Antiviral, Antibacterial, Antifungal, and Anticancer Activity of Plant Materials Derived from Cymbopogon citratus (DC.) Stapf Species
Abstract
:1. Introduction
2. Cymbopogon citratus Application
3. Chemical Composition of Cymbopogon citratus Essential Oil and Extracts
4. Antifungal Activity of Cymbopogon citratus
5. Antibacterial Activity of Cymbopogon citratus
6. Antiviral Activity of Cymbopogon citratus
7. Anticancer Activity of Cymbopogon citratus
8. Limitations and Side Effects of Using C. citratus Products
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Guidelines for Assessing Quality of Herbal Medicines with Reference to Contaminants and Residues. 5 June 2007. Available online: https://www.who.int/publications/i/item/9789241594448 (accessed on 15 November 2023).
- Saggar, S.; Mir, P.A.; Kumar, N.; Chawla, A.; Uppal, J.; Kaur, A. Traditional and Herbal Medicines: Opportunities and Challenges. Pharmacogn. Res. 2022, 14, 107–114. Available online: https://www.phcogres.com/article/2022/14/2/105530pres14215 (accessed on 15 November 2023). [CrossRef]
- Barkat, M.A.; Goyal, A.; Barkat, H.A.; Salauddin, M.; Pottoo, F.H.; Anwer, E.T. Herbal medicine: Clinical perspective and regulatory status. Comb. Chem. High Throughput Screen. 2021, 24, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- Parveen, B.; Parveen, A.; Parveen, R.; Ahmad, S.; Ahmad, M.; Iqbal, M. Challenges and opportunities for traditional herbal medicine today, with special reference to its status in India. Ann. Phytomed. 2020, 9, 97–112. [Google Scholar] [CrossRef]
- Choudhury, A.; Singh, P.A.; Bajwa, N.; Dash, S.; Bisht, P. Pharmacovigilance of herbal medicines: Concerns and future prospects. J. Ethnopharmacol. 2023, 309, 116383. [Google Scholar] [CrossRef] [PubMed]
- Al-Worafi, Y.M. Herbal medicines safety issues. In Drug Safety in Developing Countries; Academic Press: Cambridge, MA, USA, 2020; pp. 163–178. [Google Scholar] [CrossRef]
- Negrelle, R.R.B.; Gomes, E.C. Cymbopogon citratus (DC) Stapf: Chemical Composition and Biological Activities. Rev. Bras. Plantas Med. 2007, 9, 80–92. Available online: https://api.semanticscholar.org/CorpusID:56066104 (accessed on 15 November 2023).
- Shah, G.; Shri, R.; Panchal, V.; Sharma, N.; Singh, B.; Mann, A.S. Scientific basis for the therapeutic use of Cymbopogon citratus, Stapf (Lemon grass). J. Adv. Pharm. Tech. Res. 2011, 2, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Machraoui, M.; Kthiri, Z.; Ben Jabeur, M.; Hamada, W. Ethnobotanical and phytopharmacological notes on Cymbopogon citratus (DC.) Stapf. J. New Sci. Agric. Biotechnol. 2018, 55, 3642–3652. [Google Scholar]
- Srivastava, V.; Dubey, S.; Mishra, A. A review on lemon grass: Agricultural and medicinal aspect. Int. Res. J. Pharm. 2013, 4, 42–44. [Google Scholar] [CrossRef]
- Kiełtyka-Dadasiewicz, A.; Ludwiczuk, A.; Tarasevičienė, Ž.; Michalak, M.; Głowacka, A.; Baj, T.; Kręcisz, B.; Krochmal-Marczak, B. Chemical and nutritional compounds of different parts of lemongrass (Cymbopogon citratus (DC) Stapf.) cultivated in temperate climate of Poland. J. Oleo Sci. 2021, 70, 125–133. [Google Scholar] [CrossRef]
- Kassahun, T.; Girma, B.; Joshi, R.K.; Sisay, B.; Tesfaye, K.; Taye, S.; Tesema, S.; Abera, T.; Teka, F. Ethnobotany, traditional use, phytochemistry and pharmacology of Cymbopogon citratus. Int. J. Herb. Med. 2020, 8, 80–87. [Google Scholar]
- Zahra, A.A.; Hartati, R.; Fidrianny, I. Review of the chemical properties, pharmacological properties, and development studies of Cymbopogon sp. Biointerface Res. Appl. Chem. 2020, 11, 10341–10350. [Google Scholar] [CrossRef]
- Magotra, S.; Singh, A.P.; Singh, A.P. A review on pharmacological activities of Cymbopogon citratus. Int. J. Pharm. Drug Anal. 2021, 9, 151–157. [Google Scholar] [CrossRef]
- Kumoro, A.C.; Wardhani, D.H.; Retnowati, D.S.; Haryani, K. A brief review on the characteristics, extraction and potential industrial applications of citronella grass (Cymbopogon nardus) and lemongrass (Cymbopogon citratus) essential oils. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1053, 012118. [Google Scholar] [CrossRef]
- Tibenda, J.J.; Yi, Q.; Wang, X.; Zhao, Q. Review of phytomedicine, phytochemistry, ethnopharmacology, toxicology, and pharmacological activities of Cymbopogon genus. Front. Pharmacol. 2022, 13, 997918. [Google Scholar] [CrossRef] [PubMed]
- Syarif, L.I.; Junita, A.R.; Hatta, M.; Dwiyanti, R.; Kaelan, C.; Sabir, M.; Noviyanthi, R.A.; Primaguna, M.R.; Purnamasari, N.I. A mini review: Medicinal plants for typhoid fever in Indonesia. Syst. Rev. Pharm. 2020, 11, 1171–1180. [Google Scholar]
- Ortiz, R.S.; Marrero, G.V.; Navarro, A.L.T. Instructivo tecnico del cultivo de Cymbopogon citratus (DC) Stapf (cana santa). Rev. Plantas Med. 2002, 7, 2. [Google Scholar]
- Simões, D.M.; Malheiros, J.; Antunes, P.E.; Figueirinha, A.; Cotrim, M.D.; Fonseca, D.A. Vascular activity of infusion and fractions of Cymbopogon citratus (DC) Stapf. in human arteries. J. Ethnopharmacol. 2020, 258, 112947. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Zhang, M.; Wang, S.; Li, J.; Zhang, J.; Liu, D. Ethnopharmacology, chemical composition and functions of Cymbopogon citratus. Chin. Herb. Med. 2023; in press. [Google Scholar] [CrossRef]
- Olorunsanya, A.O.; Olorunsanya, E.O.; Bolu, S.A.O.; Adejumobi, C.T.; Kayode, R.M.O. Effect of graded levels of lemongrass (Cymbopogon citratus) on oxidative stability of raw or cooked pork patties. Pak. J. Nutr. 2010, 9, 467–470. [Google Scholar] [CrossRef]
- Thakur, C.; Bhardwaj, M.; Verma, A.K.; Bhatia, A. A review on post harvest management of lemongrass. Just Agric. 2020, 1, 029. [Google Scholar]
- Salvador, M.J.; Lopes, G.N.; Nascimento Filho, V.F.; Zucchi, O.L.A.D. Quality control of commercial tea by x-ray fluorescence. X-ray Spectr. 2002, 31, 141–144. [Google Scholar] [CrossRef]
- Newerli-Guz, J.; Śmiechowska, M.; Piotrzkowska, J. Aroma substances as ingredients of herbal-fruit teas. Zesz. Nauk. Akad. Morsk. Gdyn. 2009, 61, 19–32. [Google Scholar]
- Steinka, I. Biostatic properties of multicomponent tea. Bromat. Chem. Toksykol. 2012, 45, 538–542. [Google Scholar]
- Michalak-Majewska, M. Analysing quality and the consumer desirable of selected red leaf teas [in Polish: Analiza jakości i pożądalności konsumenckiej wybranych czerwonych herbat liściastych]. Towarozn. Probl. Jak. 2013, 3, 92–102. [Google Scholar]
- Adamczak, A.; Forycka, A.; Buchwald, W. The composition of fruit teas available on the Polish market of foodstuffs. Post. Fitoter. 2015, 16, 216–222. [Google Scholar]
- Tajidin, N.E.; Ahmad, S.H.; Rosenani, A.B.; Munirah, M. Growth performance and nutrient concentration of ‘Hijau’ Lemongrass (Cymbopogon citratus) as affected by maturity stages at harvest. Trans. Malays. Soc. Plant Physiol. 2011, 19, 35–38. [Google Scholar]
- Hagvall, L.; Bråred Christensson, J. Cross-reactivity between citral and geraniol—Can it be attributed to oxidized geraniol. Contact Dermat. 2014, 71, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Uraku, A.J.; Okaka, A.N.C.; Ogbanshi, M.E.; Onuoha, S.C. Nutritive and anti-nutritive potentials of Cymbopopgon citratus leaves. Am. J. Food Nutr. 2016, 6, 14–22. [Google Scholar]
- de Andrade, S.F.; Rocha, C.; Pinheiro, E.J.; Pereira-Leite, C.; Costa, M.D.C.; Monteiro Rodrigues, L. Revealing the protective effect of topically applied Cymbopogon citratus essential oil in human skin through a contact model. Cosmetics 2023, 10, 29. [Google Scholar] [CrossRef]
- Saleem, M.; Afza, N.; Anwar, M.A.; Hai, S.M.A.; Ali, M.S. A comparative study of essential oils of Cymbopogon citratus and some members of the genus Citrus. Nat. Prod. Res. 2003, 17, 369–373. [Google Scholar] [CrossRef]
- Linares, S.; Gonzalez, N.; Gomez, E. Effect of the fertilization, plant density and time of cutting on yield and quality of the essential oil of Cymbopogon citratus Stapf. Rev. Fac. Agron. (LUZ) 2005, 22, 247–260. [Google Scholar]
- Kassahun, B.M.; Mekonnen, S.A.; Abedena, Z.T.; Kidanemariam, H.G.; Yalemtesfa, B.; Atnafu, G.; Melka, B.; Mengesha, W.K.; da Silva, J.A. Performance of lemongrass (Cymbopogon citratus L. (DC) Stapf) agronomic and chemical traits in different agro-ecologies of ethiopia. Med. Arom. Plant Sci. Biotechnol. 2011, 5, 133–138. [Google Scholar]
- Ekpenyong, C.E.; Akpan, E.E.; Nyebuk, D.E. Phytochemical constituents, therapeutic applications and toxicological profile of Cymbopogon citratus Stapf (DC) leaf extract. J. Pharmacog. Phytochem. 2014, 3, 133–141. [Google Scholar]
- Kpoviessi, S.; Bero, J.; Agbani, P.; Gbaguidi, F.; Kpadonou-Kpoviessi, B.; Sinsin, B.; Accrombessi, G.; Frédérich, M.; Moudachirou, M.; Quetin-Leclercq, J. Chemical composition, cytotoxicity and in vitro antitrypanosomal and antiplasmodial activity of the essential oils of four Cymbopogon species from Benin. J. Ethnopharmacol. 2014, 151, 652–659. [Google Scholar] [CrossRef]
- Rajeswara Rao, B.R.; Adinarayana, G.; Kumar, A.N.; Rajput, D.K.; Syamasundar, K.V. Chemical-profile variations in essential oils isolated from lemongrass (Cymbopogon flexuosus) biomass and condensate wastewater by re-distillation and solvent extraction techniques. J. Essent. Oil Res. 2016, 28, 557–564. [Google Scholar] [CrossRef]
- Hamed, E.S.; Toaima, W.I.M.; El-Shazly, M. Effect of planting density and biofertilization on growth and productivity of Cymbopogon citratus (DC.) Stapf. (Lemongrass) plant under Siwa Oasis conditions. J. Med. Plants Stud. 2017, 5, 195–203. [Google Scholar]
- Majewska, E.; Kozłowska, M.; Gruczyńska-Sękowska, E.; Kowalska, D.; Tarnowska, K. Lemongrass (Cymbopogon citratus) essential oil: Extraction, composition, bioactivity and uses for food preservation—A review. Pol. J. Food Nutr. Sci. 2019, 69, 327–341. [Google Scholar] [CrossRef]
- Soraes, M.O.; Alves, R.C.; Pires, P.C.; Oliveira, M.B.; Vinha, A.F. Angolan Cymbopogon citratus used for therapeutic benefits: Nutritional composition and influence of solvents in phytochemicals content and antioxidant activity of leaf extracts. Food Chem. Toxicol. 2013, 60, 413–418. [Google Scholar] [CrossRef]
- Anal, J.M.H. Trace and essential elements analysis in Cymbopogon citratus (DC.) Stapf samples by graphite furnace-atomic absorption spectroscopy and its health concern. J. Toxicol. 2014, 2014, 690758. [Google Scholar] [CrossRef]
- d’Ávila, J.V.; Martinazzo, A.P.; dos Santos, F.S.; Teodoro, C.E.d.S.; Portz, A. Essential oil production of lemongrass (Cymbopogon citratus) under organic compost containing sewage sludge. Rev. Bras. Eng. Agríc. Ambient. 2016, 20, 811–816. [Google Scholar] [CrossRef]
- El-Mahrouk, E.M.; Abido, A.I.; Radwan, F.I.; Hamed, E.S.; El-Nagar, E.E. Vegetative growth and essential oil productivity of lemongrass (Cymbopogon citratus) as affected by NPK and some growth stimulators. Int. J. Bot. Stud. 2018, 3, 48–55. [Google Scholar]
- AL-Joburi, M.A. The effect of spraying a mixture of micronutrients and plant growth regulators on a vegetative growth the chemical contents and some physical characters for volatile oils of lemon grass plant (Cymbopogon citratus L.). Tikrit. J. Pure Sci. 2018, 23, 49–59. [Google Scholar] [CrossRef]
- Zigene, Z.D.; Kassahun, B.M.; Degu, B. Agronomic characterstics and essential oil yield of Java Citronella (Cymbopogon Winterianus Jowitt) as affected by harvesting age and plant population density. Acad. Res. J. Agric. Sci. Res. 2018, 6, 70–76. [Google Scholar]
- De Silva, G.B.V.U.; Dharmadasa, R.M.; Senanayake, R.A.S.P.; Lintha, A.; Sewwandi, S.K.U. Comparison of essential oil content and composition of different parts of Cymbopogon citratus (DC.) Stapf (Poaceae) grown in Sri Lanka. World J. Agric. Res. 2020, 8, 1–5. [Google Scholar]
- Guleria, K.; Sehgal, A. Appraisal of antioxidant effect of fresh and dried leaves of lemongrass (Cymbopogon citratus). Plant Arch. 2020, 20 (Suppl. S2), 2554–2557. [Google Scholar]
- Piasecki, B.; Biernasiuk, A.; Skiba, A.; Skalicka-Woźniak, K.; Ludwiczuk, A. Composition, anti-MRSA activity and toxicity of essential oils from Cymbopogon species. Molecules 2021, 26, 7542. [Google Scholar] [CrossRef]
- Valková, V.; Ďúranová, H.; Galovičová, L.; Borotová, P.; Vukovic, N.L.; Vukic, M.; Kačániová, M. Cymbopogon citratus essential oil: Its application as an antimicrobial agent in food preservation. Agronomy 2022, 12, 155. [Google Scholar] [CrossRef]
- Mbili, N.C.; Opara, U.L.; Lennox, C.L.; Vries, F.A. Citrus and lemongrass essential oils inhibit Botris cinerea on ‘Golden Delicious’, ‘Pink Lady’ and ‘Granny Smith’ apples. J. Plant Dis. Protect. 2017, 124, 499–511. [Google Scholar] [CrossRef]
- He, L.; Zhao, Y.; Ye, M.; Zhan, J.; Tao, L.; Yang, Y.; Fan, L.; Su, F.; Chen, Q. Antifungal Activity of Cymbopogon citratus Essential Oils from Different Habitats against Botrytis cinerea. 2022. Available online: https://ssrn.com/abstract=4074553 (accessed on 25 November 2023). [CrossRef]
- Sulaiman, A.A.Y. Antifungal activity of volatiles from Lemongrass (Cymbopogon ctratus) and Peppermint (Mentha piperita) oils against some respiratory pathogenic species of Aspergillus. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 261–272. [Google Scholar]
- Cimanga, K.; Apers, S.; de Bruyne, T.; Van Miert, S.; Hermans, N.; Totte, J.; Vlietinck, A.J.; Kambu, K.; Tona, L. Chemical composition and antifungal activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J. Essent. Oil Res. 2002, 14, 382–387. [Google Scholar] [CrossRef]
- Rozzi, N.L.; Phippen, W.; Simon, J.E.; Singh, R.K. Supercritical fluid extraction of essential oil components from lemon-scented botanicals. LWT—Food Sci. Technol. 2002, 35, 319–324. [Google Scholar] [CrossRef]
- Schaneberg, B.T.; Khan, I.A. Comparison of extraction methods for marker compounds in the essential oil of lemon grass by cg. J. Agric. Food Chem. 2002, 50, 1345–1349. [Google Scholar] [CrossRef] [PubMed]
- Miean, K.H.; Mohamed, S. Flavonoid (Myricitin, Quercetin, Kaempferol, Luteolin, and Apigenin) Content of Edible Tropical Plants. J. Agric. Food Chem. 2001, 49, 3106–3112. [Google Scholar] [CrossRef] [PubMed]
- Nakiyingi, C. Determination of Quality and Quantity of Essential Oils from Lemon Grass (Cymbopogon citratus) of Different Maturity Stages and from Different Environments. Bachelor’s Thesis, School of Physical Sciences (Phys-Sciences) Collection, Makerere University, Kampala, Uganda, 2021. Available online: https://hdl.handle.net/20.500.12281/10085 (accessed on 12 January 2022).
- Ewansiha, J.U.; Garba, S.A.; Mawak, J.D.; Oyewole, O.A. Antimicrobial activity of Cymbopogon citratus (Lemon Grass) and it’s phytochemical properties. Front. Sci. 2012, 2, 214–220. [Google Scholar]
- Gao, X.; Hu, Y.; Tao, Y.; Liu, S.; Chen, H.; Li, J.; Zhao, Y.; Sheng, J.; Tian, Y.; Fan, Y. Cymbopogon citratus (DC.) Stapf aqueous extract ameliorates loperamide-induced constipation in mice by promoting gastrointestinal motility and regulating the gut microbiota. Front. Microbiol. 2022, 13, 1017804. [Google Scholar] [CrossRef] [PubMed]
- Hasan-Al-Sharif, M.; Hossain, M.M.; Asha, A.S.; Al-Mamun, M. Lemongrass (Cymbopogon Citratus) Essential Oil Improves Gut Health and Production Performance in Broiler: A Review. Int. J. Curr. Sci. 2023, 13, 788–801. Available online: https://rjpn.org/ijcspub/papers/IJCSP23C1205.pdf (accessed on 15 January 2024).
- Olalekan, O.; Olalekan, O.; Adebanjo, F.; Onasanya, A.; Elumalero, G.; Apenah, M.; Akinbile, O. Cymbopogon citratus reaction on aluminium nitrate induced stomach damage in adult female Wistar rat. Niger. J. Sci. Environ. 2021, 19, 152–162. [Google Scholar]
- Villalobos, M.C.; Nicolas, M.G.; Trinidad, T.P. Antihyperglycemic and cholesterol-lowering potential of dietary fibre from lemongrass (Cymbopogon citratus Stapf.). Mediterr. J. Nutr. Metab. 2021, 14, 453–467. [Google Scholar] [CrossRef]
- Lima, E.O.; Gompertz, O.F.; Giesbrecht, A.M.; Paulo, M.Q. In vitro antifungal activity of essential oil from officinal plants against dermatophyte. Mycoses 1993, 36, 333–363. [Google Scholar] [CrossRef]
- Sahal, G.; Woerdenbag, H.J.; Hinrichs, W.L.; Visser, A.; Tepper, P.G.; Quax, W.J.; van der Mei, H.C.; Bilkay, I.S. Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study. J. Ethnopharmacol. 2020, 246, 112188. [Google Scholar] [CrossRef]
- Pawar, V.C.; Thaker, V.S. In vitro efficacy of 75 essential oils against Aspergillus Niger. Mycoses 2006, 49, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Tripathi, A. Effects of Citrus sinesis (L.) Osbeck epicarp essential oil on growth and morphogenesis of Aspergillus Niger (L.) Van Tieghem. Microbiol. Res. 2008, 163, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Chen, P.F.; Chang, S.-T. Antifungal activities of essential oils and their constituents from indigenous cinnamon (Cinnamomum osmophloeum) leaves against wood decay fungi. Bioresour. Technol. 2005, 96, 813–818. [Google Scholar] [CrossRef]
- Silva, C.B.; Guterres, S.S.; Weisheimer, V.; Schapoval, E.E.S. Antifungal activity of the lemongrass oil citral against Candida spp. Braz. J. Infect. Dis. 2008, 12, 63–66. [Google Scholar] [CrossRef]
- Hamza, I.S.; Ahmed, S.H.; Aoda, H. Study on the antimicrobial activity of Lemongrass leaf extracts. Iraq. J. Mark. Res. Consum. Protec. 2009, 1, 198–212. [Google Scholar]
- Chaves-Quirós, C.; Usuga-Usuga, J.S.; Morales-Uchima, S.M.; Tofiño-Rivera, A.P.; Tobón-Arroyave, S.I.; Martínez-Pabón, M.C. Assessment of cytotoxic and antimicrobial activities of two components of Cymbopogon citratus essential oil. J. Clin. Exp. Dent. 2020, 12, e749–e754. [Google Scholar] [CrossRef]
- Moustafa, M.A.; Hassan, N.N.; Alfuhaid, N.A.; Amer, A.; Awad, M. Insights into the toxicity, biochemical activity, and molecular docking of Cymbopogon citratus essential oils and citral on Spodoptera littoralis (Lepidoptera: Noctuidae). J. Econ. Entomol. 2023, 116, 1185–1195. [Google Scholar] [CrossRef]
- Hamer, K.A.; Carson, C.F.; Riley, T.V. In vitro activity of essential oils, in particular Melaleuca alterniflolia (tea tree) oil and tea tree oil products, against Candida spp. J. Antimicrob. Chemother. 1998, 42, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Onawunmi, G.O.; Yisak, W.A.; Ogunlana, G.O. Antibacterial constituents in the essential oil of Cymbopogon citratus (D.C.) Stapf. J. Ethnopharmacol. 1984, 12, 279–286. [Google Scholar] [CrossRef]
- Premathilake, U.G.A.T.; Wathugala, D.L.; Dharmadasa, R.M. Evaluation of chemical composition and assessment of antimicrobial activities of essential oil of lemongrass (Cymbopogon citratus (DC.) Stapf). Int. J. Minor Fruits Med. Arom. Plants 2018, 4, 13–19. [Google Scholar]
- Selim, S.A. Chemical composition, antioxidant and antimicrobial activity of the essential oil and methanol extract of the Egyptian lemongrass Cymbopogon proximus Stapf. Gras. Aceites 2011, 62, 55–61. [Google Scholar] [CrossRef]
- Sylvestre, M.; Pichette, A.; Longtin, A.; Nagau, F.; Legault, J. Essential oil analysis and anticancer activity of leaf essential oil of Croton flavens L.; from Guadeloupe. J. Ethnopharmacol. 2006, 103, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.R.; Ponce, A.G.; del Valle, C.E.; Roura, S.I. Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT—Food Sci. Technol. 2005, 38, 565–570. [Google Scholar] [CrossRef]
- de Souza, E.L.; de Barros, J.C.; de Oliveira, C.E.; da Conceição, M.L. Influence of Origanum vulgare L. essential oil on enterotoxin production, membrane permeability and surface characteristics of Staphylococcus aureus. Int. J. Food Microbiol. 2010, 137, 308–311. [Google Scholar] [CrossRef] [PubMed]
- Boeira, C.P.; Piovesan, N.; Flores, D.C.; Soquetta, M.B.; Lucas, B.N.; Heck, R.T.; dos Santos, A.J.; Campagnol, B.C.; dos Santos, D.; Flores, E.M.; et al. Phytochemical characterization and antimicrobial activity of Cymbopogon citratus extract for application as natural antioxidant in fresh sausage. Food Chem. 2020, 319, 126553. [Google Scholar] [CrossRef] [PubMed]
- Nguefack, J.; Dongmo, J.B.; Dakole, C.D.; Leth, V.; Vismer, H.F.; Torp, J.; Guemdjom, E.F.; Mbeffo, M.; Tamgue, O.; Fotio, D.; et al. Food preservative potential of essential oils and fractions from Cymbopogon citratus, Ocimum gratissimum and Thymus vulgaris against mycotoxigenic fungi. Int. J. Food Microbiol. 2009, 131, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef] [PubMed]
- Naik, M.I.; Fomda, B.A.; Jaykumar, E.; Bhat, J.A. Antibacterial activity of lemongrass (Cymbopogon citratus) oil against some selscted pathogenic bacterias. Asian Pac. J. Trop. Med. 2010, 3, 535–538. [Google Scholar] [CrossRef]
- Nyarko, H.D.; Barku, V.Y.; Batama, J. Antimicrobial Examinations of Cymbopogon citratus and Adiatum capillus-Veneris Used in Ghanaian Folkloric Medicine. Int. J. Life Sci. Pharm. Res. 2012, 2, 115–121. Available online: http://hdl.handle.net/123456789/5966 (accessed on 21 December 2023).
- Reichling, J.; Schnitzler, P.; Suschke, U.; Saller, R. Essential Oils of Aromatic Plants with Antibacterial, Antifungal, Antiviral, and Cytotoxic Properties—An Overview. Forsch. Komplementärmedizin/Res. Complement. Med. 2009, 16, 79–90. [Google Scholar] [CrossRef]
- Salih, A.H.; Salih, R.H.; Ahmed, Y.H. Bioactivity of Cymbopogon citratus aqueous extract against measles virus and some bacterial isolates. Casp. J. Environ. Sci. 2022, 20, 585–592. [Google Scholar] [CrossRef]
- Sharma, A.D.; Kaur, I. Targeting H3N2 Influenza Virus RNA-dependent RNA Polymerase by Using Bioactives from Essential Oils from Eucalyptus polybrachtea, Cymbopogon citratus and Cymbopogon khasianus. Biol. Med. Nat. Prod. Chem. 2023, 12, 515–524. [Google Scholar] [CrossRef]
- Thuy, B.T.P.; Nhan, V.D.; Quang, N.M.; Duoc, N.T.; Van Tat, P. Evaluation of SARS-CoV-2 inhibition of some compounds in Cymbopogon citratus oil combining docking and molecular dynamics simulations. Vietnam J. Chem. 2021, 59, 790–799. [Google Scholar] [CrossRef]
- Kaur, S.; Thakur, B.; Kaur, G.; Kaur, R. Phytochemicals and Phyto-Essential Oils as Potent Antiviral Agents. In Promising Antiviral Herbal and Medicinal Plants; CRC Press: Boca Raton, FL, USA, 2024; pp. 62–78. [Google Scholar] [CrossRef]
- Jadhav, A.K.; Karuppayil, S.M. Essential Oil Components: Anti-viral Properties. In Antimicrobials in Pharmaceutical and Medicinal Research; CRC Press: Boca Raton, FL, USA, 2023; pp. 109–124. ISBN 9781003268932. [Google Scholar]
- Minami, M.; Kita, M.; Nakaya, T.; Yamamoto, T.; Kuriyama, H.; Imanishi, J. The inhibitory effect of essential oils on herpes simplex virus type 1 replication in vitro. Microbiol. Immunol. 2003, 47, 681–684. [Google Scholar] [CrossRef]
- Bacon, T.H.; Levin, M.J.; Leary, J.J.; Sarisky, R.T.; Sutton, D. Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy. Clin. Microbiol. Rev. 2003, 16, 114–128. [Google Scholar] [CrossRef]
- Morfin, F.; Thouvenot, D. Herpes simplex virus resistance to antiviral drugs. J. Clin. Virol. 2003, 26, 29–37. [Google Scholar] [CrossRef]
- Wani, A.R.; Yadav, K.; Khursheed, A.; Rather, M.A. An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses. Microb. Pathog. 2021, 152, 104620. [Google Scholar] [CrossRef]
- Prado, G.M.; Prado, J.C.S.; Pinheiro, C.V.F.; Daza-Cardona, E.A.; Barbosa, F.C.B.; de Souza, E.B.; dos Santos Fontenelle, R.O. Cymbopogon sp. from ethnobotany to antimicrobial: An integrative review. Res. Soc. Dev. 2022, 11, e19211931587. [Google Scholar] [CrossRef]
- Tshibangu, D.S.; Matondo, A.; Lengbiye, E.M.; Inkoto, C.L.; Ngoyi, E.M.; Kabengele, C.N.; Bongo, G.N.; Gbolo, B.Z.; Kilembe, J.T.; Mwanangombo, D.T.; et al. Possible effect of aromatic plants and essential oils against COVID-19: Review of their antiviral activity. J. Complement. Altern. Med. Res. 2020, 11, 10–22. [Google Scholar] [CrossRef]
- Ma, L.; Yao, L. Antiviral effects of plant-derived essential oils and their components: An updated review. Molecules 2020, 25, 2627. [Google Scholar] [CrossRef]
- Tang, L.I.C.; Ling, A.P.; Koh, R.Y.; Chye, S.M.; Voon, K.G. Screening of anti-dengue activity in methanolic extracts of medicinal plants. BMC Complement. Altern. Med. 2012, 12, 3. [Google Scholar] [CrossRef]
- Juan-Pablo, B.P.; David, P.E.; Mónica, S.R.; Ashutosh, S.; Daniel, N.A.; Dealmy, D.G.; Rubén, G.-G.; Sergio-Everardo, V.-G.; Agustina, R.-M.; María-Del-Carmen, V.-M.; et al. Medicinal Plants with Anti-dengue and Immunomodulatory Activity. Curr. Pharm. Biotechnol. 2023, 24, 486–494. [Google Scholar] [CrossRef]
- Pal, D.; Lal, P. Herbal Drugs and Medicinal Plants in Controlling and Treatment of Diseases Caused by Dengue Virus (DEN-1 & 2): Ethnopharmacology, Chemistry, and Clinical and Preclinical Studies. In Anti-Viral Metabolites from Medicinal Plants; Springer International Publishing: Cham, Switzerland, 2023; pp. 683–746. [Google Scholar] [CrossRef]
- Lim, S.Y.M.; Chieng, J.Y.; Pan, Y. Recent insights on anti-dengue virus (DENV) medicinal plants: Review on in vitro, in vivo and in silico discoveries. All Life 2021, 14, 1–33. [Google Scholar] [CrossRef]
- Azad, M.M.; Ahammed, M.M.; Islam, M.; Mannan, M.A. Role of Medicinal Plants against Dengue Virus: A Review. J. Hamdard Univ. Bangladesh 2021, 7, 1–2. [Google Scholar]
- Pan, D.; Machado, L.; Bica, C.G.; Machado, A.K.; Steffani, J.A.; Cadoná, F.C. In Vitro Evaluation of Antioxidant and Anticancer Activity of Lemongrass (Cymbopogon citratus (D.C.) Stapf). Nutr. Cancer 2022, 74, 1474–1488. [Google Scholar] [CrossRef]
- Gomes, L.F.; Longhi, P.J.H.; Machado, L.; da Cruz, I.B.M.; Montano, M.A.E.; Martins, M.; Machado, S.A.; Steffani, J.A.; Cadoná, F.C. Lemongrass (Cymbopogon citratus (D.C.) Stapf) Presents Antitumoral Effect and Improves Chemotherapy Activity in Prostate Cancer Cells. Anticancer Agents Med. Chem. 2021, 21, 2337–2350. [Google Scholar] [CrossRef]
- Philion, C.; Ma, D.; Ruvinov, I.; Mansour, F.; Pignanelli, C.; Noel, M.; Saleem, A.; Arnason, J.; Rodrigues, M.; Singh, I.; et al. Cymbopogon citratus and Camellia sinensis extracts selectively induce apoptosis in cancer cells and reduce growth of lymphoma xenografts in vivo. Oncotarget 2017, 8, 110756–110773. [Google Scholar] [CrossRef]
- Ruvinov, I.; Nguyen, C.; Scaria, B.; Vegh, C.; Zaitoon, O.; Baskaran, K.; Mehaidli, A.; Nunes, M.; Pandey, S. Lemongrass Extract Possesses Potent Anticancer Activity against Human Colon Cancers, Inhibits Tumorigenesis, Enhances Efficacy of FOLFOX, and Reduces Its Adverse Effects. Integr. Cancer Ther. 2019, 18, 1. [Google Scholar] [CrossRef]
- Bayala, B.; Bassole, I.H.N.; Maqdasy, S.; Baron, S.; Simpore, J.; Lobaccaro, J.A. Cymbopogon citratus and Cymbopogon giganteus essential oils have cytotoxic effects on tumor cell cultures. Identification of citral as a new putative anti-proliferative molecule. Biochimie 2018, 153, 162–170. [Google Scholar] [CrossRef]
- Manosroi, J.; Dhumtanom, P.; Manosroi, A. Anti-proliferative activity of essential oil extracted from Thai medicinal plants on KB and P388 cell lines. Cancer Lett. 2006, 235, 114–120. [Google Scholar] [CrossRef]
- Zheng, G.Q.; Kenney, P.M.; Lam, L.T. Potential anticarcinogenic natural products isolated from lemongrass oil and galanga root oil. J. Agric. Food Chem. 1993, 41, 153–156. [Google Scholar] [CrossRef]
- Suaeyun, R.; Kinouchi, T.; Arimochi, H.; Vinitketkumnuen, U.; Ohnishi, Y. Inhibitory effects of lemon grass (Cymbopogon citratus Stapf) on formation of azoxymethane-induced DNA adducts and abberant crypt foci in the rat colon. Carcinogenesis 1997, 18, 949–955. [Google Scholar] [CrossRef]
- Puatanachokchai, R.; Kishida, H.; Denda, A.; Murata, N.; Konishi, Y.; Vinitketkumnuen, U.; Nakae, D. Inhibitory effects of lemon grass (Cymbopogon citratus Stapf) extract on the early phase of hepatocarcinogenesis after initiation with diehtylnitrosamine in male Fischer 344 rats. Cancer Lett. 2002, 183, 9–15. [Google Scholar] [CrossRef]
- Halabi, M.F.; Sheikh, B.Y. Anti-proliferative effect and phytochemical analysis of Cymbopogon citratus extract. BioMed Res. Int. 2014, 2014, 906239. [Google Scholar] [CrossRef]
- Trang, D.T.; Hoang, T.K.V.; Nguyen, T.T.M.; Van Cuong, P.; Dang, N.H.; Dang, H.D.; Nguyen Quang, T.; Dat, N.T. Essential Oils of Lemongrass (Cymbopogon citratus Stapf) Induces Apoptosis and Cell Cycle Arrest in A549 Lung Cancer Cells. BioMed Res. Int. 2020, 2020, 5924856. [Google Scholar] [CrossRef]
- Thangam, R.; Sathuvan, M.; Poongodi, A.; Suresh, V.; Pazhanichamy, K.; Sivasubramanian, S.; Kanipandian, N.; Ganesan, N.; Rengasamy, R.; Thirumurugan, R.; et al. Activation of intrinsic apoptotic signaling pathway in cancer cells by Cymbopogon citratus polysaccharide fractions. Carbohydr. Polym. 2014, 17, 138–150. [Google Scholar] [CrossRef]
- Chen, Y.; Qiao, S.; Liu, H.; Xing, H.; Chen, P. Structural Characterization and Anti-breast Cancer Activity in vitro of a Novel Polysaccharide from Cymbopogon citratus. Front. Nutr. 2022, 11, 911838. [Google Scholar] [CrossRef]
- IFRA Standards. Available online: https://ifrafragrance.org/docs/default-source/ifra-code-of-practice-and-standards/ifra-standards---48th-amendment/ifra-standards-in-full---booklet.pdf (accessed on 22 May 2024).
- Smith, R.L.; Cohen, S.M.; Doull, J. GRAS flavouring substances 22. Food Technol. 2005, 59, 24–62. [Google Scholar]
- Sinha, S.; Jothiramajayam, M.; Ghosh, M.; Mukherjee, A. Evaluation of toxicity of essential oils palmarosa, citronella, lemongrass and vetiver in human lymphocytes. Food Chem. Toxicol. 2014, 68, 71–77. [Google Scholar] [CrossRef]
- Sousa, S.M.; Silva, P.S.; Viccini, L.F. Cytogenotoxicity of Cymbopogon citratus (DC) Stapf (lemon grass) aqueous extracts in vegetal test systems. An. Acad. Bras. Cienc. 2010, 82, 305–311. [Google Scholar] [CrossRef]
Main Essential Oil Ingredients | Range of Ingredient Content [%] |
---|---|
α-pinene | 0.06–1.9 |
6-methyl-5-heptene-2-one | 1.1–1.6 |
myrcen | 2.0–25.3 |
limonene | 0.2–13.8 |
1-8-cineol | 0.12–6.4 |
linalool | 0.1–4.82 |
neral 1 | 10.5–35.1 |
geraniol | 0.4–6.6 |
geranial 1 | 24.9–48.0 |
geranylacetate | 0.1–6.2 |
β-caryophylene | 0.1–8.47 |
caryophyllene oxide | 0.1–3.56 |
Chemical Ingredients | Leaf Extract | Root Extract | ||||
---|---|---|---|---|---|---|
HX | CCF | MOH | HX | CCF | MOH | |
tannins | - | + | + | - | + | + |
flavonoids | + | + | + | + | + | - |
phenols | - | + | - | - | + | - |
hydrocarbons | - | + | + | - | + | + |
essential oil | + | + | - | - | + | + |
Fungi Species | % Inhibition of Spore Maturation as Compared to the Control Sample | ||
---|---|---|---|
5 * | 10 * | 15 * | |
A. niger | 83 | 100 | 100 |
A. flavus | 31 | 68 | 100 |
A. fumigatus | 96 | 100 | 100 |
Bacterial Strain | MIC (µg/mL) | MBC (µ/mL) | ||
---|---|---|---|---|
Leaf Extract | Root Extract | Leaf Extract | Root Extract | |
S. aureus | 20.0 | 18.0 | 28.0 | 26.0 |
S. typhi | 24.0 | 20.0 | 28.0 | 24.0 |
E. coli | 14.0 | 14.0 | 16.0 | 16.0 |
Bacterial Strain | Size of Microbial Growth Inhibition Zones (mm) | |||||
---|---|---|---|---|---|---|
5% | 10% | 15% | 20% | 25% | 30% | |
Staphylococcus aureus | 14.33 | 19.33 | 22.33 | 24.66 | 27.33 | 29.66 |
Bacillus cereus | 12.66 | 15.66 | 18.66 | 21.00 | 24.00 | 28.00 |
Bacillus subtilis | 8.33 | 10.33 | 12.66 | 16.00 | 19.66 | 24.66 |
Escherichia coli | 8.33 | 11.33 | 14.00 | 16.33 | 19.33 | 22.33 |
Klebsiella pneumoniae | 7.66 | 9.33 | 11.33 | 12.66 | 14.66 | 17.00 |
Medium | Size of Microbial Growth Inhibition Zones (mm) | |||
---|---|---|---|---|
Proteus mirabilis | P. aeruginosa | S. aureus | K. pneumoniae | |
water | 0 | 0 | 0 | 0 |
ethanol | 0 | 0 | 7 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiełtyka-Dadasiewicz, A.; Esteban, J.; Jabłońska-Trypuć, A. Antiviral, Antibacterial, Antifungal, and Anticancer Activity of Plant Materials Derived from Cymbopogon citratus (DC.) Stapf Species. Pharmaceuticals 2024, 17, 705. https://doi.org/10.3390/ph17060705
Kiełtyka-Dadasiewicz A, Esteban J, Jabłońska-Trypuć A. Antiviral, Antibacterial, Antifungal, and Anticancer Activity of Plant Materials Derived from Cymbopogon citratus (DC.) Stapf Species. Pharmaceuticals. 2024; 17(6):705. https://doi.org/10.3390/ph17060705
Chicago/Turabian StyleKiełtyka-Dadasiewicz, Anna, Javier Esteban, and Agata Jabłońska-Trypuć. 2024. "Antiviral, Antibacterial, Antifungal, and Anticancer Activity of Plant Materials Derived from Cymbopogon citratus (DC.) Stapf Species" Pharmaceuticals 17, no. 6: 705. https://doi.org/10.3390/ph17060705
APA StyleKiełtyka-Dadasiewicz, A., Esteban, J., & Jabłońska-Trypuć, A. (2024). Antiviral, Antibacterial, Antifungal, and Anticancer Activity of Plant Materials Derived from Cymbopogon citratus (DC.) Stapf Species. Pharmaceuticals, 17(6), 705. https://doi.org/10.3390/ph17060705