Risk Factors for Respiratory Depression Associated with Tramadol Based on the Global Pharmacovigilance Database (VigiBase)
Abstract
:1. Introduction
2. Results
2.1. Demographic Characteristics of Safety Reports
2.2. Disproportionality Analysis
2.3. Factors Related to ACRD of Tramadol
3. Discussion
4. Materials and Methods
4.1. Data Source and Ethical Statement
4.2. Disproportionality Analysis and Signal Detection Criteria
4.3. Standardized Medical Dictionary for Regulatory Activities Query and the Definition of Respiratory Depression
4.4. Factors Related to Respiratory Depression of Tramadol
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Subedi, M.; Bajaj, S.; Kumar, M.S.; Yc, M. An overview of tramadol and its usage in pain management and future perspective. Biomed. Pharmacother. 2019, 111, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Miotto, K.; Cho, A.K.; Khalil, M.A.; Blanco, K.; Sasaki, J.D.; Rawson, R. Trends in Tramadol: Pharmacology, Metabolism, and Misuse. Obstet. Anesth. Dig. 2017, 124, 44–51. [Google Scholar] [CrossRef]
- Yaksh, T.; Wallace, M. Opioids, Analgesia, and Pain Management. In Goodman and Gilman’s: The Pharmacological Basis of Therapeutics, 13th ed.; Brunton, L.L., Hilal-Dandan, R., Knollmann, B.C., Eds.; McGraw-Hill Education: New York, NY, USA, 2017. [Google Scholar]
- Balhara, Y.P.S.; Parmar, A.; Sarkar, S. Use of Tramadol for Management of Opioid Use Disorders: Rationale and Recommendations. J. Neurosci. Rural Pract. 2018, 9, 397–403. [Google Scholar] [CrossRef] [PubMed]
- García, M.; Lertxundi, U.; Aguirre, C. Tramadol-induced hiccups: A case-noncase study in the European pharmacovigilance database. Ther. Adv. Drug Saf. 2021, 12, 20420986211021230. [Google Scholar] [CrossRef]
- Bigal, L.M.; Bibeau, K.; Dunbar, S. Tramadol Prescription over a 4-Year Period in the USA. Curr. Pain Headache Rep. 2019, 23, 76. [Google Scholar] [CrossRef]
- Khan, S.; Saud, S.; Khan, I.; Asif, M.; Ismail, O.; Salam, A.; Yang, T.J.; Norville, K.J. Serotonin Syndrome Presenting with Concomitant Tramadol and Diphenhydramine Use: A Case Report of an Unlikely Side-Effect. Cureus 2018, 10, e2421. [Google Scholar] [CrossRef]
- Ryan, N.M.; Isbister, G.K. Tramadol overdose causes seizures and respiratory depression but serotonin toxicity appears unlikely. Clin. Toxicol. 2015, 53, 545–550. [Google Scholar] [CrossRef]
- Afshari, R.; Ghooshkhanehee, H. Tramadol overdose induced seizure, dramatic rise of CPK and acute renal failure. J. Pak. Med. Assoc. 2009, 59, 178. [Google Scholar]
- Kahn, L.H.; Alderfer, R.J.; Graham, D.J. Seizures Reported with Tramadol. JAMA 1997, 278, 1661. [Google Scholar] [CrossRef]
- van der Schier, R.; Roozekrans, M.; van Velzen, M.; Dahan, A.; Niesters, M. Opioid-induced respiratory depression: Reversal by non-opioid drugs. F1000Prime Rep. 2014, 6, 79. [Google Scholar] [CrossRef]
- Tantry, T.P.; Kadam, D.; Shetty, P.; Adappa, K.K. Tramadol-induced respiratory depression in a morbidly obese patient with normal renal function. Indian J. Anaesth. 2011, 55, 318–320. [Google Scholar] [CrossRef]
- Stamer, U.M.; Stüber, F.; Muders, T.; Musshoff, F. Respiratory Depression with Tramadol in a Patient with Renal Impairment and CYP2D6 Gene Duplication. Obstet. Anesth. Dig. 2008, 107, 926–929. [Google Scholar] [CrossRef]
- Friedrichsdorf, S.J.; Postier, A.C.; Foster, M.L.P.; Lander, T.A.; Tibesar, R.J.; Lu, Y.; Sidman, J.D. Tramadol versus codeine/acetaminophen after pediatric tonsillectomy: A prospective, double-blinded, randomized controlled trial. J. Opioid Manag. 2015, 11, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Stassinos, G.L.; Gonzales, L.; Klein-Schwartz, W. Characterizing the Toxicity and Dose-Effect Profile of Tramadol Ingestions in Children. Pediatr. Emerg. Care 2019, 35, 117–120. [Google Scholar] [CrossRef] [PubMed]
- USFDA. Codeine and Tramadol Can Cause Breathing Problems for Children; USFDA. 2017. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-restricts-use-prescription-codeine-pain-and-cough-medicines-and (accessed on 1 October 2023).
- HC Summary Safety Review—Tramadol-Containing Products—Assessing the Potential Risk of Serious Breathing Problems (Respiratory Depression) in Children and Adolescents. 2017. Available online: https://hpr-rps.hres.ca/reg-content/summary-safety-review-detail.php?linkID=SSR00149 (accessed on 5 October 2023).
- Rodieux, F.; Vutskits, L.; Posfay-Barbe, K.M.; Habre, W.; Piguet, V.; Desmeules, J.A.; Samer, C.F. When the Safe Alternative Is Not That Safe: Tramadol Prescribing in Children. Front. Pharmacol. 2018, 9, 148. [Google Scholar] [CrossRef] [PubMed]
- Vittinghoff, M.; Lönnqvist, P.; Mossetti, V.; Heschl, S.; Simic, D.; Colovic, V.; Dmytriiev, D.; Hölzle, M.; Zielinska, M.; Kubica-Cielinska, A.; et al. Postoperative pain management in children: Guidance from the pain committee of the European Society for Paediatric Anaesthesiology (ESPA Pain Management Ladder Initiative). Pediatr. Anesth. 2018, 28, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Boom, M.; Niesters, M.; Sarton, E.; Aarts, L.; Smith, T.W.; Dahan, A. Non-analgesic effects of opioids: Opioid-induced respiratory depression. Curr. Pharm. Des. 2012, 18, 5994–6004. [Google Scholar] [CrossRef] [PubMed]
- Algera, M.H.; Kamp, J.; van der Schrier, R.; van Velzen, M.; Niesters, M.; Aarts, L.; Dahan, A.; Olofsen, E. Opioid-induced respiratory depression in humans: A review of pharmacokinetic–pharmacodynamic modelling of reversal. Br. J. Anaesth. 2019, 122, e168–e179. [Google Scholar] [CrossRef] [PubMed]
- Baldo, B.A.; Rose, M.A. Mechanisms of opioid-induced respiratory depression. Arch. Toxicol. 2022, 96, 2247–2260. [Google Scholar] [CrossRef]
- Hassanian-Moghaddam, H.; Farajidana, H.; Sarjami, S.; Owliaey, H. Tramadol-induced apnea. Am. J. Emerg. Med. 2013, 31, 26–31. [Google Scholar] [CrossRef]
- Knisely, J.S.; Campbell, E.D.; Dawson, K.S.; Schnoll, S.H. Tramadol post-marketing surveillance in health care professionals. Drug Alcohol Depend. 2002, 68, 15–22. [Google Scholar] [CrossRef]
- Blonde, L.; Khunti, K.; Harris, S.B.; Meizinger, C.; Skolnik, N.S. Interpretation and Impact of Real-World Clinical Data for the Practicing Clinician. Adv. Ther. 2018, 35, 1763–1774. [Google Scholar] [CrossRef]
- de Canecaude, C.; Rousseau, V.; Chebane, L.; Lafaurie, M.; Durrieu, G.; Montastruc, J. Can tramadol really induce hyponatraemia? A pharmacovigilance study. Br. J. Clin. Pharmacol. 2021, 87, 683–686. [Google Scholar] [CrossRef]
- Baertsch, N.A.; Bush, N.E.; Burgraff, N.J.; Ramirez, J.M. Dual mechanisms of opioid-induced respiratory depression in the inspiratory rhythm-generating network. Elife 2021, 10, e67523. [Google Scholar] [CrossRef] [PubMed]
- Teppema Luc, J.; Nieuwenhuijs, D.; Olievier Cees, N.; Dahan, A. Respiratory Depression by Tramadol in the Cat: Involvement of Opioid Receptors. Anesthesiology 2003, 98, 420–427. [Google Scholar] [CrossRef]
- Vickers, M.D.; O’Flaherty, D.; Szekely, S.M.; Read, M.; Yoshizumi, J. Tramadol: Pain relief by an opioid without depression of respiration. Anaesthesia 1992, 47, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Houmes, R.J.; Voets, M.A.; Verkaaik, A.; Erdmann, W.; Lachmann, B. Efficacy and safety of tramadol versus morphine for moderate and severe postoperative pain with special regard to respiratory depression. Anesth. Analg. 1992, 74, 510–514. [Google Scholar] [CrossRef]
- Yang, B.R.; Um, H.-Y.; Lee, M.T.; Kim, M.S.; Jung, S.-Y. Characterizing tramadol users with potentially inappropriate co-medications: A latent class analysis among older adults. PLoS ONE 2021, 16, e0246426. [Google Scholar] [CrossRef]
- Dahan, A.; Romberg, R.; Teppema, L.; Sarton, E.; Bijl, H.; Olofsen, E. Simultaneous measurement and integrated analysis of analgesia and respiration after an intravenous morphine infusion. Anesthesiology 2004, 101, 1201–1209. [Google Scholar] [CrossRef] [PubMed]
- White, J.M.; Irvine, R.J. Mechanisms of fatal opioid overdose. Addiction 1999, 94, 961–972. [Google Scholar] [CrossRef]
- Stewart, W.A.; Harrison, R.; Dooley, J.M. Respiratory depression in the acute management of seizures. Arch. Dis. Child. 2002, 87, 225–226. [Google Scholar] [CrossRef]
- Lochmann, D.; Richardson, T. Selective Serotonin Reuptake Inhibitors. Handb. Exp. Pharmacol. 2019, 250, 135–144. [Google Scholar]
- Volpi-Abadie, J.; Kaye, A.M.; Kaye, A.D. Serotonin syndrome. Ochsner J. 2013, 13, 533–540. [Google Scholar]
- Ingelman-Sundberg, M.; Sim, S.C.; Gomez, A.; Rodriguez-Antona, C. Influence of cytochrome P450 polymorphisms on drug therapies: Pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol. Ther. 2007, 116, 496–526. [Google Scholar] [CrossRef] [PubMed]
- Dean, L.; Kane, M. Tramadol Therapy and CYP2D6 Genotype. In Medical Genetics Summaries; Pratt, V.M., Scott, S.A., Pirmohamed, M., Esquivel, B., Kattman, B.L., Malheiro, A.J., Eds.; National Center for Biotechnology Information: Bethesda, MD, USA, 2012. [Google Scholar]
- St Sauver, J.L.; Olson, J.E.; Roger, V.L.; Nicholson, W.T.; Black, J.L., 3rd; Takahashi, P.Y.; Caraballo, P.J.; Bell, E.J.; Jacobson, D.J.; Larson, N.B.; et al. CYP2D6 phenotypes are associated with adverse outcomes related to opioid medications. Pharmgenomics Pers. Med. 2017, 10, 217–227. [Google Scholar] [CrossRef]
- Shekhani, R.; Steinacher, L.; Swen, J.J.; Ingelman-Sundberg, M. Evaluation of Current Regulation and Guidelines of Pharmacogenomic Drug Labels: Opportunities for Improvements. Clin. Pharmacol. Ther. 2020, 107, 1240–1255. [Google Scholar] [CrossRef] [PubMed]
- Tirkkonen, T.; Laine, K. Drug interactions with the potential to prevent prodrug activation as a common source of irrational prescribing in hospital inpatients. Clin. Pharmacol. Ther. 2004, 76, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Monte, A.A.; Heard, K.J.; Campbell, J.; Hamamura, D.; Weinshilboum, R.M.; Vasiliou, V. The Effect of CYP2D6 Drug-Drug Interactions on Hydrocodone Effectiveness. Acad. Emerg. Med. 2014, 21, 879–885. [Google Scholar] [CrossRef]
- Beakley, B.D.; Kaye, A.M.; Kaye, A.D. Tramadol, Pharmacology, Side Effects, and Serotonin Syndrome: A Review. Pain Physician 2015, 18, 395–400. [Google Scholar]
- Shadnia, S.; Soltaninejad, K.; Heydari, K.; Sasanian, G.; Abdollahi, M. Tramadol intoxication: A review of 114 cases. Hum. Exp. Toxicol. 2008, 27, 201–205. [Google Scholar] [CrossRef]
- Edwards, I.R.; Biriell, C. Harmonisation in Pharmacovigilance. Drug Saf. 1994, 10, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Bate, A.; Lindquist, M.; Edwards, I.R.; Olsson, S.; Orre, R.; Lansner, A.; De Freitas, R.M. A Bayesian neural network method for adverse drug reaction signal generation. Eur. J. Clin. Pharmacol. 1998, 54, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Rothman, K.J.; Lanes, S.; Sacks, S.T. The reporting odds ratio and its advantages over the proportional reporting ratio. Pharmacoepidemiol. Drug Saf. 2004, 13, 519–523. [Google Scholar] [CrossRef]
- Evans, S.J.W.; Waller, P.C.; Davis, S. Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiol. Drug Saf. 2001, 10, 483–486. [Google Scholar] [CrossRef] [PubMed]
- Bate, A.; Evans, S.J.W. Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiol. Drug Saf. 2009, 18, 427–436. [Google Scholar] [CrossRef] [PubMed]
All Cases of Tramadol (n = 140,721) | ACRD Cases of Tramadol (n = 1126) | All Cases of Tramadol /Paracetamol (n = 51,401) | ACRD Cases of Tramadol/Paracetamol (n = 108) | |
---|---|---|---|---|
Sex (N, %) | ||||
Male | 50,077 (35.6%) | 438 (38.7%) | 15,571 (30.3%) | 44 (40.7%) |
Female | 85,677 (60.9%) | 589 (52.6%) | 34,781 (67.7%) | 60 (55.6%) |
Not known | 4967 (3.5%) | 99 (8.7%) | 1049 (2.0%) | 4 (3.7%) |
Age | ||||
≤11 years | 1172 (0.8%) | 67 (6.0%) | 142 (0.3%) | 0 (0.0%) |
12–17 years | 2650 (1.9%) | 44 (3.9%) | 464 (0.9%) | 5 (4.6%) |
18–44 years | 38,203 (27.2%) | 350 (31.1%) | 8734 (17.0%) | 27 (25.0%) |
45–64 years | 45,481 (32.3%) | 274 (24.3%) | 18,596 (36.2%) | 22 (20.4%) |
65–74 years | 19,300 (13.7%) | 96 (8.5%) | 10,071 (19.6%) | 18 (16.7%) |
≥75 years | 16,896 (12.0%) | 117 (10.4%) | 9069 (17.6%) | 20 (18.5%) |
Unknown | 17,019 (12.1%) | 178 (15.8%) | 4325 (8.4%) | 16 (14.8%) |
Reporter | ||||
Consumer/Non-healthcare professional | 17,818 (19.8%) | 113 (10.0%) | 11,483 (22.3%) | 9 (8.3%) |
Physician | 37,733 (26.8%) | 498 (44.2%) | 10,458 (20.4%) | 64 (59.3%) |
Other healthcare professional | 44,831 (31.9%) | 232 (20.6%) | 16,375 (31.9%) | 15 (13.9%) |
Pharmacist | 15,237 (10.8%) | 160 (14.2%) | 11,794 (23.0%) | 16 (14.8%) |
Lawyer | 721 (0.5%) | 13 (1.2%) | 15 (0.03%) | 0 (0.0%) |
Unknown | 14,381 (10.2%) | 110 (9.8%) | 1276 (2.5%) | 4 (3.7%) |
Serious cases | 25,562 (65.8%) | 938 (83.3%) | 5047 (9.8%) | 94 (87.0%) |
Region | ||||
Americas | 25,061 (17.8%) | 567 (50.4%) | 1319 (2.6%) | 34 (31.5%) |
Europe | 25,994 (18.5%) | 437 (38.8%) | 7018 (13.7%) | 42 (38.9%) |
Asia | 86,202 (61.3%) | 86 (7.6%) | 42,846 (83.4%) | 31 (28.7%) |
Oceania | 2363 (1.7%) | 31 (2.8%) | 6 (0.01%) | 0 (0.0%) |
Africa | 1101 (0.8%) | 5 (0.4%) | 212 (0.4%) | 1 (0.9%) |
Year | ||||
≤2013 | 35,328 (25.1%) | 502 (44.6%) | 7515 (14.6%) | 36 (33.3%) |
2014 | 12,671 (9.0%) | 127 (11.3%) | 4640 (9.0%) | 22 (20.4%) |
2015 | 13,902 (9.9%) | 79 (7.0%) | 5437 (10.6%) | 7 (6.5%) |
2016 | 11,554 (8.2%) | 70 (6.2%) | 3517 (6.8%) | 14 (13.0%) |
2017 | 15,894 (11.3%) | 56 (5.0%) | 7925 (15.4%) | 9 (8.3%) |
2018 | 15,590 (11.1%) | 105 (9.3%) | 7310 (14.2%) | 8 (7.4%0 |
2019 | 15,615 (11.1%) | 89 (7.9%) | 6594 (12.8%) | 8 (7.4%) |
≥2020 | 20,167 (14.3%) | 98 (8.7%) | 8463 (16.5%) | 4 (3.7%) |
Adverse Events | Tramadol (n = 140,721) | Tramadol/Paracetamol (n = 51,401) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. of Reports * | Above Full Database | Above Opioids | No. of Reports | Above Full Database | Above Opioids | |||||||||
PRR (CI) | ROR (CI) | IC025 | PRR | ROR | IC025 | PRR (CI) | ROR (CI) | IC025 | PRR (CI) | ROR (CI) | IC025 | |||
Respiratory arrest | 358 | 2.91 (2.62–3.23) | 2.92 (2.63–3.24) | 1.37 | 0.27 (0.25–0.30) | 0.27 (0.24–0.30) | −1.83 | 13 | 0.29 (0.17–0.49) | 0.29 (0.17–0.49) | −2.66 | 0.03 (0.02–0.05) | 0.03 (0.02–0.05) | −5.85 |
Respiratory depression | 357 | 5.52 (4.97–6.13) | 5.53 (4.98–6.15) | 2.26 | 0.36 (0.32–0.40) | 0.36 (0.32–0.40) | −1.46 | 35 | 1.44 (1.04–2.01) | 1.45 (1.04–2.01) | 0.003 | 0.10 (0.07–0.14) | 0.10 (0.07–0.14) | −3.07 |
Respiratory failure | 129 | 0.56 (0.47–0.67) | 0.56 (0.47–0.67) | −1.08 | 0.40 (0.33–0.48) | 0.40 (0.33–0.48) | −1.42 | 20 | 0.24 (0.15–0.37) | 0.24 (0.15–0.37) | −2.73 | 0.18 (0.12–0.28) | 0.18 (0.12–0.28) | −3.07 |
Bradypnoea | 73 | 8.93 (7.06–11.3) | 8.93 (7.06–11.3) | 2.67 | 0.44 (0.35–0.56) | 0.44 (0.35–0.56) | −1.38 | 10 | 3.21 (1.73–5.99) | 3.21 (1.73–5.99) | 0.50 | 0.17 (0.09–0.32) | 0.17 (0.09–0.32) | −3.42 |
Apnoea | 69 | 0.62 (0.49–0.78) | 0.62 (0.49–0.78) | −1.05 | 0.18 (0.14–0.23) | 0.18 (0.14–0.23) | −2.60 | 6 | 0.15 (0.04–0.33) | 0.15 (0.04–0.33) | −4.04 | 0.05 (0.02–0.11) | 0.05 (0.02–0.10) | −5.58 |
Hypoventilation | 60 | 2.19 (1.70–2.83) | 2.19 (1.70–2.83) | 0.72 | 0.26 (0.20–0.33) | 0.26 (0.20–0.33) | −2.14 | 4 | 0.40 (0.15–1.06) | 0.40 (0.15–1.06 | −2.97 | 0.05 (0.02–0.14) | 0.05 (0.02–0.14) | −5.79 |
Respiratory rate decreased | 34 | 2.22 (1.58–3.11) | 2.22 (1.58–3.11) | 0.59 | 0.18 (0.13–0.25) | 0.18 (0.13–0.25) | −2.76 | 7 | 1.24 (0.59–2.61) | 1.24 (0.59–2.61) | −0.97 | 0.11 (0.05–0.24) | 0.11 (0.05–0.24) | −4.25 |
Acute respiratory failure | 33 | 0.68 (0.48–0.96) | 0.68 (0.48–0.96) | −1.08 | 0.56 (0.39–0.80) | 0.56 (0.39–0.80) | −1.26 | 7 | 0.39 (0.19–0.83) | 0.39 (0.19–0.83) | −2.54 | 0.33 (0.16–0.71) | 0.33 (0.16–0.71) | −2.71 |
Hypopnoea | 29 | 1.91 (1.32–2.75) | 1.91 (1.32–2.75) | 0.33 | 0.51 (0.35–0.74) | 0.51 (0.35–0.74) | −1.42 | 4 | 0.72 (0.27–1.91) | 0.72 (0.27–1.91) | −2.17 | 0.20 (0.07–0.53) | 0.20 (0.07–0.53) | −3.86 |
Acute respiratory distress syndrome | 24 | 0.47 (0.31–0.70) | 0.47 (0.31–0.70) | −1.70 | 0.44 (0.29–0.67) | 0.44 (0.29–0.67) | −1.66 | 3 | 0.16 (0.05–0.50) | 0.16 (0.05–0.50) | −4.50 | 0.16 (0.05–0.49) | 0.16 (0.05–0.49) | −4.45 |
Apnoeic attack | 6 | 1.74 (0.78–3.88) | 1.74 (0.78–3.88) | −0.66 | 0.46 (0.20–1.06) | 0.46 (0.20–1.06) | −2.30 | 0 | - | - | - | - | - | - |
Breath holding | 6 | 1.18 (0.53–2.63) | 1.18 (0.53–2.63) | −1.16 | 1.70 (0.67–4.31) | 1.70 (0.67–4.31) | −0.83 | 1 | 0.54 (0.08–3.81) | 0.54 (0.08–3.81) | −4.45 | 0.68 (0.09–5.03) | 0.68 (0.09–5.03) | −4.17 |
Infantile apnoea | 6 | 1.15 (0.51–2.56) | 1.15 (0.51–2.56) | −1.20 | 0.46 (0.20–1.06) | 0.46 (0.20–1.06) | −2.30 | 0 | - | - | - | - | - | - |
Breath sounds abnormal | 5 | 0.28 (0.16–0.67) | 0.28 (0.16–0.67) | −3.27 | 0.29 (0.12–0.71) | 0.29 (0.12–0.71) | −3.05 | 2 | 0.30 (0.08–1.22) | 0.30 (0.08–1.22) | −4.08 | 0.34 (0.08–1.39) | 0.34 (0.08–1.39) | −3.87 |
Neonatal respiratory depression | 4 | 1.86 (0.70–4.99) | 1.86 (0.70–4.99) | −0.98 | 0.18 (0.07–0.48) | 0.18 (0.07–0.48) | −3.87 | 0 | - | - | - | - | - | - |
Apparent life-threatening event | 2 | 0.50 (0.13–2.01) | 0.50 (0.13–2.01) | −3.43 | 1.93 (0.37–9.92) | 1.93 (0.37–9.92) | −2.04 | 0 | - | - | - | - | - | - |
Neonatal respiratory arrest | 1 | 1.77 (0.25–12.7) | 1.77 (0.25–12.7) | −3.31 | 0.53 (0.07–4.22) | 0.53 (0.07–4.22) | −4.36 | 0 | - | - | - | - | - | - |
Respiratory depth decreased | 1 | 2.37 (0.33–17.1) | 2.37 (0.33–17.1) | −3.10 | 0.80 (0.10–6.66) | 0.80 (0.10–6.66) | −3.98 | 0 | - | - | - | - | - | - |
Respiratory paralysis | 1 | 1.09 (0.15–7.80) | 1.09 (0.15–7.80) | −3.71 | 0.19 (0.03–1.36) | 0.19 (0.03–1.36) | −5.58 | 0 | - | - | - | - | - | - |
Factors | ACRD Cases (n = 1126) | Non-ACRD Cases (n = 139,595) | p Value |
---|---|---|---|
Sex (N, %) § | 0.0001 | ||
Male | 438 (42.7%) | 49,639 (36.8%) | |
Female | 589 (57.4%) | 85,088 (63.2%) | |
Age § | <0.0001 | ||
≤17 years | 111 (11.7%) | 3711 (3.0%) | |
18–64 years | 624 (65.8%) | 83,060 (67.7%) | |
≥65 years | 213 (22.5%) | 35,983 (29.3%) | |
Region | <0.0001 | ||
Americas | 567 (50.4%) | 24,494 (17.6%) | |
Europe | 437 (38.8%) | 25,557 (18.3%) | |
Asia | 86 (7.6%) | 86,116 (61.7%) | |
Oceania | 31 (2.8%) | 2332 (1.7%) | |
Africa | 5 (0.4%) | 1096 (0.8%) | |
Reporter § | <0.0001 | ||
Physician | 498 (49.0%) | 36,337 (26.0%) | |
Pharmacist | 160 (15.8%) | 14,414 (10.3%) | |
Other heath professional | 232 (22.8%) | 31,545 (22.6%) | |
Consumer/Non-healthcare professional | 113 (11.1%) | 42,305 (30.3%) | |
Lawyer | 13 (1.3%) | 708 (0.5%) | |
CYP2D6 inhibitors | <0.0001 | ||
Concomitant users | 136 (12.1%) | 5063 (3.6%) | |
Non-concomitant users | 990 (87.9%) | 134,532 (96.4%) | |
Other opioids * | <0.0001 | ||
User | 350 (31.1%) | 9340 (6.7%) | |
Non-user | 776 (68.9%) | 130,255 (93.3%) | |
Benzodiazepines | <0.0001 | ||
User | 223 (19.8%) | 3919 (2.8%) | |
Non-user | 903 (80.2%) | 135,676 (97.2%) | <0.0001 |
Anti-depressant drugs | |||
User | 226 (20.1%) | 6403 (4.6%) | |
Non-user | 900 (79.9%) | 133,192 (95.4%) | |
Drug abuse | <0.0001 | ||
Drug abusers | 142 (12.6%) | 3248 (2.3%) | |
Non-drug abusers | 984 (87.4%) | 136,347 (97.7%) | |
Lethality | <0.0001 | ||
Death | 233 (20.7%) | 3377 (2.4%) | |
Survival | 893 (79.3%) | 136,218 (97.6%) |
Number of Reports | Interest AEs | All Other AEs |
---|---|---|
Drug of interest | A | B |
All other drugs (or opioids) | C | D |
Indices | Formula | Positive Signal Criteria |
---|---|---|
PRR | [A/(A + B)]/[C/(C + D)] | PRR ≥ 2 |
ROR | (A/B)/(C/D) | ROR ≥ 2 |
IC | IC = log2P(AE, Drug)/P(AE)P(Drug) | Lower limit of 95% CI ≥ 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Lee, G.-H.; Kim, S.; Kim, S.; Kim, Y.; Choi, S.-A. Risk Factors for Respiratory Depression Associated with Tramadol Based on the Global Pharmacovigilance Database (VigiBase). Pharmaceuticals 2024, 17, 205. https://doi.org/10.3390/ph17020205
Park S, Lee G-H, Kim S, Kim S, Kim Y, Choi S-A. Risk Factors for Respiratory Depression Associated with Tramadol Based on the Global Pharmacovigilance Database (VigiBase). Pharmaceuticals. 2024; 17(2):205. https://doi.org/10.3390/ph17020205
Chicago/Turabian StylePark, Sunny, Geon-Ho Lee, Soyun Kim, Solee Kim, Yeju Kim, and Soo-An Choi. 2024. "Risk Factors for Respiratory Depression Associated with Tramadol Based on the Global Pharmacovigilance Database (VigiBase)" Pharmaceuticals 17, no. 2: 205. https://doi.org/10.3390/ph17020205
APA StylePark, S., Lee, G. -H., Kim, S., Kim, S., Kim, Y., & Choi, S. -A. (2024). Risk Factors for Respiratory Depression Associated with Tramadol Based on the Global Pharmacovigilance Database (VigiBase). Pharmaceuticals, 17(2), 205. https://doi.org/10.3390/ph17020205