Targeted Covalent Inhibitors in Drug Discovery, Chemical Biology and Beyond
List of Contributions
- Hoffelner, B.S.; Andreev, S.; Plank, N.; Koch, P. Photocaging of Pyridinylimidazole-Based Covalent JNK3 Inhibitors Affords Spatiotemporal Control of the Binding Affinity in Live Cells. Pharmaceuticals 2023, 16, 264. https://doi.org/10.3390/ph16020264.
- Krüger, N.; Kronenberger, T.; Xie, H.; Rocha, C.; Pöhlmann, S.; Su, H.; Xu, Y.; Laufer, S.A.; Pillaiyar, T. Discovery of Polyphenolic Natural Products as SARS-CoV-2 M(pro) Inhibitors for COVID-19. Pharmaceuticals 2023, 16, 190. https://doi.org/10.3390/ph16020190.
- Hermann, M.R.; Tautermann, C.S.; Sieger, P.; Grundl, M.A.; Weber, A. BIreactive: Expanding the Scope of Reactivity Predictions to Propynamides. Pharmaceuticals 2023, 16, 116. https://doi.org/10.3390/ph16010116.
- McAulay, K.; Bilsland, A.; Bon, M. Reactivity of Covalent Fragments and Their Role in Fragment Based Drug Discovery. Pharmaceuticals 2022, 15, 1366. https://doi.org/10.3390/ph15111366.
- Alves, E.T.M.; Pernichelle, F.G.; Nascimento, L.A.; Ferreira, G.M.; Ferreira, E.I. Covalent Inhibitors for Neglected Diseases: An Exploration of Novel Therapeutic Options. Pharmaceuticals 2023, 16, 1028. https://doi.org/10.3390/ph16071028.
- Schaefer, D.; Cheng, X. Recent Advances in Covalent Drug Discovery. Pharmaceuticals 2023, 16, 663. https://doi.org/10.3390/ph16050663.
- Mons, E.; Kim, R.Q.; Mulder, M.P.C. Technologies for Direct Detection of Covalent Protein-Drug Adducts. Pharmaceuticals 2023, 16, 547. https://doi.org/10.3390/ph16040547.
- Zhao, Z.; Bourne, P.E. Systematic Exploration of Privileged Warheads for Covalent Kinase Drug Discovery. Pharmaceuticals 2022, 15, 1322. https://doi.org/10.3390/ph15111322.
- Lee, J.; Park, S.B. Extended Applications of Small-Molecule Covalent Inhibitors toward Novel Therapeutic Targets. Pharmaceuticals 2022, 15, 1478. https://doi.org/10.3390/ph15121478.
Conflicts of Interest
References
- Boike, L.; Henning, N.J.; Nomura, D.K. Advances in covalent drug discovery. Nat. Rev. Drug Discov. 2022, 21, 881–898. [Google Scholar] [CrossRef] [PubMed]
- Singh, J. The Ascension of Targeted Covalent Inhibitors. J. Med. Chem. 2022, 65, 5886–5901. [Google Scholar] [CrossRef] [PubMed]
- Baillie, T.A. Targeted Covalent Inhibitors for Drug Design. Angew. Chem. Int. Ed. Engl. 2016, 55, 13408–13421. [Google Scholar] [CrossRef] [PubMed]
- Bauer, R.A. Covalent inhibitors in drug discovery: From accidental discoveries to avoided liabilities and designed therapies. Drug Discov. Today 2015, 20, 1061–1073. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Petter, R.C.; Baillie, T.A.; Whitty, A. The resurgence of covalent drugs. Nat. Rev. Drug Discov. 2011, 10, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Dungo, R.T.; Keating, G.M. Afatinib: First global approval. Drugs 2013, 73, 1503–1515. [Google Scholar] [CrossRef] [PubMed]
- Cameron, F.; Sanford, M. Ibrutinib: First global approval. Drugs 2014, 74, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Hillebrand, L.; Gehringer, M. Never Gonna Give You Up—Current Developments in Covalent Protein Kinase Inhibitors. CHIMIA 2022, 76, 435. [Google Scholar] [CrossRef] [PubMed]
- Syed, Y.Y. Futibatinib: First Approval. Drugs 2022, 82, 1737–1743. [Google Scholar] [CrossRef] [PubMed]
- Blair, H.A. Ritlecitinib: First Approval. Drugs 2023, 83, 1315–1321. [Google Scholar] [CrossRef] [PubMed]
- Borsari, C.; Corfu, A.I.; Conti, P. Understanding Intrinsic Warhead Reactivity and Cysteine Druggability in Covalent Drug Discovery: Medicinal Chemistry and Chemical Biology Highlights. CHIMIA 2023, 77, 349–352. [Google Scholar] [CrossRef]
- Gehringer, M.; Laufer, S.A. Emerging and Re-Emerging Warheads for Targeted Covalent Inhibitors: Applications in Medicinal Chemistry and Chemical Biology. J. Med. Chem. 2019, 62, 5673–5724. [Google Scholar] [CrossRef] [PubMed]
- Galbiati, A.; Bova, S.; Pacchiana, R.; Borsari, C.; Persico, M.; Zana, A.; Bruno, S.; Donadelli, M.; Fattorusso, C.; Conti, P. Discovery of a spirocyclic 3-bromo-4,5-dihydroisoxazole covalent inhibitor of hGAPDH with antiproliferative activity against pancreatic cancer cells. Eur. J. Med. Chem. 2023, 254, 115286. [Google Scholar] [CrossRef] [PubMed]
- Strelow, J.M. A Perspective on the Kinetics of Covalent and Irreversible Inhibition. SLAS Discov. 2017, 22, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Borsari, C.; Keles, E.; McPhail, J.A.; Schaefer, A.; Sriramaratnam, R.; Goch, W.; Schaefer, T.; De Pascale, M.; Bal, W.; Gstaiger, M.; et al. Covalent Proximity Scanning of a Distal Cysteine to Target PI3Kα. J. Am. Chem. Soc. 2022, 144, 6326–6342. [Google Scholar] [CrossRef] [PubMed]
- Lanman, B.A.; Allen, J.R.; Allen, J.G.; Amegadzie, A.K.; Ashton, K.S.; Booker, S.K.; Chen, J.J.; Chen, N.; Frohn, M.J.; Goodman, G.; et al. Discovery of a Covalent Inhibitor of KRAS(G12C) (AMG 510) for the Treatment of Solid Tumors. J. Med. Chem. 2020, 63, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Fell, J.B.; Fischer, J.P.; Baer, B.R.; Blake, J.F.; Bouhana, K.; Briere, D.M.; Brown, K.D.; Burgess, L.E.; Burns, A.C.; Burkard, M.R.; et al. Identification of the Clinical Development Candidate MRTX849, a Covalent KRAS(G12C) Inhibitor for the Treatment of Cancer. J. Med. Chem. 2020, 63, 6679–6693. [Google Scholar] [CrossRef] [PubMed]
- Serafim, R.A.M.; Elkins, J.M.; Zuercher, W.J.; Laufer, S.A.; Gehringer, M. Chemical Probes for Understudied Kinases: Challenges and Opportunities. J. Med. Chem. 2022, 65, 1132–1170. [Google Scholar] [CrossRef] [PubMed]
- Laufer, S.; Bajorath, J.; Gehringer, M.; Gray, N.; Frye, S.; Lindsley, C.W. Publication Criteria and Requirements for Studies on Protein Kinase Inhibitors—What Is Expected? J. Med. Chem. 2022, 65, 6973–6974. [Google Scholar] [CrossRef] [PubMed]
- Hartung, I.V.; Rudolph, J.; Mader, M.M.; Mulder, M.P.C.; Workman, P. Expanding Chemical Probe Space: Quality Criteria for Covalent and Degrader Probes. J. Med. Chem. 2023, 66, 9297–9312. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serafim, R.A.M.; Gehringer, M.; Borsari, C. Targeted Covalent Inhibitors in Drug Discovery, Chemical Biology and Beyond. Pharmaceuticals 2024, 17, 206. https://doi.org/10.3390/ph17020206
Serafim RAM, Gehringer M, Borsari C. Targeted Covalent Inhibitors in Drug Discovery, Chemical Biology and Beyond. Pharmaceuticals. 2024; 17(2):206. https://doi.org/10.3390/ph17020206
Chicago/Turabian StyleSerafim, Ricardo A. M., Matthias Gehringer, and Chiara Borsari. 2024. "Targeted Covalent Inhibitors in Drug Discovery, Chemical Biology and Beyond" Pharmaceuticals 17, no. 2: 206. https://doi.org/10.3390/ph17020206
APA StyleSerafim, R. A. M., Gehringer, M., & Borsari, C. (2024). Targeted Covalent Inhibitors in Drug Discovery, Chemical Biology and Beyond. Pharmaceuticals, 17(2), 206. https://doi.org/10.3390/ph17020206