New Quinazolin-4(3H)-One Derivatives Incorporating Isoxazole Moiety as Antioxidant Agents: Synthesis, Structural Characterization, and Theoretical DFT Mechanistic Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Spectral Analysis
2.2. X-Ray Diffraction Data and Crystal Structures of the Two Compounds 5a and 5c
2.3. Antioxidant Activity
2.4. DFT Study
2.4.1. Analysis Based on the Global Reactivity Indexes
2.4.2. Energetic Study
3. Materials and Methods
3.1. Chemistry
3.2. Crystallographic Study
3.3. Antioxidant Assessment
3.4. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kattoor, A.J.; Pothineni, N.V.K.; Palagiri, D.; Mehta, J.L. Oxidative Stress in Atherosclerosis. Curr. Atheroscler. Rep. 2017, 19, 42. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.; Guo, J.; Ye, X.Y.; Xie, Y.; Xie, T. Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res. Rev. 2022, 77, 101619. [Google Scholar] [CrossRef] [PubMed]
- Kinnula, V.L.; Crapo, J.D. Superoxide dismutases in malignant cells and human tumors. Free Radic. Biol. Med. 2004, 36, 718–744. [Google Scholar] [CrossRef]
- Gao, F.; Yang, H.; Lu, T.; Chen, Z.; Ma, L.; Xu, Z.; Schaffer, P.; Lu, G. Design, synthesis and anti-mycobacterial activity evaluation of benzofuran-isatin hybrids. Eur. J. Med. Chem. 2018, 159, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Q.; Wang, X.; Wang, Y.; Tang, W.J.; Shi, J.B.; Liu, H. Novel curcumin analogue hybrids: Synthesis and anticancer activity. Eur. J. Med. Chem. 2018, 156, 493–509. [Google Scholar] [CrossRef]
- Maestro, A.; Martín-Encinas, E.; Alonso, C.; de Marigorta, E.M.; Rubiales, G.; Vicario, J.; Palacios, F. Synthesis of novel antiproliferative hybrid bis-(3-indolyl)methane phosphonate derivatives. Eur. J. Med. Chem. 2018, 158, 874–883. [Google Scholar] [CrossRef]
- Chopra, R.; Chibale, K.; Singh, K. Pyrimidine-chloroquinoline hybrids: Synthesis and antiplasmodial activity. Eur. J. Med. Chem. 2018, 148, 39–53. [Google Scholar] [CrossRef]
- Singh, H.; Kumar, M.; Nepali, K.; Gupta, M.K.; Saxena, A.K.; Sharma, S.; Mohinder, P.; Bedi, S. Triazole tethered C 5-curcuminoid-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Eur. J. Med. Chem. 2016, 116, 102–115. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, L.; Bian, Y.; Li, Y.; Qu, J.; Song, F. The Antibacterial Activity of Quinazoline and Quinazolinone Hybrids. Curr. Top. Med. Chem. 2022, 22, 1035–1044. [Google Scholar] [CrossRef]
- Kalirajan, R.; Rafick, M.H.M.; Sankar, S.; Jubie, S. Characterization and Evaluation of Their Antioxidant and Cytotoxic Activities of Some Novel Isoxazole-Substituted 9-Anilinoacridine Derivatives. Sci. World J. 2012, 2012, 165258. [Google Scholar] [CrossRef]
- Kshirsagar, U.A. Organic & Biomolecular Chemistry Recent developments in the chemistry of quinazolinone alkaloids. Org. Biomol. Chem. 2015, 13, 9336. [Google Scholar] [CrossRef]
- Esteve-Turrillas, F.A.; Mercader, J.V.; Parra, J.; Agulló, C.; Abad-Somovilla, A.; Abad-Fuentes, A. Ready access to proquinazid haptens via cross-coupling chemistry for antibody generation and immunoassay development. PLoS ONE 2015, 10, e0134042. [Google Scholar] [CrossRef]
- Liu, T.; Peng, F.; Cao, X.; Liu, F.; Wang, Q.; Liu, L.; Xue, W. Design, Synthesis, Antibacterial Activity, Antiviral Activity, and Mechanism of Myricetin Derivatives Containing a Quinazolinone Moiety. ACS Omega 2021, 6, 30826–30833. [Google Scholar] [CrossRef]
- Auti, P.S.; George, G.; Paul, A.T. Recent advances in the pharmacological diversification of quinazoline/quinazolinone hybrids. RSC Adv. 2020, 10, 41353–41392. [Google Scholar] [CrossRef]
- ElZahabi, H.S.A.; Nafie, M.S.; Osman, D.; Elghazawy, N.H.; Soliman, D.H.; EL-Helby, A.A.H.; Arafa, R.K. Design, synthesis and evaluation of new quinazolin-4-one derivatives as apoptotic enhancers and autophagy inhibitors with potent antitumor activity. Eur. J. Med. Chem. 2021, 222, 113609. [Google Scholar] [CrossRef] [PubMed]
- Alamshany, Z.M.; Tashkandi, N.Y.; Othman, I.M.M.; Ishak, E.A.; Gad-Elkareem, M.A.M. Synthesis, antimicrobial and antioxidant activities of some new pyrazolo[1,5-a]pyrimidine and imidazo[1,2-b]pyrazole derivatives based isoxazole. Synth. Commun. 2023, 53, 1451–1467. [Google Scholar] [CrossRef]
- Eid, A.M.; Hawash, M.; Amer, J.; Jarrar, A.; Qadri, S.; Alnimer, I.; Sharaf, A.; Zalmoot, R.; Hammoudie, O.; Hameedi, S.; et al. Synthesis and Biological Evaluation of Novel Isoxazole-Amide Analogues as Anticancer and Antioxidant Agents. Biomed. Res. Int. 2021, 2021, 6633297. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.M.; Mekkawy, M.H.; Karam, H.M.; Higgins, M.; Dinkova-Kostova, A.T.; Ghorab, M.M. Novel iodinated quinazolinones bearing sulfonamide as new scaffold targeting radiation induced oxidative stress. Bioorganic Med. Chem. Lett. 2021, 42, 128002. [Google Scholar] [CrossRef]
- Zicane, D.; Tetere, Z.; Mierina, I.; Turks, M.; Ravina, I.; Leonciks, A. Synthesis of quinazolinone-1, 3, 4-oxadiazole conjugates and studies of their antibacterial and antioxidant activity. J. Chem. Pharm. Res 2014, 6, 1153–1158. [Google Scholar]
- El-Sayed, A.; Ismail, M.; Amr, A.; Molecules, A.N. Synthesis, Antiproliferative, and Antioxidant Evaluation of 2-Pentylquinazolin-4(3H)-one(thione) Derivatives with DFT Study. Molecules 2019, 24, 3787. [Google Scholar] [CrossRef]
- Abdelall, E.K.A. Synthesis and biological evaluations of novel isoxazoles and furoxan derivative as anti-inflammatory agents. Bioorg. Chem. 2020, 94, 103441. [Google Scholar] [CrossRef] [PubMed]
- Pedada, S.R.; Yarla, N.S.; Tambade, P.J.; Dhananjaya, B.L.; Bishayee, A.; Arunasree, K.M.; Philip, G.H.; Dharmapuri, G.; Aliev, G.; Putta, S.; et al. Synthesis of new secretory phospholipase A2-inhibitory indole containing isoxazole derivatives as anti-inflammatory and anticancer agents. Eur. J. Med. Chem. 2016, 112, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Savaliya, K.R. Design, synthesis and characterization of novel isoxazole-quinazolinone linked analogues as an antimicrobial agent. World J. Pharm. Res. 2023, 12, 1208. [Google Scholar]
- Yang, Z.B.; Li, P.; He, Y.J. Design, synthesis, and bioactivity evaluation of novel isoxazole-amide derivatives containing an acylhydrazone moiety as new active antiviral agents. Molecules 2019, 24, 3766. [Google Scholar] [CrossRef]
- Batra, S.; Srinivasan, T.; Rastogi, S.K.; Kundu, B.; Patra, A.; Bhaduri, A.P.; Dikshit, M. Combinatorial synthesis and biological evaluation of isoxazole-based libraries as antithrombotic agents. Bioorg. Med. Chem. Lett. 2002, 12, 1905–1908. [Google Scholar] [CrossRef] [PubMed]
- Bass, J.Y.; Caldwell, R.D.; Caravella, J.A.; Chen, L.; Creech, K.L.; Deaton, D.N.; Madauss, K.P.; Marr, H.B.; Mcfadyen, R.B.; Miller, A.B.; et al. Substituted isoxazole analogs of farnesoid X receptor (FXR) agonist GW4064. Bioorg. Med. Chem. Lett. 2009, 19, 2969–2973. [Google Scholar] [CrossRef]
- Badio, B.; Garraffo, H.M.; Plummer, C.V.; Padgett, W.L.; Daly, J.W. Synthesis and nicotinic activity of epiboxidine: An isoxazole analogue of epibatidine. Eur. J. Pharmacol. 1997, 321, 189–194. [Google Scholar] [CrossRef]
- Narlawar, R.; Pickhardt, M.; Leuchtenberger, S.; Baumann, K.; Krause, S.; Dyrks, T.; Weggen, S.; Mandelkow, E.; Schmidt, B. Curcumin-Derived Pyrazoles and Isoxazoles: Swiss Army Knives or Blunt Tools for Alzheimer’s Disease? ChemMedChem 2008, 3, 165–172. [Google Scholar] [CrossRef]
- Prashanthi, Y.; Kiranmai, K.; Subhashini, N. Synthesis, potentiometric and antimicrobial studies on metal complexes of isoxazole Schiff bases. Spectrochim. Acta Part A 2008, 70, 30–35. [Google Scholar] [CrossRef]
- Ahrens, H.; Lange, G.; Müller, T.; Rosinger, C.; Willms, L.; Van Almsick, A. Modern Agriculture 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors in Combination with Safeners: Solutions for Modern and Sustainable Agriculture. Angew. Chem. Int. Ed. 2013, 52, 9388–9398. [Google Scholar] [CrossRef]
- Alshamari, A.; Al-Qudah, M.; Hamadeh, F.; Al-Momani, L.; Abu-Orabi, S. Synthesis, Antimicrobial and Antioxidant Activities of 2-Isoxazoline Derivatives. Molecules 2020, 25, 4271. [Google Scholar] [CrossRef] [PubMed]
- Fandakli, S. Synthesis of some new isoxazole compounds and their biological tyrosinase and antioxidant activities. Turk. J. Chem. 2022, 46, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Synthesis, V.O. Docking and Biological Evaluation of Novel Isoxazole Analogues as Anticancer and Antioxidant Agents. J. Pharm. Negat. Results 2022, 13, 2634–2642. [Google Scholar]
- Kanzouai, Y.; Chalkha, M.; Hadni, H.; Laghmari, M.; Bouzammit, R.; Nakkabi, A.; Benali, T.; Tüzün, B.; Akhazzane, M.; El Yazidi, M.; et al. Design, synthesis, in-vitro and in-silico studies of chromone-isoxazoline conjugates as anti-bacterial agents. J. Mol. Struct. 2023, 1293, 136205. [Google Scholar] [CrossRef]
- Chalkha, M.; Nour, H.; Chebbac, K.; Nakkabi, A.; Bahsis, L.; Bakhouch, M.; Akhazzane, M.; Bourass, M.; Chtita, S.; Jardan, Y.A.B.; et al. Synthesis, Characterization, DFT Mechanistic Study, Antimicrobial Activity, Molecular Modeling, and ADMET Properties of Novel Pyrazole-isoxazoline Hybrids. ACS Omega 2022, 7, 46731–46744. [Google Scholar] [CrossRef]
- Rhazi, Y.; Chalkha, M.; Nakkabi, A.; Hammoudan, I.; Akhazzane, M.; Bakhouch, M.; Chtita, S.; El Yazidi, M. Novel Quinazolinone–Isoxazoline Hybrids: Synthesis, Spectroscopic Characterization, and DFT Mechanistic Study. Chemistry 2022, 4, 969–982. [Google Scholar] [CrossRef]
- Pawełczyk, A.; Sowa-Kasprzak, K.; Olender, D.; Zaprutko, L. Molecular Consortia—Various Structural and Synthetic Concepts for More Effective Therapeutics Synthesis. Int. J. Mol. Sci. 2018, 19, 1104. [Google Scholar] [CrossRef]
- Li, Y.; Touret, F.; de Lamballerie, X.; Nguyen, M.; Laurent, M.; Benoit-Vical, F.; Robert, A.; Liu, Y.; Meunier, B. Hybrid molecules based on an emodin scaffold. Synthesis and activity against SARS-CoV-2 and Plasmodium. Org. Biomol. Chem. 2023, 21, 7382–7394. [Google Scholar] [CrossRef]
- Hisano, T. Recent studies on the modified niementowski 4-quinazolone synthesis. A review. Org. Prep. Proced. Int. 1973, 5, 145–193. [Google Scholar] [CrossRef]
- Rammohan, A.; Zyryanov, G.V. Synthesis and characterization of 1,2,3-triazole integrated quinazolinone derivatives. AIP Conf. Proc. 2020, 2280, 040037. [Google Scholar] [CrossRef]
- Ribeiro, C.J.A.; Amaral, J.D.; Rodrigues, C.M.P.; Moreira, R.; Santos, M.M.M. Synthesis and evaluation of spiroisoxazoline oxindoles as anticancer agents. Bioorg. Med. Chem. 2014, 22, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Aarjane, M.; Slassi, S.; Tazi, B.; Amine, A. Synthesis and biological evaluation of novel isoxazole derivatives from acridone. Arch. Pharm. 2021, 354, e2000261. [Google Scholar] [CrossRef] [PubMed]
- Da Silva-Alves, D.C.B.; Anjos, J.V.D.; Cavalcante, N.N.M.; Santos, G.K.N.; Navarro, D.M.D.A.F.; Srivastava, R.M. Larvicidal isoxazoles: Synthesis and their effective susceptibility towards Aedes aegypti larvae. Bioorg. Med. Chem. 2013, 21, 940–947. [Google Scholar] [CrossRef] [PubMed]
- Prashanth, M.K.; Revanasiddappa, H.D. Synthesis of some new glutamine linked 2,3-disubstituted quinazolinone derivatives as potent antimicrobial and antioxidant agents. Med. Chem. Res. 2013, 22, 2665–2676. [Google Scholar] [CrossRef]
- Arzine, A.; Abchir, O.; Chalkha, M.; Chebbac, K.; Rhazi, Y.; Barghady, N.; Yamari, I.; Moussaoui, A.E.L.; Nakkabi, A.; Akhazzane, M.; et al. Design, synthesis, In-vitro, In-silico and DFT studies of novel functionalized isoxazoles as antibacterial and antioxidant agents. Comput. Biol. Chem. 2024, 108, 107993. [Google Scholar] [CrossRef]
- Jaramillo, P.; Domingo, L.R.; Chamorro, E.; Pérez, P. A further exploration of a nucleophilicity index based on the gas-phase ionization potentials. J. Mol. Struct. THEOCHEM 2008, 865, 68–72. [Google Scholar] [CrossRef]
- Domingo, L.R.; Aurell, M.J.; Pérez, P.; Contreras, R. Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels–Alder reactions. Tetrahedron 2002, 58, 4417–4423. [Google Scholar] [CrossRef]
- APEX4; Bruker AXS Inc.: Madison, WI, USA, 2023.
- Sheldrick, G.M. SHELXT-Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Putz, H.; Brandenburg, K. Diamond—Crystal and Molecular Structure Visualization, Crystal Impact—H. Putz & K. Brandenburg GbR, Kreuzherrenstr. 102, D-53227 Bonn, Germany. Available online: https://www.crystalimpact.de/diamond (accessed on 25 September 2024).
- Benali, T.; Habbadi, K.; Khabbach, A.; Marmouzi, I.; Zengin, G.; Bouyahya, A.; Chamkhi, I.; Chtibi, H.; Aanniz, T.; Achbani, E.H.; et al. GC–MS Analysis, Antioxidant and Antimicrobial Activities of Achillea odorata subsp. Pectinata and Ruta Montana Essential Oils and Their Potential Use as Food Preservatives. Foods 2020, 9, 668. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef]
- Hehre, W.J. Ab Initio Molecular Orbital Theory. Acc. Chem. Res. 1976, 9, 399–406. [Google Scholar] [CrossRef]
- Schlegel, H.B. Optimization of equilibrium geometries and transition structures. J. Comput. Chem. 1982, 3, 214–218. [Google Scholar] [CrossRef]
- Fukui, K. A formulation of the reaction coordinate. J. Phys. Chem. 1970, 74, 4161. [Google Scholar] [CrossRef]
- Gonzalez, C.; Schlegel, H.B. Improved algorithms for reaction path following: Higher-order implicit algorithms. J. Chem. Phys. 1991, 95, 5853–5860. [Google Scholar] [CrossRef]
- Kawsar, S.M.A.; Hosen, M.A.; Ahmad, S.; El Bakri, Y.; Laaroussi, H.; Hadda, T.B.; Almalki, F.A.; Ozeki, Y.; Goumri-Said, S. Potential SARS-CoV-2 RdRp inhibitors of cytidine derivatives: Molecular docking, molecular dynamic simulations, ADMET, and POM analyses for the identification of pharmacophore sites. PLoS ONE 2022, 17, e0273256. [Google Scholar] [CrossRef]
- Parr, R.G.; Szentpály, L.V.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [Google Scholar] [CrossRef]
- Ayers, P.W.; Parr, R.G.; Pearson, R.G. Elucidating the hard/soft acid/base principle: A perspective based on half-reactions. J. Chem. Phys. 2006, 124, 194107. [Google Scholar] [CrossRef] [PubMed]
- Domingo, L.R.; Pérez, P. The nucleophilicity N index in organic chemistry. Org. Biomol. Chem. 2011, 9, 7168–7175. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
Compound | 5a | 5c |
---|---|---|
Molecular formula | C18H12BrN3O2 | C19H15N3O2 |
Formula weight | 382.22 | 317.34 |
Crystal size/mm3 | 0.145 × 0.095 × 0.055 | 0.216 × 0.186 × 0.175 |
Crystal habit | colorless block | colorless block |
λ(MoKα)/Å | 0.71073 | 0.71073 |
T/K | 100.(2) | 100.(2) |
Crystal system | monoclinic | orthorhombic |
Space group | Pc | Pbca |
a/Å | 4.5517(5) | 11.4436(3) |
b/Å | 16.0529(16) | 7.8897(3) |
c/Å | 10.6519(10) | 33.7363(12) |
α/° | 90 | 90 |
β/° | 100.283(4) | 90 |
γ/° | 90 | 90 |
V/Å3 | 765.81(13) | 3045.93(18) |
Z | 2 | 8 |
Dcalc/g cm−3 | 1.658 | 1.384 |
μ/mm−1 | 2.700 | 0.092 |
θ range for data collections (°) | 2.32–28.28 | 2.15–28.28 |
F(000) | 384 | 1328 |
Tmax/Tmin | 0.746/0.629 | 0.746/0.694 |
Refl. collected/unique/Rint | 60212/3719/0.0273 | 37141/3783/0.0287 |
Completeness to θ | 99.9% | 99.9% |
Refinement method | Full-matrix least-squares on F2 | |
Data/restraints/parameters | 3719/2/221 | 3783/0/221 |
Goodness-of-fit, S | 1.092 | 1.068 |
Final R indices [I > 2σ(I)] | R1 = 0.0133 | R1 = 0.0291 |
wR2 = 0.0312 | wR2 = 0.0792 | |
R indices (all data) | R1 = 0.0141 | R1 = 0.0321 |
wR2 = 0.0316 | wR2 = 0.0820 | |
Δρmax, Δρmin/e Å−3 | 0.231; −0.121 | 0.299; –0.169 |
CCDC No. | 2371662 | 2371661 |
System | µ | η | ω | N |
---|---|---|---|---|
3 | −3.76 | 2.56 | 2.77 | 2.80 |
4e | −3.83 | 2.51 | 2.91 | 2.78 |
E (u.a) | ΔE (kcal/mol) | |
---|---|---|
−608.664 | ------- | |
R1 (3) | −399.640 | ------- |
R2 (4e) | −1008.304 | ------- |
R1 + R2 | −1008.433 | –81.15 |
P-1 | −1008.427 | –77.32 |
P-2 | –1008.284 | 12.59 |
TS-1 | –1008.280 | 14.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rhazi, Y.; Sghyar, R.; Deak, N.; Es-Sounni, B.; Rossafi, B.; Soran, A.; Laghmari, M.; Arzine, A.; Nakkabi, A.; Hammani, K.; et al. New Quinazolin-4(3H)-One Derivatives Incorporating Isoxazole Moiety as Antioxidant Agents: Synthesis, Structural Characterization, and Theoretical DFT Mechanistic Study. Pharmaceuticals 2024, 17, 1390. https://doi.org/10.3390/ph17101390
Rhazi Y, Sghyar R, Deak N, Es-Sounni B, Rossafi B, Soran A, Laghmari M, Arzine A, Nakkabi A, Hammani K, et al. New Quinazolin-4(3H)-One Derivatives Incorporating Isoxazole Moiety as Antioxidant Agents: Synthesis, Structural Characterization, and Theoretical DFT Mechanistic Study. Pharmaceuticals. 2024; 17(10):1390. https://doi.org/10.3390/ph17101390
Chicago/Turabian StyleRhazi, Yassine, Riham Sghyar, Noemi Deak, Bouchra Es-Sounni, Bouchra Rossafi, Albert Soran, Mustapha Laghmari, Azize Arzine, Asmae Nakkabi, Khalil Hammani, and et al. 2024. "New Quinazolin-4(3H)-One Derivatives Incorporating Isoxazole Moiety as Antioxidant Agents: Synthesis, Structural Characterization, and Theoretical DFT Mechanistic Study" Pharmaceuticals 17, no. 10: 1390. https://doi.org/10.3390/ph17101390
APA StyleRhazi, Y., Sghyar, R., Deak, N., Es-Sounni, B., Rossafi, B., Soran, A., Laghmari, M., Arzine, A., Nakkabi, A., Hammani, K., Chtita, S., M. Alanazi, M., Nemes, G., & El. Yazidi, M. (2024). New Quinazolin-4(3H)-One Derivatives Incorporating Isoxazole Moiety as Antioxidant Agents: Synthesis, Structural Characterization, and Theoretical DFT Mechanistic Study. Pharmaceuticals, 17(10), 1390. https://doi.org/10.3390/ph17101390