belal, T.S.; Ahmed, H.M.; Mahrous, M.S.; Daabees, H.G.; Baker, M.M. Validated stability-indicating HPLC-DAD method for determination of the phosphodiesterase (PDE-4) inhibitor roflumilast. Bull. Fac. Pharm. Cairo Univ. 2014, 52, 79–89. [Google Scholar] [CrossRef]
- Srilatha, R.; Aparna, C.; Srinivas, P.; Sadanandam, M. Formulation, evaluation and characterization of glipizide nanoemulsion. Asian J. Pharm. Clin. Res. 2013, 6, 66–71. [Google Scholar]
- Taher, M.N.; Hussein, A.A. Formulation and evaluation of domperidone nanoemulsions for oral rout. Iraqi J. Pharm. Sci. 2015, 24, 77–90. [Google Scholar] [CrossRef]
- Reddy, R.B.D.; Kumari, C.T.L.; Sowjanya, G.N.; Sindhuri, S.L.; Bandhavi, P. Nanoemulsions an emerging trend. Int. J. Pharm. Res. Dev. 2016, 4, 137–152. [Google Scholar]
- Sharma, N.; Bansal, M.; Visht, S.; Sharma, P.; Kulkarni, G. Nanoemulsion: A new concept of delivery system. Chron. Young Sci. 2010, 1, 2–6. [Google Scholar]
- Kelmann, R.G.; Kuminek, G.; Teixeira, H.F.; Koester, L.S. Carbamazepine parenteral nanoemulsions prepared by spontaneous emulsification process. Int. J. Pharm. 2007, 342, 231–239. [Google Scholar] [CrossRef]
- Lebwohl, M.G.; Kircik, L.H.; Moore, A.Y.; Stein Gold, L.; Draelos, Z.D.; Gooderham, M.J.; Papp, K.A.; Bagel, J.; Bhatia, N.; Del Rosso, J.Q.; et al. Effect of Roflumilast Cream vs Vehicle Cream on Chronic Plaque Psoriasis: The DERMIS-1 and DERMIS-2 Randomized Clinical Trials. JAMA 2022, 328, 1073–1084. [Google Scholar] [CrossRef]
- Gupta, A.; Mishra, D.; Mahajan, S. Preparation and in-vitro evaluation of self emulsifying drug delivery system of antihypertensive drug valsartan. Int. J. Pharm. Life Sci. 2011, 2, 633–639. [Google Scholar]
- Lebwohl, M.G.; Papp, K.A.; Stein Gold, L.; Gooderham, M.J.; Kircik, L.H.; Draelos, Z.D.; Kempers, S.E.; Zirwas, M.; Smith, K.; Osborne, D.W.; et al. Trial of Roflumilast Cream for Chronic Plaque Psoriasis. N. Engl. J. Med. 2020, 383, 229–239. [Google Scholar] [CrossRef]
- Hussein, A.A. Preparation and evaluation of liquid and solid self-microemulsifying drug delivery system of mebendazole. Iraqi J. Pharm. Sci. 2014, 23, 89–100. [Google Scholar] [CrossRef]
- Shishu; Kamalpreet; Maheshwari, M. Development and evaluation of novel microemulsion based oral formulations of 5-fluorouracil using non-everted rat intestine sac model. Drug Dev. Ind. Pharm. 2012, 38, 294–300. [Google Scholar] [CrossRef]
- Setya, S.; Negi, P.; Razdan, B.; Talegaonkar, S. Design, development and in vitro investigation of water in oil nanoemulsion for transdermal delivery. World J. Pharm. Pharm. Sci. 2014, 3, 1495–1512. [Google Scholar]
- Gué, E.; Since, M.; Ropars, S.; Herbinet, R.; Le Pluart, L.; Malzert-Fréon, A. Evaluation of the versatile character of a nanoemulsion formulation. Int. J. Pharm. 2016, 498, 49–65. [Google Scholar] [CrossRef]
- Gupta, S.; Kesarla, R.; Omri, A. Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. Int. Sch. Res. Not. Pharm. 2013, 2013, 848043. [Google Scholar] [CrossRef]
- Inagaki, S.; Ghirlando, R.; Grisshammer, R. Biophysical characterization of membrane proteins in nanodiscs. Methods 2013, 59, 287–300. [Google Scholar] [CrossRef]
- Nijhawan, M.; Godugu, M.; Saxena, T.; Farheen, T.; Dwivedi, K. Pharmaceutical co-crystals of posaconazole for improvement of physicochemical properties. Braz. J. Pharm. Sci. 2022, 58, e191024. [Google Scholar] [CrossRef]
- Gurpreet, K.; Singh, S. Review of nanoemulsion formulation and characterization techniques. Indian J. Pharm. Sci. 2018, 80, 781–789. [Google Scholar] [CrossRef]
- Mulia, K.; Ramadhan, R.M.; Krisanti, E.A. Formulation and characterization of nanoemulgel mangosteen extract in virgin coconut oil for topical formulation. MATEC Web Conf. 2018, 156, 01013. [Google Scholar] [CrossRef]
- Rehman, A.; Iqbal, M.; Khan, B.A.; Khan, M.K.; Huwaimel, B.; Alshehri, S.; Alamri, A.H.; Alzhrani, R.M.; Bukhary, D.M.; Safhi, A.Y.; et al. Fabrication, In Vitro, and In Vivo Assessment of Eucalyptol-Loaded Nanoemulgel as a Novel Paradigm for Wound Healing. Pharmaceutics 2022, 14, 1971. [Google Scholar] [CrossRef]
- Mašková, E.; Kubová, K.; Raimi-Abraham, B.T.; Vllasaliu, D.; Vohlídalová, E.; Turánek, J.; Mašek, J. Hypromellose—A traditional pharmaceutical excipient with modern applications in oral and oromucosal drug delivery. J. Control. Release Off. J. Control. Release Soc. 2020, 324, 695–727. [Google Scholar] [CrossRef]
- Underwood, W.; Anthony, R. AVMA guidelines for the euthanasia of animals: 2020 edition. Am. Vet. Med. Assoc. 2020, 2013, 2020–2021. [Google Scholar]
- Pierozan, P.; Jernerén, F.; Ransome, Y.; Karlsson, O. The Choice of Euthanasia Method Affects Metabolic Serum Biomarkers. Basic Clin. Pharmacol. Toxicol. 2017, 121, 113–118. [Google Scholar] [CrossRef]
- Bothiraja, C.; Pawar, A.P.; Dama, G.Y.; Joshi, P.P.; Shaikh, K.S. Novel solvent-free gelucire extract of Plumbago zeylanica using non-everted rat intestinal sac method for improved therapeutic efficacy of plumbagin. J. Pharmacol. Toxicol. Methods 2012, 66, 35–42. [Google Scholar] [CrossRef]
- Schittny, A.; Huwyler, J.; Puchkov, M. Mechanisms of increased bioavailability through amorphous solid dispersions: A review. Drug Deliv. 2020, 27, 110–127. [Google Scholar] [CrossRef]
- Barghash, S.S.; Abd El-Razeq, S.; El -Awady, M.; Belal, F. Validated Spectrophotometric method for analysis of Dipyridamole and Lamivudine using eosin Y. Azhar Int. J. Pharm. Med. Sci. 2021, 1, 87–96. [Google Scholar] [CrossRef]
Oil (Tween 80):Smix (Ethanol) (2 mL) | Volume of Water to Turbidity | Total Volume | |
---|---|---|---|
1 | 50 (1 mL):50 (1 mL) | 0.4 mL | 2.4 mL |
2 | 40 (0.8 mL):60 (1.2 mL) | 0.5 mL | 2.5 mL |
3 | 30 (0.6 mL):70 (1.4 mL) | 1 mL | 3 mL |
4 | 20 (0.4 mL):80 (1.6 mL) | 2 mL | 4 mL |
5 | 10 (0.2 mL):90 (1.8 mL) | 2.5 mL | 4.5 mL |
Percentages of excipients | |||
Oil% | Smix (%) | Distilled water | |
1 | 41.6 | 41.6 | 16.6 |
2 | 32 | 48 | 20 |
3 | 20 | 46.6 | 33.3 |
4 | 10 | 40 | 50 |
5 | 4.5 | 40 | 55.5 |
Oil (Tween 80):Smix (Ethanol) (2 mL) | Volume of Water to Turbidity | Total Volume | |
---|---|---|---|
1 | 50 (1 mL):50 (1 mL) | 0.2 mL | 2.2 mL |
2 | 40 (0.8 mL):60 (1.2 mL) | 0.5 mL | 2.5 mL |
3 | 30 (0.6 mL):70 (1.4 mL) | 1.1 mL | 3.1 mL |
4 | 20 (0.4 mL):80 (1.6 mL) | 1.5 mL | 3.5 mL |
5 | 10 (0.2 mL):90 (1.8 mL) | 2.5 mL | 4.5 mL |
Percentages of excipients | |||
Oil% | Smix (%) | Distilled water | |
1 | 45.5 | 45.5 | 9.1 |
2 | 32 | 48 | 20 |
3 | 19.4 | 45.2 | 35.5 |
4 | 11.4 | 45.7 | 42.8 |
5 | 4.4 | 40 | 55.5 |
Oil (Tween 80):Smix (Ethanol) (2 mL) | Volume of Water to Turbidity | Total Volume | |
---|---|---|---|
1 | 50 (1 mL):50 (1 mL) | 0.3 mL | 2.3 mL |
2 | 40 (0.8 mL):60 (1.2 mL) | 0.9 mL | 2.9 mL |
3 | 30 (0.6 mL):70 (1.4 mL) | 1.3 mL | 3.3 mL |
4 | 20 (0.4 mL):80 (1.6 mL) | 1.6 mL | 3.6 mL |
5 | 10 (0.2 mL):90 (1.8 mL) | 2 mL | 4 mL |
Percentages of excipients | |||
Oil% | Smix (%) | Distilled water | |
1 | 43.4 | 43.4 | 13 |
2 | 27.5 | 41.3 | 31 |
3 | 18.2 | 42.4 | 39.4 |
4 | 11 | 44.4 | 44.4 |
5 | 5 | 45 | 50 |
Formulation | Percentage | Volume (mL) | ||||
---|---|---|---|---|---|---|
Distilled Water | Oil | Smix | Distilled Water | Oil | Smix | |
Formula (F1) | 30 | 10 | 60 | 1.5 | 0.5 | 3 |
Formula (F2) | 40 | 10 | 50 | 2 | 0.5 | 2.5 |
Formula (F3) | 25 | 18 | 57 | 1.25 | 0.9 | 2.85 |
Formula (F4) | 35 | 15 | 50 | 1.75 | 0.75 | 2.5 |
Total | 100% | 5 mL |
Formula | Smix:Oil Ratio | Average Droplet Size (nm) | PDI (%) | Zeta Potential (mV) |
---|---|---|---|---|
F1 | 6:1 | 58 | 0.573 | −6.08 |
F2 | 5:1 | 167 | 0.195 | −32.22 |
F3 | 5.7:1.8 | 151 | 0.533 | −18.68 |
F4 | 5:1.5 | 247 | 0.417 | −21.23 |
Formula Number | Centrifugation Test | Freeze–Thaw Cycles | Heating/Cooling Cycles |
---|---|---|---|
F1 | pass | pass | pass |
F2 | pass | pass | pass |
F3 | pass | pass | pass |
F4 | pass | pass | pass |
Formula Code | Cumulative Amount Diffused at 4 h (Q4 h·µg) | Flux (dQ/dt·S) (µg/min·c2) | Permeability Coefficient (Papp × 10−3 cm/h) |
---|---|---|---|
Pure roflumilast | 1589 | 2.9 | 58 |
Pure dipyridamole | 3123 | 2.6 | 20.8 |
Roflumilast nanogel | 4135 | 3.83 | 76.6 |
Dipyridamole nanogel | 11,345 | 12.66 | 101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maded, Z.K.; Sfar, S.; Taqa, G.A.A.; Lassoued, M.A.; Ben Hadj Ayed, O.; Fawzi, H.A. Development and Optimization of Dipyridamole- and Roflumilast-Loaded Nanoemulsion and Nanoemulgel for Enhanced Skin Permeation: Formulation, Characterization, and In Vitro Assessment. Pharmaceuticals 2024, 17, 803. https://doi.org/10.3390/ph17060803
Maded ZK, Sfar S, Taqa GAA, Lassoued MA, Ben Hadj Ayed O, Fawzi HA. Development and Optimization of Dipyridamole- and Roflumilast-Loaded Nanoemulsion and Nanoemulgel for Enhanced Skin Permeation: Formulation, Characterization, and In Vitro Assessment. Pharmaceuticals. 2024; 17(6):803. https://doi.org/10.3390/ph17060803
Chicago/Turabian StyleMaded, Zeyad Khalaf, Souad Sfar, Ghada Abd Alrhman Taqa, Mohamed Ali Lassoued, Olfa Ben Hadj Ayed, and Hayder Adnan Fawzi. 2024. "Development and Optimization of Dipyridamole- and Roflumilast-Loaded Nanoemulsion and Nanoemulgel for Enhanced Skin Permeation: Formulation, Characterization, and In Vitro Assessment" Pharmaceuticals 17, no. 6: 803. https://doi.org/10.3390/ph17060803
APA StyleMaded, Z. K., Sfar, S., Taqa, G. A. A., Lassoued, M. A., Ben Hadj Ayed, O., & Fawzi, H. A. (2024). Development and Optimization of Dipyridamole- and Roflumilast-Loaded Nanoemulsion and Nanoemulgel for Enhanced Skin Permeation: Formulation, Characterization, and In Vitro Assessment. Pharmaceuticals, 17(6), 803. https://doi.org/10.3390/ph17060803