Pd-, Cu-, and Ni-Catalyzed Reactions: A Comprehensive Review of the Efficient Approaches towards the Synthesis of Antibacterial Molecules
Abstract
:1. Introduction
2. Palladium-Catalyzed Synthesis
2.1. Suzuki Cross-Coupling
2.2. Sonogashira Cross-Coupling
2.3. Stille Cross-Coupling
2.4. Buchwald-Hartwig Coupling
2.5. Heck Reaction
2.6. 1,4-Addition to Dienes
3. Copper-Catalyzed Synthesis
3.1. Click Reaction
3.2. Ullman Cross-Coupling
3.3. Chan-Lam Cross-Coupling
3.4. Knoevenagel and Michael’s Addition Reaction
3.5. 1,3-Dipolar Cycloaddition Reaction
3.6. Copper-Catalyzed Azide-Alkyne Cycloaddition
3.7. Oxidative Cross-Dehydrogenative Coupling
3.8. Cyclization of Thioureas
3.9. Copper-Catalyzed 1,2-Addition
4. Nickel-Catalyzed Synthesis
4.1. Kumada Cross-Coupling
4.2. Buchwald-Hartwig Reaction
4.3. Photocatalytic Cross-Coupling
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Full Form | Abbreviation |
Global Antimicrobial Resistance and Use Surveillance System | GLASS |
Antimicrobial resistance | AMR |
Dimethylformamide dimethyl acetal | DMFDMA |
Extended-spectrum β-lactamase | ESBL |
Extensively drug-resistant | XDR |
Dichloromethane | DCM |
Thymidylate monophosphate kinase | TMPK |
photoactive polyphenylene ethynylene | PPE |
Minimum inhibitory concentrations | MIC |
Bacterial leaf blight | BLB |
Chan-Evans-Lam | CEL |
Minimum Inhibitory Concentration | MIC |
Cu-catalyzed 1,3-dipolar cycloaddition | CuAAC |
References
- Abbaspour, S.; Keivanloo, A.; Bakherad, M.; Sepehri, S. Salophen copper (II) complex-assisted click reactions for fast synthesis of 1, 2, 3-triazoles based on naphthalene-1,4-dione scaffold, antibacterial evaluation, and molecular docking studies. Chem. Biodivers. 2019, 16, e1800410. [Google Scholar] [CrossRef] [PubMed]
- Boucher, H.W.; Talbot, G.H.; Benjamin, D.K., Jr.; Bradley, J.; Guidos, R.J.; Jones, R.N.; Murray, B.E.; Bonomo, R.A.; Gilbert, D.; Infectious Diseases Society of America. 10ב20 progress-development of new drugs active against Gram-negative bacilli: An update from the infectious diseases society of America. Clin. Infect. Dis. 2013, 56, 1685–1694. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.S.; Blaskovich, M.A.; Cooper, M.A. Antibiotics in the clinical pipeline in 2013. J. Antibiot. 2013, 66, 571–591. [Google Scholar] [CrossRef] [PubMed]
- Alder, J.D. Daptomycin: A new drug class for the treatment of Gram-positive infections. Drugs Today 2005, 41, 81–90. [Google Scholar] [CrossRef]
- Solomon, S.; Horan, T.; Andrus, M.; Edwards, J.; Fridkin, S.; Koganti, J.; Peavy, G.; Tolson, J. National nosocomial infections surveillance (NNIS) system report, data summary from January 1992 through June 2003, issued August 2003. Am. J. Infect. Control 2003, 31, 481–498. [Google Scholar]
- Walsh, C. Molecular mechanisms that confer antibacterial drug resistance. Nature 2000, 406, 775–781. [Google Scholar] [CrossRef]
- Taubes, G. The bacteria fight back. Science 2008, 321, 356–361. [Google Scholar] [CrossRef]
- Sinicropi, M.S.; Caruso, A.; Conforti, F.; Marrelli, M.; Kashef, H.E.; Lancelot, J.C.; Rault, S.; Statti, G.A.; Menichini, F. Synthesis, inhibition of NO production and antiproliferative activities of some indole derivatives. J. Enzyme Inhib. Med. Chem. 2009, 24, 1148–1153. [Google Scholar] [CrossRef]
- Parisi, O.I.; Fiorillo, M.; Caruso, A.; Cappello, A.R.; Saturnino, C.; Puoci, F.; Panno, A.; Dolce, V.; El-Kashef, H.; Sinicropi, M.S. Enhanced cellular uptake by “pharmaceutically oriented devices” of new simplified analogs of linezolid with antimicrobial activity. Int. J. Pharm. 2014, 461, 163–170. [Google Scholar] [CrossRef]
- Iacopetta, D.; Mariconda, A.; Saturnino, C.; Caruso, A.; Palma, G.; Ceramella, J.; Muià, N.; Perri, M.; Sinicropi, M.S.; Caroleo, M.C. Novel gold and silver carbene complexes exert antitumor effects triggering the reactive oxygen species dependent intrinsic apoptotic pathway. ChemMedChem 2017, 12, 2054–2065. [Google Scholar] [CrossRef]
- Khan, R.A.; Tăbăcaru, A.; Ali, F.; Koo, B.H. Anticancer and antimicrobial properties of inorganic compounds/nanomaterials. Bioinorg. Chem. Appl. 2019, 2019, 6019632. [Google Scholar] [CrossRef] [PubMed]
- Andrei, S.; Droc, G.; Stefan, G. FDA approved antibacterial drugs: 2018–2019. Discoveries 2019, 7, e102. [Google Scholar] [CrossRef] [PubMed]
- Harbarth, S.; Emonet, S. Navigating the world wide web in search of resources on antimicrobial resistance. Clin. Infect. Dis. 2006, 43, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Coulborn, R.M.; Clayton, E.R.; Aiello, A.E. Pharmaceutical and personal care products in the environment and potential risks of emerging antibiotic resistance. In Contaminants of Emerging Concern in the Environment: Ecological and Human Health Considerations; ACS Publications: Washington, DC, USA, 2010; pp. 367–382. [Google Scholar]
- Wright, P.M.; Seiple, I.B.; Myers, A.G. The evolving role of chemical synthesis in antibacterial drug discovery. Angew. Chem. Int. Ed. 2014, 53, 8840–8869. [Google Scholar] [CrossRef] [PubMed]
- Goossen, L.J.; Melzer, B. Synthesis of valsartan via decarboxylative biaryl coupling. J. Org. Chem. 2007, 72, 7473–7476. [Google Scholar] [CrossRef] [PubMed]
- Larsen, R.D.; King, A.O.; Chen, C.Y.; Corley, E.G.; Foster, B.S.; Roberts, F.E.; Yang, C.; Lieberman, D.R.; Reamer, R.A.; Tschaen, D.M. Efficient synthesis of losartan, a nonpeptide angiotensin II receptor antagonist. J. Org. Chem. 1994, 59, 6391–6394. [Google Scholar] [CrossRef]
- Cousaert, N.; Willand, N.; Gesquière, J.C.; Tartar, A.; Déprez, B.; Deprez-Poulain, R. Original loading and Suzuki conditions for the solid-phase synthesis of biphenyltetrazoles application to the first solid-phase synthesis of irbesartan. Tetrahedron Lett. 2008, 49, 2743–2747. [Google Scholar] [CrossRef]
- Vijayalakshmi, C.; Prasad, M.G.; Katari, N.K.; Reddy, P.N. A scalable synthesis of biaryl unit of the HIV protease inhibitor atazanavir. Lett. Org. Chem. 2020, 17, 68–72. [Google Scholar] [CrossRef]
- Gehringer, M.; Forster, M.; Laufer, S.A. Solution-phase parallel synthesis of ruxolitinib-derived janus kinase inhibitors via copper-catalyzed azide-alkyne cycloaddition. ACS Comb. Sci. 2015, 17, 5–10. [Google Scholar] [CrossRef]
- Zhang, E.; Tang, J.; Li, S.; Wu, P.; Moses, J.E.; Sharpless, K.B. Chemoselective synthesis of polysubstituted pyridines from heteroaryl fluorosulfates. Chem. Eur. J. 2016, 22, 5692–5697. [Google Scholar] [CrossRef]
- Erickson, G.; Guo, J.; McClure, M.; Mitchell, M.; Salaun, M.C.; Whitehead, A. Synthesis of lapatinib via direct regioselective arylation of furfural. Tetrahedron Lett. 2014, 55, 6007–6010. [Google Scholar] [CrossRef]
- Lau, R.M.; van Eupen, J.T.; Schipper, D.; Tesser, G.I.; Verweij, J.; de Vroom, E. Synthesis of penicillin N and isopenicillin N. Tetrahedron 2000, 56, 7601–7606. [Google Scholar] [CrossRef]
- Farina, V.; Baker, S.R.; Benigni, D.A.; Hauck, S.I.; Sapino, C., Jr. Palladium catalysis in cephalosporin chemistry: General methodology for the synthesis of cephem side chains. J. Org. Chem. 1990, 55, 5833–5847. [Google Scholar] [CrossRef]
- Wang, K.; Chen, Y.; Wang, S.; Zhang, Q. A convenient synthesis of linezolid through Buchwald-Hartwig amination. Tetrahedron Lett. 2022, 105, 154050. [Google Scholar] [CrossRef]
- Nicolaou, K.; Li, H.; Boddy, C.N.; Ramanjulu, J.M.; Yue, T.Y.; Natarajan, S.; Chu, X.J.; Bräse, S.; Rübsam, F. Total synthesis of vancomycin-part 1: Design and development of methodology. Chem. Eur. J. 1999, 5, 2584–2601. [Google Scholar] [CrossRef]
- Nelson, M.L.; Ismail, M.Y.; McIntyre, L.; Bhatia, B.; Viski, P.; Hawkins, P.; Rennie, G.; Andorsky, D.; Messersmith, D.; Stapleton, K. Versatile and facile synthesis of diverse semisynthetic tetracycline derivatives via Pd-catalyzed reactions. J. Org. Chem. 2003, 68, 5838–5851. [Google Scholar] [CrossRef]
- Shen, L.; Simmons, C.J.; Sun, D. Microwave-assisted synthesis of macrocycles via intramolecular and/or bimolecular Ullmann coupling. Tetrahedron Lett. 2012, 53, 4173–4178. [Google Scholar] [CrossRef]
- Lin, H.; Bruhn, D.F.; Maddox, M.M.; Singh, A.P.; Lee, R.E.; Sun, D. Synthesis and antibacterial evaluation of macrocyclic diarylheptanoid derivatives. Bioorg. Med. Chem. Lett. 2016, 26, 4070–4076. [Google Scholar] [CrossRef]
- Sudarshan, K.; Yarlagadda, S.; Sengupta, S. Recent advances in the synthesis of diarylheptanoids. Chem. Asian J. 2024, 19, e202400380. [Google Scholar] [CrossRef]
- Mizoroki, T.; Mori, K.; Ozaki, A. Arylation of olefin with aryl iodide catalyzed by palladium. Bull. Chem. Soc. Jpn. 1971, 44, 581. [Google Scholar] [CrossRef]
- Heck, R.F.; Nolley, J., Jr. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J. Org. Chem. 1972, 37, 2320–2322. [Google Scholar] [CrossRef]
- Julia, M.; Duteil, M. Condensation des halogenureś aromatiques avec les olefine catalyseés par le palladium. Bull. Soc. Chim. Fr. 1973, 2790. [Google Scholar]
- Julia, M.; Duteil, M.; Grard, C.K.E.; Kunz, E. Etude de la condesation de chlorures aromatiques aves les olefines catalisee par le palladium. Bull. Soc. Chim. Fr. 1973, 9–10, 2791–2794. [Google Scholar]
- Batey, R.A.; Quach, T.D. Synthesis and cross-coupling reactions of tetraalkylammonium organotrifluoroborate salts. Tetrahedron Lett. 2001, 42, 9099–9103. [Google Scholar] [CrossRef]
- Mujahid, A.; Rasool, N.; Qamar, M.U.; Zubair, M.; Ahmad, F.; Altaf, A.A.; Akhtar, A.; Shah, S.A.A.; Alqahtani, F.; Alsanea, S. Arylation of halogenated thiophene carboxylate via Suzuki-Miyaura reaction: Anti-bacterial study against clinically isolated extensively drug resistant Escherichia coli sequence type 405 and computational investigation. Arab. J. Chem. 2022, 15, 103662. [Google Scholar] [CrossRef]
- Dheilly, N.M.; Ewald, P.W.; Brindley, P.J.; Fichorova, R.N.; Thomas, F. Parasite-microbe-host interactions and cancer risk. PLoS Pathog. 2019, 15, e1007912. [Google Scholar] [CrossRef]
- Aydın, A.; Ökten, S.; Erkan, S.; Bulut, M.; Özcan, E.; Tutar, A.; Eren, T. In-vitro anticancer and antibacterial activities of brominated indeno[1, 2-b]qinolineamines supported with molecular docking and MCDM. ChemistrySelect 2021, 6, 3286–3295. [Google Scholar] [CrossRef]
- Lowy, F.D. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339, 520–532. [Google Scholar] [CrossRef]
- Zhu, L.H.; Chen, C.; Wang, H.; Ye, W.C.; Zhou, G.X. Indole alkaloids from alocasia macrorrhiza. Chem. Pharm. Bull. 2012, 60, 670–673. [Google Scholar] [CrossRef]
- Rehberg, N.; Sommer, G.A.; Drießen, D.; Kruppa, M.; Adeniyi, E.T.; Chen, S.; Wang, L.; Wolf, K.; Tasch, B.O.; Ioerger, T.R.; et al. Nature-inspired (di) azine-bridged bisindole alkaloids with potent antibacterial in vitro and in vivo efficacy against methicillin-resistant Staphylococcus aureus. J. Med. Chem. 2020, 63, 12623–12641. [Google Scholar] [CrossRef]
- Ly, K.S.; Letavic, M.A.; Keith, J.M.; Miller, J.M.; Stocking, E.M.; Barbier, A.J.; Bonaventure, P.; Lord, B.; Jiang, X.; Boggs, J.D.; et al. Synthesis and biological activity of piperazine and diazepane amides that are histamine H3 antagonists and serotonin reuptake inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Baraldi, P.G.; del Carmen Nuñez, M.; Morelli, A.; Falzoni, S.; Di Virgilio, F.; Romagnoli, R. Synthesis and biological activity of N-arylpiperazine-modified analogues of KN-62, a potent antagonist of the purinergic P2X7 receptor. J. Med. Chem. 2003, 46, 1318–1329. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Shi, Y.; Zhan, Y.; Zhang, L.; Zhang, Y.; Wang, L.; Zhang, X.; Li, Y.; Li, Z.; Li, B. Synthesis and biological activity of novel furan/thiophene and piperazine-containing (bis)-1, 2, 4-triazole Mannich bases. Chin. J. Chem. 2015, 33, 1124–1134. [Google Scholar] [CrossRef]
- Tataringa, G.; Stan, C.D.; Zbancioc, A.M.; Jitareanu, A.; Tuchilus, C. Preliminary screening of biological activities of some new schiff bases of isatins. Farmacia 2014, 62, 14–22. [Google Scholar]
- Chhatriwala, N.M.; Patel, A.B.; Patel, R.V.; Kumari, P. In vitro biological investigations of novel piperazine based heterocycles. J. Chem. Res. 2014, 38, 611–616. [Google Scholar] [CrossRef]
- Patel, A.B. Investigation of the antibacterial activity of new quinazoline derivatives against methicillin and quinolone resistant Staphylococcus aureus. J. Chem. Res. 2020, 44, 315–321. [Google Scholar] [CrossRef]
- Ashok, D.; Nagaraju, N.; Lakshmi, B.V.; Sarasija, M. Microwave assisted synthesis of 5-[4-(3-phenyl-4,5-dihydro-1 H-pyrazol-5-yl) phenyl]-1H-tetrazole derivatives and their antimicrobial activity. Russ. J. Gen. Chem. 2019, 89, 1905–1910. [Google Scholar] [CrossRef]
- Ashok, D.; Nagaraju, N.; Reddy, M.R.; Dharavath, R.; Ramakrishna, K.; Sarasija, M. Microwave-assisted synthesis of tetrazole based biphenyls derivatives and their antimicrobial activity. Russ. J. Chem. 2020, 13, 601–609. [Google Scholar] [CrossRef]
- Rajasekaran, A.; Murugesan, S.; AnandaRajagopal, K. Antibacterial, antifungal and anticonvulsant evaluation of novel newly synthesized 1-[2-(1H-tetrazol-5-yl) ethyl]-1 H-benzo [d][1, 2, 3] triazoles. Arch. Pharm. Res. 2006, 29, 535–540. [Google Scholar] [CrossRef]
- Adamec, J.; Waisser, K.; Kuneš, J.; Kaustova, J. A note on the antitubercular activities of 1-aryl-5-benzylsulfanyltetrazoles. Int. J. Pharm. 2005, 338, 385–389. [Google Scholar] [CrossRef]
- Romagnoli, R.; Baraldi, P.G.; Salvador, M.K.; Preti, D.; Aghazadeh Tabrizi, M.; Brancale, A.; Fu, X.H.; Li, J.; Zhang, S.Z.; Hamel, E.; et al. Synthesis and evaluation of 1, 5-disubstituted tetrazoles as rigid analogues of combretastatin A-4 with potent antiproliferative and antitumor activity. J. Med. Chem. 2012, 55, 475–488. [Google Scholar] [CrossRef] [PubMed]
- Le Bourdonnec, B.; Cauvin, C.; Meulon, E.; Yous, S.; Goossens, J.F.; Durant, F.; Houssin, R.; Hénichart, J.P. Comparison of 3D structures and AT1 binding properties of pyrazolidine-3, 5-diones and tetrahydropyridazine-3,6-diones with parent antihypertensive drug irbesartan. J. Med. Chem. 2002, 45, 4794–4798. [Google Scholar] [CrossRef] [PubMed]
- Ashok, D.; Nagaraju, N.; Sarasija, M.; Lakshmi, V.B. Microwave assisted synthesis of 1H-tetrazole-based flavonoid derivatives and their antimicrobial activity. J. Serb. Chem. Soc. 2018, 83, 1305–1313. [Google Scholar] [CrossRef]
- Leadbeater, N.E.; Marco, M.J. Ligand-free palladium catalysis of the Suzuki reaction in water using microwave heating. Org. Lett. 2002, 4, 2973–2976. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.; Wang, Y. Phosphine-free palladium acetate catalyzed Suzuki reaction in water. J. Org. Chem. 2005, 70, 6122–6125. [Google Scholar] [CrossRef]
- Mondal, M.; Bora, U. An efficient protocol for palladium-catalyzed ligand-free Suzuki-Miyaura coupling in water. Green Chem. 2012, 14, 1873–1876. [Google Scholar] [CrossRef]
- Chavan, O.S.; Jadhav, S.A.; Shioorkar, M.G.; Chavan, S.B.; Baseer, M.A.; Shinde, D.B. Microwave assisted solvent free synthesis of coumarins using Zn [(L)-Proline] 2 catalyst. Rasayan J. Chem 2015, 8, 194–197. [Google Scholar]
- Li, Z.; Zhan, P.; Liu, X. 1, 3, 4-Oxadiazole: A privileged structure in antiviral agents. Mini Rev. Med. Chem. 2011, 11, 1130–1142. [Google Scholar] [CrossRef] [PubMed]
- El-Gamal, K.M.; Hagrs, M.S.; Abulkhair, H.S. Synthesis, characterization and antimicrobial evaluation of some novel quinoline derivatives bearing different heterocyclic moieties. Bull. Fac. Pharm. Cairo Univ. 2016, 54, 263–273. [Google Scholar] [CrossRef]
- Sindhe, M.A.; Bodke, Y.D.; Kenchappa, R.; Telkar, S.; Chandrashekar, A. Synthesis of a series of novel 2, 5-disubstituted-1, 3, 4-oxadiazole derivatives as potential antioxidant and antibacterial agents. J. Chem. Biol. 2016, 9, 79–90. [Google Scholar] [CrossRef]
- Makane, V.B.; Krishna, V.S.; Krishna, E.V.; Shukla, M.; Mahizhaveni, B.; Misra, S.; Chopra, S.; Sriram, D.; Azger Dusthackeer, V.N.; Rode, H.B. Novel 1, 3, 4-oxadiazoles as antitubercular agents with limited activity against drug-resistant tuberculosis. Future Med. Chem. 2019, 11, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Verma, G.; Khan, M.F.; Akhtar, W.; Alam, M.M.; Akhter, M.; Shaquiquzzaman, M. A review exploring therapeutic worth of 1, 3, 4-oxadiazole tailored compounds. Mini Rev. Med. Chem. 2019, 19, 477–509. [Google Scholar] [CrossRef] [PubMed]
- Thummar, S.N.; Bhatt, V.D. Palladium-catalyzed Suzuki coupling synthesis and biological activities of ten new 1, 3, 4-oxadiazole derivatives. Indian J. Heterocycl. Chem. 2020, 30, 49–54. [Google Scholar]
- Mansour, A.K.; Eid, M.M.; Khalil, N.S. Synthesis and reactions of some new heterocyclic carbohydrazides and related compounds as potential anticancer agents. Molecules 2003, 8, 744–755. [Google Scholar] [CrossRef]
- El-Emary, T.I. Synthesis and biological activity of some new pyrazolo[3, 4-b]pyrazines. J. Chin. Chem. Soc. 2006, 53, 391–401. [Google Scholar] [CrossRef]
- Goda, F.; Maarouf, A.; El-Bendary, E. Synthesis and antimicrobial evaluation of new isoxazole and pyrazole derivatives. Saudi Pharm. J. 2003, 11, 111–117. [Google Scholar]
- Qamar, M.U.; Saleem, S.; Toleman, M.A.; Saqalein, M.; Waseem, M.; Nisar, M.A.; Khurshid, M.; Taj, Z.; Jahan, S. In vitro and in vivo activity of manuka honey against NDM-1-producing Klebsiella pneumoniae ST11. Future Microbiol. 2018, 13, 13–26. [Google Scholar] [CrossRef]
- Ahmad, G.; Rasool, N.; Qamar, M.U.; Alam, M.M.; Kosar, N.; Mahmood, T.; Imran, M. Facile synthesis of 4-aryl-N-(5-methyl-1H-pyrazol-3-yl)benzamides via Suzuki Miyaura reaction: Antibacterial activity against clinically isolated NDM-1-positive bacteria and their docking studies. Arab. J. Chem. 2021, 14, 103270. [Google Scholar] [CrossRef]
- Kumar, V.; Kaur, K.; Gupta, G.K.; Sharma, A.K. Pyrazole containing natural products: Synthetic preview and biological significance. Eur. J. Med. Chem. 2013, 69, 735–753. [Google Scholar] [CrossRef]
- Fustero, S.; Sanchez-Rosello, M.; Barrio, P.; Simon-Fuentes, A. From 2000 to mid-2010: A fruitful decade for the synthesis of pyrazoles. Chem. Rev. 2011, 111, 6984–7034. [Google Scholar] [CrossRef]
- Ansari, A.; Ali, A.; Asif, M. Biologically active pyrazole derivatives. New J. Chem. 2017, 41, 16–41. [Google Scholar] [CrossRef]
- Isloor, A.M.; Kalluraya, B.; Shetty, P. Regioselective reaction: Synthesis, characterization and pharmacological studies of some new mannich bases derived from 1, 2, 4-triazoles. Eur. J. Med. Chem. 2009, 44, 3784–3787. [Google Scholar] [CrossRef] [PubMed]
- Ali Salman, G.; Zinad, D.S.; Mahal, A.; Rizki Fadhil Pratama, M.; Duan, M.; Alkhouri, A.; Alamiery, A. Synthesis, antibacterial activity, and molecular docking study of bispyrazole-based derivatives as potential antibacterial agents. ChemistrySelect 2022, 7, e202103901. [Google Scholar] [CrossRef]
- Kumar, G.; Tanwar, O.; Kumar, J.; Akhter, M.; Sharma, S.; Pillai, C.; Alam, M.M.; Zama, M. Pyrazole-pyrazoline as promising novel antimalarial agents: A mechanistic study. Eur. J. Med. Chem. 2018, 149, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Eleya, N.; Mahal, A.; Hein, M.; Villinger, A.; Langer, P. Synthesis of arylated quinolines by chemo- and site- selective Suzuki-Miyaura reactions of 5, 7-dibromo-8-(trifluoromethanesulfonyloxy)quinoline. Adv. Synth. Catal. 2011, 353, 2761–2774. [Google Scholar] [CrossRef]
- Ibad, M.F.; Eleya, N.; Obaid-Ur-Rahman, A.; Mahal, A.; Hussain, M.; Villinger, A.; Langer, P. Site-selective Suzuki-Miyaura reactions of 1, 4-and 3, 5-bis(trifluoromethylsulfonyloxy)-2-naphthoates. Synthesis 2011, 13, 2101–2116. [Google Scholar] [CrossRef]
- Salman, G.A.; Mahal, A.; Shkoor, M.; Hussain, M.; Villinger, A.; Langer, P. Regioselective Suzuki–Miyaura reactions of the bis(triflate) of 1, 2, 3, 4-tetrahydro-9, 10-dihydroxyanthracen-1-one. Tetrahedron Lett. 2011, 52, 392–394. [Google Scholar] [CrossRef]
- Mahal, A.; Villinger, A.; Langer, P. Synthesis of 1, 2-diarylanthraquinones by site-selective Suzuki-Miyaura reactions of the bis(triflate) of alizarin. Synlett 2010, 2010, 1085–1088. [Google Scholar] [CrossRef]
- Mahal, A.; Villinger, A.; Langer, P. Site-selective arylation of alizarin and purpurin based on Suzuki-Miyaura cross-coupling reactions. Chem. Eur. 2011, 2011, 2075–2087. [Google Scholar] [CrossRef]
- Johnson, M.; Younglove, B.; Lee, L.; LeBlanc, R.; Holt, H., Jr.; Hills, P.; Mackay, H.; Brown, T.; Mooberry, S.L.; Lee, M. Design, synthesis, and biological testing of pyrazoline derivatives of combretastatin-A4. Bioorg. Med. Chem. Lett. 2007, 17, 5897–5901. [Google Scholar] [CrossRef]
- Solankee, A.; Kapadia, K.; Ćirić, A.; Soković, M.; Doytchinova, I.; Geronikaki, A. Synthesis of some new S-triazine based chalcones and their derivatives as potent antimicrobial agents. Eur. J. Med. Chem. 2010, 45, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Khode, S.; Maddi, V.; Aragade, P.; Palkar, M.; Ronad, P.K.; Mamledesai, S.; Thippeswamy, A.; Satyanarayana, D. Synthesis and pharmacological evaluation of a novel series of 5-(substituted) aryl-3-(3-coumarinyl)-1-phenyl-2-pyrazolines as novel anti-inflammatory and analgesic agents. Eur. J. Med. Chem. 2009, 44, 1682–1688. [Google Scholar] [CrossRef] [PubMed]
- Insuasty, B.; Montoya, A.; Becerra, D.; Quiroga, J.; Abonia, R.; Robledo, S.; Vélez, I.D.; Upegui, Y.; Nogueras, M.; Cobo, J. Synthesis of novel analogs of 2-pyrazoline obtained from [(7-chloroquinolin-4-yl) amino] chalcones and hydrazine as potential antitumor and antimalarial agents. Eur. J. Med. Chem. 2013, 67, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.C.; Li, H.Q.; Sun, J.; Zhou, Y.; Zhu, H.L. Synthesis and biological evaluation of pyrazole derivatives containing thiourea skeleton as anticancer agents. Biorg. Med. Chem. 2010, 18, 4606–4614. [Google Scholar] [CrossRef]
- Karim, D.K.; Salman, G.A.; Al-Mansury, S.; Jinzeel, N.A. Synthesis and antimicrobial evaluation of arylated 1, 3, 5-triphenyl pyrazoline derivatives using Suzuki-Miyaura reactions. Egypt. J. Chem. 2021, 64, 2469–2481. [Google Scholar]
- Jeffery, T. Highly stereospecific palladium-catalysed vinylation of vinylic halides under solid-liquid phase transfer conditions. Tetrahedron Lett. 1985, 26, 2667–2670. [Google Scholar] [CrossRef]
- Jeffery, T. Palladium-catalyzed vinylation of acetylenic iodides under solid-liquid please-transfer conditions. Synthesis 1987, 1987, 70–71. [Google Scholar] [CrossRef]
- Almeida, A.I.; Silva, A.M.; Cavaleiro, J.A. Reactivity of 3-iodo-4-quinolones in Heck reactions: Synthesis of novel (E)-3-styryl-4-quinolones. Synlett 2010, 2010, 462–466. [Google Scholar] [CrossRef]
- Mohamed, Y.M.; Solum, E.J.; Eweas, A.F. Synthesis, antibacterial evaluation, and docking studies of azaisoflavone analogues generated by palladium-catalyzed cross-coupling. Monatsh. Chem. 2018, 149, 1857–1864. [Google Scholar] [CrossRef]
- Asokan, G.V.; Ramadhan, T.; Ahmed, E.; Sanad, H. WHO global priority pathogens list: A bibliometric analysis of medline-pubmed for knowledge mobilization to infection prevention and control practices in Bahrain. Oman Med. J. 2019, 34, 184. [Google Scholar] [CrossRef]
- Ahmad, G.; Khalid, A.; Qamar, M.U.; Rasool, N.; Saadullah, M.; Bilal, M.; Bajaber, M.A.; Obaidullah, A.J.; Alotaibi, H.F.; Alotaibi, J.M. Antibacterial efficacy of N-(4-methylpyridin-2-yl) thiophene-2-carboxamide analogues against extended-spectrum-β-lactamase producing clinical strain of Escherichia coli ST 131. Molecules 2023, 28, 3118. [Google Scholar] [CrossRef] [PubMed]
- Usman Qamar, M.; Lopes, B.S.; Hassan, B.; Khurshid, M.; Shafique, M.; Atif Nisar, M.; Mohsin, M.; Nawaz, Z.; Muzammil, S.; Aslam, B. The present danger of New delhi metallo-β-lactamase: A threat to public health. Future Microbiol. 2020, 15, 1759–1778. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Suzuki, M.; Xie, L.; Morris-Natschke, S.L.; Lee, K.H. Recent progress in the development of coumarin derivatives as potent anti-HIV agents. Med. Res. Rev. 2003, 23, 322–345. [Google Scholar] [CrossRef]
- Buzzini, P.; Turchetti, B.; Ieri, F.; Goretti, M.; Branda, E.; Mulinacci, N.; Romani, A. Catechins and proanthocyanidins: Naturally occurring o-heterocycles with antimicrobial activity. Bioact. Heterocycles IV 2007, 10, 239–263. [Google Scholar]
- Donnelly, D.; Boland, G. Isoflavonoids and neoflavonoids: Naturally occurring o-heterocycles. Nat. Prod. Rep. 1995, 12, 321–338. [Google Scholar] [CrossRef]
- Kumawat, M.K. Thiazole containing heterocycles with antimalarial activity. Curr. Drug Discov. Technol. 2018, 15, 196–200. [Google Scholar] [CrossRef]
- Siddiqa, A.; Zubair, M.; Bilal, M.; Rasool, N.; Qamar, M.U.; Khalid, A.; Ahmad, G.; Imran, M.; Mahmood, S.; Ashraf, G.A. Synthesis of functionalized N-(4-bromophenyl) furan-2-carboxamides via Suzuki-Miyaura cross-coupling: Anti-bacterial activities against clinically isolated drug resistant A. baumannii, K. pneumoniae, E. cloacae and MRSA and its validation via a computational approach. Pharmaceuticals 2022, 15, 841. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.; Jha, K.; Kumar, S. Biological diversity of thiophene: A review. J. Adv. Sci. Res. 2012, 3, 3–10. [Google Scholar]
- Mohan, C.; Bhargava, G.; Bedi, P.M. Thieno[3, 2-d]pyrimidin-4-one derivatives as potential antibacterial agents. J. Life Sci. 2009, 1, 97–101. [Google Scholar] [CrossRef]
- Folkes, A.J.; Ahmadi, K.; Alderton, W.K.; Alix, S.; Baker, S.J.; Box, G.; Chuckowree, I.S.; Clarke, P.A.; Depledge, P.; Eccles, S.A. The identification of 2-(1 H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3, 2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J. Med. Chem. 2008, 51, 5522–5532. [Google Scholar] [CrossRef]
- Laddha, S.S.; Bhatnagar, S.P. A new therapeutic approach in Parkinson’s disease: Some novel quinazoline derivatives as dual selective phosphodiesterase 1 inhibitors and anti-inflammatory agents. Biorg. Med. Chem. 2009, 17, 6796–6802. [Google Scholar] [CrossRef] [PubMed]
- Alagarsamy, V.; Raja Solomon, V.; Meenac, R.; Ramaseshu, K.; Thirumurugan, K.; Murugesan, S. Design and Synthesis of 2-Methylthio-3-substituted-5, 6-dimethylthieno [2, 3-d] pyrimidin-4 (3H)-ones as analgesic, anti-inflammatory and antibacterial agents. Med. Chem. 2007, 3, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Wardakhan, W.W.; Abdel-Salam, O.M.; Elmegeed, G.A. Screening for antidepressant, sedative and analgesic activities of novel fused thiophene derivatives. Acta Pharm. 2008, 58, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ikram, H.M.; Rasool, N.; Ahmad, G.; Chotana, G.A.; Musharraf, S.G.; Zubair, M.; Rana, U.A.; Zia-Ul-Haq, M.; Jaafar, H.Z. Selective C-arylation of 2, 5-dibromo-3-hexylthiophene via Suzuki cross-coupling reaction and their pharmacological aspects. Molecules 2015, 20, 5202–5214. [Google Scholar] [CrossRef]
- Rizwan, K.; Zubair, M.; Rasool, N.; Mahmood, T.; Ayub, K.; Alitheen, N.B.; Aziz, M.N.M.; Akhtar, M.N.; Nasim, F.-u.-H.; Bukhary, S.M. Palladium (0) catalyzed Suzuki cross-coupling reaction of 2, 5-dibromo-3-methylthiophene: Selectivity, characterization, DFT studies and their biological evaluations. Chem. Cent. J. 2018, 12, 49. [Google Scholar] [CrossRef]
- Chu, D.T.; Plattner, J.J.; Katz, L. New directions in antibacterial research. J. Med. Chem. 1996, 39, 3853–3874. [Google Scholar] [CrossRef] [PubMed]
- Beović, B. The issue of antimicrobial resistance in human medicine. Int. J. Food Microbiol. 2006, 112, 280–287. [Google Scholar] [CrossRef]
- Finch, R.; Hunter, P. Antibiotic resistance-action to promote new technologies: Report of an EU intergovernmental conference held in Birmingham, UK, 12–13 december 2005. J. Antimicrob. Chemother. 2006, 58, i3–i22. [Google Scholar] [CrossRef]
- McNaughton, B.R.; Miller, B.L. A mild and efficient one-step synthesis of quinolines. Org. Lett. 2003, 5, 4257–4259. [Google Scholar] [CrossRef]
- Mahajan, A.; Singh, H.; Singh, A.; Agrawal, D.K.; Arora, A.; Chundawat, T.S. Trifluoromethylated quinolone-hydantoin hybrids: Synthesis and antibacterial evaluation. Sci 2022, 4, 30. [Google Scholar] [CrossRef]
- Manjal, S.K.; Kaur, R.; Bhatia, R.; Kumar, K.; Singh, V.; Shankar, R.; Kaur, R.; Rawal, R.K. Synthetic and medicinal perspective of thiazolidinones: A review. Bioorg. Chem. 2017, 75, 406–423. [Google Scholar] [CrossRef] [PubMed]
- Tomašić, T.; Zidar, N.; Mueller-Premru, M.; Kikelj, D.; Mašič, L.P. Synthesis and antibacterial activity of 5-ylidenethiazolidin-4-ones and 5-benzylidene-4, 6-pyrimidinediones. Eur. J. Med. Chem. 2010, 45, 1667–1672. [Google Scholar] [CrossRef] [PubMed]
- Tejchman, W.; Orwat, B.; Korona-Głowniak, I.; Barbasz, A.; Kownacki, I.; Latacz, G.; Handzlik, J.; Żesławska, E.; Malm, A. Highly efficient microwave synthesis of rhodanine and 2-thiohydantoin derivatives and determination of relationships between their chemical structures and antibacterial activity. RSC Adv. 2019, 9, 39367–39380. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.-J.; Zhou, Y.-J.; Wang, J.-H.; Mao, L.-F.; Li, W.; Xu, G.-Q. The synthesis and antitumor activity of 1, 8-naphthalimide derivatives linked 1, 2, 3-triazole. Front. Bioeng. Biotechnol. 2021, 9, 662432. [Google Scholar] [CrossRef]
- Banerjee, S.; Veale, E.B.; Phelan, C.M.; Murphy, S.A.; Tocci, G.M.; Gillespie, L.J.; Frimannsson, D.O.; Kelly, J.M.; Gunnlaugsson, T. Recent advances in the development of 1, 8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents. Chem. Soc. Rev. 2013, 42, 1601–1618. [Google Scholar] [CrossRef]
- Dong, H.Q.; Wei, T.B.; Ma, X.Q.; Yang, Q.Y.; Zhang, Y.F.; Sun, Y.J.; Shi, B.B.; Yao, H.; Zhang, Y.M.; Lin, Q. 1, 8-Naphthalimide-based fluorescent chemosensors: Recent advances and perspectives. J. Mater. Chem. 2020, 8, 13501–13529. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, G.; Tripathi, A.K.; Seena, S.; Koh, J. Enhanced fluorescence norfloxacin substituted naphthalimide derivatives: Molecular docking and antibacterial activity. J. Mol. Struct. 2018, 1157, 292–299. [Google Scholar] [CrossRef]
- Türkmen, G. Pd catalyzed synthesis of 4-aryl 1, 8-naphthalimide dyes: Determining photophysical parameters and antimicrobial properties. J. Mol. Struct. 2022, 1266, 133448. [Google Scholar] [CrossRef]
- Madapa, S.; Tusi, Z.; Batra, S. Advances in the syntheses of quinoline and quinoline-annulated ring systems. Curr. Org. Chem. 2008, 12, 1116–1183. [Google Scholar] [CrossRef]
- Håheim, K.S.; Lindbäck, E.; Tan, K.N.; Albrigtsen, M.; Urdal Helgeland, I.T.; Lauga, C.; Matringe, T.; Kennedy, E.K.; Andersen, J.H.; Avery, V.M. Synthesis and evaluation of the tetracyclic ring-system of isocryptolepine and regioisomers for antimalarial, antiproliferative and antimicrobial activities. Molecules 2021, 26, 3268. [Google Scholar] [CrossRef]
- Auti, P.S.; George, G.; Paul, A.T. Recent advances in the pharmacological diversification of quinazoline/quinazolinone hybrids. RSC Adv. 2020, 10, 41353–41392. [Google Scholar] [CrossRef] [PubMed]
- Alagarsamy, V.; Meena, S.; Ramseshu, K.; Solomon, V.; Thirumurugan, K.; Dhanabal, K.; Murugan, M. Synthesis, analgesic, anti-inflammatory, ulcerogenic index and antibacterial activities of novel 2-methylthio-3-substituted-5, 6, 7, 8-tetrahydrobenzo(b)thieno[2, 3-d]pyrimidin-4(3H)-ones. Eur. J. Med. Chem. 2006, 41, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Mane, V.; Baiju, T.V.; Namboothiri, I.N. Synthesis of functionalized thieno[2, 3-b]indoles via one-pot reaction of indoline-2-thiones with morita-baylis-hillman and rauhut-currier adducts of nitroalkenes. ACS Omega 2018, 3, 17617–17628. [Google Scholar] [CrossRef] [PubMed]
- Sain, S.; Jaiswal, S.; Jain, S.; Misra, N.; Srivastava, A.; Jendra, R.; Kishore, D.; Dwivedi, J.; Wabaidur, S.M.; Islam, M.A. Synthesis and theoretical studies of biologically active thieno nucleus incorporated tri and tetracyclic nitrogen containing heterocyclics scaffolds via Suzuki cross-coupling Reaction. Chem. Biodivers. 2022, 19, e202200540. [Google Scholar] [CrossRef] [PubMed]
- Gasser, G.; Ott, I.; Metzler-Nolte, N. Organometallic anticancer compounds. J. Med. Chem. 2011, 54, 3–25. [Google Scholar] [CrossRef]
- Meng, T.; Qin, Q.P.; Chen, Z.L.; Zou, H.H.; Wang, K.; Liang, F.P. Discovery of high in vitro and in vivo antitumor activities of organometallic ruthenium (II)-arene complexes with 5, 7-dihalogenated-2-methyl-8-quinolinol. Dalton Trans. 2019, 48, 5352–5360. [Google Scholar] [CrossRef]
- Nain-Perez, A.; Barbosa, L.C.; Araujo, M.H.; Martins, J.P.; Takahashi, J.A.; Oliveira, G.; Diniz, R.; Heller, L.; Hoenke, S.; Csuk, R. Antibacterial and cytotoxic activity of ruthenium-pcy-mene complexes with 2-methylquinolin-8-ol derivatives. ChemistrySelect 2021, 6, 2942–2950. [Google Scholar] [CrossRef]
- Jimenez, C. ACS Med. Chem. Lett 2018, 9, 959. [Google Scholar]
- Wang, X.; Qiu, H.; Yang, N.; Xie, H.; Liang, W.; Lin, J.; Zhu, H.; Zhou, Y.; Wang, N.; Tan, X. Fascaplysin derivatives binding to DNA via unique cationic five-ring coplanar backbone showed potent antimicrobial/antibiofilm activity against MRSA in vitro and in vivo. Eur. J. Med. Chem. 2022, 230, 114099. [Google Scholar] [CrossRef]
- El-Maiss, J.; Mohy El Dine, T.; Lu, C.S.; Karamé, I.; Kanj, A.; Polychronopoulou, K.; Shaya, J. Recent advances in metal-catalyzed alkyl-boron (C (sp3)–C (sp2)) Suzuki-Miyaura cross-couplings. Catalysts 2020, 10, 296. [Google Scholar] [CrossRef]
- Jiang, Y.; Qiu, H.; Liang, W.; Lin, J.; Lin, J.; Liu, W.; Wang, X.; Cui, W.; Chen, X.; Wang, H. Derivatization of Marine-derived fascaplysin via highly regioselective Suzuki-Miyaura coupling contributing to the enhanced antibacterial activity. ChemistrySelect 2022, 7, e202201441. [Google Scholar] [CrossRef]
- El Azzaoui, B.; Rachid, B.; Doumbia, M.L.; Essassi, E.M.; Gornitzka, H.; Bellan, J.; Muscia, G.C.; Bollini, M.; Carnevale, J.P.; Bruno, A.M. Unexpected opening of benzimidazole derivatives during 1, 3-dipolar cycloaddition pp 8807–8810. Tetrahedron Lett. 2006, 47, 8807–8810. [Google Scholar] [CrossRef]
- Marella, A.; Tanwar, O.P.; Saha, R.; Ali, M.R.; Srivastava, S.; Akhter, M.; Shaquiquzzaman, M.; Alam, M.M. Quinoline: A versatile heterocyclic. Saudi Pharm. J. 2013, 21, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ökten, S.; Aydın, A.; Koçyiğit, Ü.M.; Çakmak, O.; Erkan, S.; Andac, C.A.; Taslimi, P.; Gülçin, İ. Quinolin-based promising anticancer and antibacterial agents, and some metabolic enzyme inhibitors. Arch. Pharm. 2020, 353, 2000086. [Google Scholar] [CrossRef] [PubMed]
- Köprülü, T.K.; Ökten, S.; Atalay, V.E.; Tekin, Ş.; Çakmak, O. Biological activity and molecular docking studies of some new quinolines as potent anticancer agents. Med. Oncol. 2021, 38, 84. [Google Scholar] [CrossRef] [PubMed]
- Ökten, S.; Cakmak, O.; Erenler, R.; Şahin, Ö.Y.; Tekin, Ş. Simple and convenient preparation of novel 6, 8-disubstituted quinoline derivatives and their promising anticancer activities. Turk. J. Chem. 2013, 37, 896–908. [Google Scholar] [CrossRef]
- Ramesh, E.; Manian, R.D.R.; Raghunathan, R.; Sainath, S.; Raghunathan, M. Synthesis and antibacterial property of quinolines with potent DNA gyrase activity. Biorg. Med. Chem. 2009, 17, 660–666. [Google Scholar] [CrossRef]
- Koçyiğit, Ü.M.; Ökten, S.; Çakmak, O.; Burhan, G.; Ataş, M.; Taslimi, P.; Gülçin, İ. Arylated quinoline and tetrahydroquinolines: Synthesis, characterization and their metabolic enzyme inhibitory and antimicrobial activities. ChemistrySelect 2022, 7, e202203469. [Google Scholar] [CrossRef]
- Martin, M.T.; Roschangar, F.; Eaddy, J.F. Practical acid-catalyzed acylation of sulfonamides with carboxylic acid anhydrides. Tetrahedron Lett. 2003, 44, 5461–5463. [Google Scholar] [CrossRef]
- Berredjem, M.; Bouchareb, F.; Kaki, S.A.; Dekhil, M.; Aouf, N.-E. Synthesis and antibacterial activity of novel N-acylsulfonamides. Arab. J. Chem. 2017, 10, S1095–S1099. [Google Scholar] [CrossRef]
- Reitz, A.B.; Smith, G.R.; Parker, M.H. The role of sulfamide derivatives in medicinal chemistry: A patent review (2006–2008). Expert Opin. Ther. Pat. 2009, 19, 1449–1453. [Google Scholar] [CrossRef] [PubMed]
- Noreen, M.; Rasool, N.; Gull, Y.; Zubair, M.; Mahmood, T.; Ayub, K.; Nasim, F.-u.-H.; Yaqoob, A.; Zia-Ul-Haq, M.; De Feo, V. Synthesis, density functional theory (DFT), urease inhibition and antimicrobial activities of 5-aryl thiophenes bearing sulphonylacetamide moieties. Molecules 2015, 20, 19914–19928. [Google Scholar] [CrossRef]
- Bold, G.; Altmann, K.H.; Frei, J.; Lang, M.; Manley, P.W.; Traxler, P.; Wietfeld, B.; Brüggen, J.; Buchdunger, E.; Cozens, R. New anilinophthalazines as potent and orally well absorbed inhibitors of the VEGF receptor tyrosine kinases useful as antagonists of tumor-driven angiogenesis. J. Med. Chem. 2000, 43, 2310–2323. [Google Scholar] [CrossRef] [PubMed]
- Strappaghetti, G.; Brodi, C.; Giannaccini, G.; Betti, L. New 4-(4-methyl-phenyl)phthalazin-1(2H)-one derivatives and their effects on α1-receptors. Bioorg. Med. Chem. Lett. 2006, 16, 2575–2579. [Google Scholar] [CrossRef] [PubMed]
- Lebsack, A.D.; Gunzner, J.; Wang, B.; Pracitto, R.; Schaffhauser, H.; Santini, A.; Aiyar, J.; Bezverkov, R.; Munoz, B.; Liu, W. Identification and synthesis of [1, 2, 4]triazolo [3, 4-a]phthalazine derivatives as high-affinity ligands to the α2δ-1 subunit of voltage gated calcium channel. Bioorg. Med. Chem. Lett. 2004, 14, 2463–2467. [Google Scholar]
- Haack, T.; Fattori, R.; Napoletano, M.; Pellacini, F.; Fronza, G.; Raffaini, G.; Ganazzoli, F. Phthalazine PDE IV inhibitors: Conformational study of some 6-methoxy-1, 4-disubstituted derivatives. Biorg. Med. Chem. 2005, 13, 4425–4433. [Google Scholar] [CrossRef]
- Kumar, G.R.; Kurmarayuni, C.M.; Indupalli, M.; Pallapati, R.K.; Bollikolla, H.B. Synthesis of new analogs of 3-methyl-[1, 2,4]triazolo [3, 4-a]phthalazines via Suzuki coupling and evaluation of their anticancer and antimicrobial activity. Mediterr. J. Chem. 2019, 8, 261–269. [Google Scholar] [CrossRef]
- Smith, R.D.; Coast, J. Antimicrobial resistance: A global response. Bull. World Health Organ. 2002, 80, 126–133. [Google Scholar]
- Ejaz, H.; Younas, S.; Qamar, M.U.; Junaid, K.; Abdalla, A.E.; Abosalif, K.O.A.; Alameen, A.A.M.; Elamir, M.Y.M.; Ahmad, N.; Hamam, S.S.M. Molecular epidemiology of extensively drug-resistant mcr encoded colistin-resistant bacterial strains co-expressing multifarious β-lactamases. Antibiotics 2021, 10, 467. [Google Scholar] [CrossRef]
- Eldehna, W.M.; Fares, M.; Abdel-Aziz, M.M.; Abdel-Aziz, H.A. Design, synthesis and antitubercular activity of certain nicotinic acid hydrazides. Molecules 2015, 20, 8800–8815. [Google Scholar] [CrossRef]
- Dhalla, A.K.; Santikul, M.; Smith, M.; Wong, M.Y.; Shryock, J.C.; Belardinelli, L. Antilipolytic activity of a novel partial A1 adenosine receptor agonist devoid of cardiovascular effects: Comparison with nicotinic acid. J. Pharmacol. Exp. Ther. 2007, 321, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Narang, R.; Narasimhan, B.; Sharma, S.; Sriram, D.; Yogeeswari, P.; De Clercq, E.; Pannecouque, C.; Balzarini, J. Synthesis, antimycobacterial, antiviral, antimicrobial activities, and QSAR studies of nicotinic acid benzylidene hydrazide derivatives. Med. Chem. Res. 2012, 21, 1557–1576. [Google Scholar] [CrossRef]
- Naheed, S.; Din, I.U.; Qamar, M.U.; Rasool, N.; Ahmad, M.; Bilal, M.; Khalid, A.; Ahmad, G.; Al-Hussain, S.A.; Zaki, M.E. Synthesis, anti-bacterial and molecular docking studies of arylated butyl 2-bromoisonicotinate against clinical isolates of ESBL-producing Escherichia coli ST405 and Methicillin-Resistant Staphylococcus aureus. Infect. Drug Resist. 2023, 16, 5295–5308. [Google Scholar] [CrossRef] [PubMed]
- Clapp, L.B.; Katritzky, A.; Boulton, A. Advances in Heterocyclic Chemistry; Academic Press: New York, NY, USA, 1976; Volume 20, pp. 65–116. [Google Scholar]
- Yadav, G.; Ganguly, S. Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: A mini-review. Eur. J. Med. Chem. 2015, 97, 419–443. [Google Scholar] [CrossRef]
- Sayer, J.R.; Walldén, K.; Pesnot, T.; Campbell, F.; Gane, P.J.; Simone, M.; Koss, H.; Buelens, F.; Boyle, T.P.; Selwood, D.L. 2- and 3-substituted imidazo [1, 2-a]pyrazines as inhibitors of bacterial type IV secretion. Biorg. Med. Chem. 2014, 22, 6459–6470. [Google Scholar] [CrossRef]
- Chikhi, S.; Djebbar, S.; Soule, J.F.; Doucet, H. Environmentally-safe conditions for a palladium-catalyzed direct C3-arylation with high turn over frequency of Imidazo [1, 2-b] pyridazines using aryl bromides and chlorides. Chem. Asian J. 2016, 11, 2443–2452. [Google Scholar] [CrossRef]
- Marchand, P.; Bazin, M.A.; Pagniez, F.; Rivière, G.; Bodero, L.; Marhadour, S.; Nourrisson, M.R.; Picot, C.; Ruchaud, S.; Bach, S. Synthesis, antileishmanial activity and cytotoxicity of 2, 3-diaryl-and 2, 3, 8-trisubstituted imidazo[1, 2-a]pyrazines. Eur. J. Med. Chem. 2015, 103, 381–395. [Google Scholar] [CrossRef]
- Salek Soltani, S.; Farnia, S.M.F.; Foroumadi, A. A comparison between Suzuki cross-coupling reaction and direct arylation in the synthesis of new antibacterial imidazo-pyrazines/pyridazines. J. Heterocycl. Chem. 2020, 57, 1770–1780. [Google Scholar] [CrossRef]
- Allen, H.K.; Donato, J.; Wang, H.H.; Cloud-Hansen, K.A.; Davies, J.; Handelsman, J. Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 2010, 8, 251–259. [Google Scholar] [CrossRef]
- Tello, A.; Austin, B.; Telfer, T.C. Selective pressure of antibiotic pollution on bacteria of importance to public health. Environ. Health Perspect. 2012, 120, 1100–1106. [Google Scholar] [CrossRef]
- Wang, W.; Shangguan, S.; Qiu, N.; Hu, C.; Zhang, L.; Hu, Y. Design, synthesis and biological evaluation of novel 3, 4, 5-trisubstituted aminothiophenes as inhibitors of p53–MDM2 interaction. Part 1. Biorg. Med. Chem. 2013, 21, 2879–2885. [Google Scholar] [CrossRef] [PubMed]
- Alsayari, A.; Muhsinah, A.B.; Asiri, Y.I.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Alatibi, F.; El-Sayed, N.N.E.; Mabkhot, Y.N. Synthesis of antimicrobial agents of tetra-substituted thiophenes from ethyl 5-(2-bromoacetyl)-4-phenyl-2-(phenylamino) thiophene-3-carboxylate. J. Heterocycl. Chem. 2020, 57, 2911–2922. [Google Scholar] [CrossRef]
- Boibessot, T.; Zschiedrich, C.P.; Lebeau, A.; Bénimèlis, D.; Dunyach-Remy, C.; Lavigne, J.P.; Szurmant, H.; Benfodda, Z.; Meffre, P. The rational design, synthesis, and antimicrobial properties of thiophene derivatives that inhibit bacterial histidine kinases. J. Med. Chem. 2016, 59, 8830–8847. [Google Scholar] [CrossRef] [PubMed]
- Nasr, T.; Bondock, S.; Eid, S. Design, synthesis, antimicrobial evaluation and molecular docking studies of some new thiophene, pyrazole and pyridone derivatives bearing sulfisoxazole moiety. Eur. J. Med. Chem. 2014, 84, 491–504. [Google Scholar] [CrossRef]
- De, B.; Sen, S.; Easwari, T. Chemistry and therapeutic aspect of furan: A short review. Asian J. Res. Chem. 2015, 8, 428–438. [Google Scholar] [CrossRef]
- Rosales-Hurtado, M.; Duvauchelle, V.; Bénimélis, D.; Ogawa-Okada, M.; Yamamoto, N.; Meffre, P.; Szurmant, H.; Benfodda, Z. Microwave-assisted synthesis of biodegradable and antibacterial thiophene, furan and thiazole derivatives. Environ. Chem. Lett. 2023, 21, 47–53. [Google Scholar] [CrossRef]
- Priya Rani, M.; Padmakumari, K.; Sankarikutty, B.; Lijo Cherian, O.; Nisha, V.; Raghu, K. Inhibitory potential of ginger extracts against enzymes linked to type 2 diabetes, inflammation and induced oxidative stress. Int. J. Food Sci. Nutr. 2011, 62, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Ajish, K.; Dhanya, B.; Joseph, N.; Rani, M.P.; Raghu, K.; Vineetha, V.; Radhakrishnan, K. Synthesis of novel zerumbone derivatives via regioselective palladium catalyzed decarboxylative coupling reaction: A new class of α-glucosidase inhibitors. Tetrahedron Lett. 2014, 55, 665–670. [Google Scholar] [CrossRef]
- Konda, Y.; Ankireddy, A.R.; Velavalapalli, V.M.; Paidikondala, K.; Pasula, A.; Gundla, R. Synthesis, alpha-glucosidase inhibition and antibacterial activities of the new chiral (R)-3, 3-disubstituted BINOL-phosphates. Russ. J. Gen. Chem. 2022, 92, 898–907. [Google Scholar] [CrossRef]
- Bax, R.; Mullan, N.; Verhoef, J. The millennium bugs-the need for and development of new antibacterials. Int. J. Antimicrob. Agents 2000, 16, 51–59. [Google Scholar] [CrossRef]
- Kawatkar, S.P.; Keating, T.A.; Olivier, N.B.; Breen, J.N.; Green, O.M.; Guler, S.Y.; Hentemann, M.F.; Loch, J.T.; McKenzie, A.R.; Newman, J.V. Antibacterial inhibitors of gram-positive thymidylate kinase: Structure-activity relationships and chiral preference of a new hydrophobic binding region. J. Med. Chem. 2014, 57, 4584–4597. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Plummer, M.S.; Starr, J.; Desbonnet, C.R.; Soutter, H.; Chang, J.; Miller, J.R.; Dillman, K.; Miller, A.A.; Roush, W.R. Structure guided development of novel thymidine mimetics targeting Pseudomonas aeruginosa thymidylate kinase: From hit to lead generation. J. Med. Chem. 2012, 55, 852–870. [Google Scholar] [CrossRef] [PubMed]
- Blindheim, F.H.; Olsen, C.E.; Krogh Søgaard, C.; Otterlei, M.; Sundby, E.; Hoff, B.H. Synthetic strategies towards imidazopyridinones and 7-azaoxindoles and their evaluation as antibacterial agents. Eur. J. Org. Chem. 2021, 2021, 2701–2712. [Google Scholar] [CrossRef]
- Sangshetti, J.N.; Khan, F.A.K.; Chouthe, R.S.; Damale, M.G.; Shinde, D.B. Synthesis, docking and ADMET prediction of novel 5-((5-substituted-1-H-1, 2, 4-triazol-3-yl) methyl)-4, 5, 6, 7-tetrahydrothieno [3, 2-c] pyridine as antifungal agents. Chin. Chem. Lett. 2014, 25, 1033–1038. [Google Scholar] [CrossRef]
- Groenhagen, U.; Maczka, M.; Dickschat, J.S.; Schulz, S. Streptopyridines, volatile pyridine alkaloids produced by streptomyces sp. Form5. Beilstein J. Org. Chem. 2014, 10, 1421–1432. [Google Scholar] [CrossRef]
- Movassaghi, M.; Hill, M.D.; Ahmad, O.K. Direct synthesis of pyridine derivatives. J. Am. Chem. Soc. 2007, 129, 10096–10097. [Google Scholar] [CrossRef]
- Akram, M.; Adeel, M.; Khalid, M.; Tahir, M.N.; Khan, M.U.; Asghar, M.A.; Ullah, M.A.; Iqbal, M. A combined experimental and computational study of 3-bromo-5-(2, 5-difluorophenyl)pyridine and 3, 5-bis(naphthalen-1-yl)pyridine: Insight into the synthesis, spectroscopic, single crystal XRD, electronic, nonlinear optical and biological properties. J. Mol. Struct. 2018, 1160, 129–141. [Google Scholar]
- Olajuyigbe, O.O.; Afolayan, A.J. Synergistic interactions of methanolic extract of acacia mearnsii de wild with antibiotics against bacteria of clinical relevance. Int. J. Mol. Sci. 2012, 13, 8915–8932. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, X.; Ding, L.; Zhang, Y.; Cui, L.; Sun, L.; Li, W.; Wang, D.; Zhao, Y. Synthesis and antibacterial activity evaluation of novel biaryloxazolidinone analogues containing a hydrazone moiety as promising antibacterial agents. Eur. J. Med. Chem. 2018, 158, 247–258. [Google Scholar] [CrossRef]
- Xu, S.; Jiang, J.; Qi, Y.; Ding, X.; Wu, Y.; Lei, H.; Zhao, Y. Design and synthesis of biaryloxazolidinone derivatives containing amide or acrylamide moiety as novel antibacterial agents against Gram-positive bacteria. Bioorg. Med. Chem. Lett. 2019, 29, 126747. [Google Scholar] [CrossRef]
- Hierso, J.C.; Fihri, A.; Amardeil, R.; Meunier, P.; Doucet, H.; Santelli, M.; Ivanov, V.V. Catalytic efficiency of a new tridentate ferrocenyl phosphine auxiliary: Sonogashira cross-coupling reactions of alkynes with aryl bromides and chlorides at low catalyst loadings of 10-1 to 10-4 mol%. Org. Lett. 2004, 6, 3473–3476. [Google Scholar] [CrossRef] [PubMed]
- Adjabeng, G.; Brenstrum, T.; Frampton, C.S.; Robertson, A.J.; Hillhouse, J.; McNulty, J.; Capretta, A. Palladium complexes of 1, 3, 5, 7-tetramethyl-2, 4, 8-trioxa-6-phenyl-6-phosphaadamantane: Synthesis, crystal structure and use in the Suzuki and Sonogashira reactions and the α-arylation of ketones. J. Org. Chem. 2004, 69, 5082–5086. [Google Scholar] [CrossRef]
- Zhong, H.; Wang, J.; Li, L.; Wang, R. The copper-free Sonogashira cross-coupling reaction promoted by palladium complexes of nitrogen-containing chelating ligands in neat water at room temperature. Dalton Trans. 2014, 43, 2098–2103. [Google Scholar] [CrossRef] [PubMed]
- Zificsak, C.A.; Hlasta, D.J. Current methods for the synthesis of 2-substituted azoles. Tetrahedron Lett. 2004, 60, 8991–9016. [Google Scholar] [CrossRef]
- Keivanloo, A.; Abbaspour, S.; Sepehri, S.; Bakherad, M. Synthesis, antibacterial activity and molecular docking study of a series of 1, 3-oxazole-quinoxaline amine hybrids. Polycycl. Aromat. Compd. 2022, 42, 2378–2391. [Google Scholar] [CrossRef]
- Carta, A.; Piras, S.; Loriga, G.; Paglietti, G. Chemistry, biological properties and SAR analysis of quinoxalinones. Mini Rev. Med. Chem. 2006, 6, 1179–1200. [Google Scholar] [CrossRef]
- Sonogashira, K. Development of Pd-Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides. J. Organomet. Chem. 2002, 653, 46–49. [Google Scholar] [CrossRef]
- Schwarzbaum, P.J.; Kaufman, S.B.; Rossi, R.C.; Garrahan, P.J. An unexpected effect of ATP on the ratio between activity and phosphoenzyme level of Na+/K+-ATPase in steady state. Biochim. Biophys. Acta Biomembr. 1995, 1233, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Weber, L. Multi-component reactions and evolutionary chemistry. Drug Discov. Today 2002, 7, 143–147. [Google Scholar] [CrossRef]
- Hulme, C.; Gore, V. “Multi-component reactions: Emerging chemistry in drug discovery” ‘from xylocain to crixivan’. Curr. Med. Chem. 2003, 10, 51–80. [Google Scholar] [CrossRef]
- Tempest, P.A. Recent advances in heterocycle generation using the efficient Ugi multiple-component condensation reaction. Curr. Opin. Drug Discov. Devel. 2005, 8, 776–788. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, S.; Keivanloo, A.; Bakherad, M.; Sepehri, S. Design, synthesis, antibacterial evaluation and molecular docking study of new 3-aminoquinoxaline-2-alkynyl carboxylate esters. ChemistrySelect 2020, 5, 8701–8706. [Google Scholar] [CrossRef]
- Uenishi, J.i.; Matsui, K.; Ohmiya, H. Studies on stereoselective Sonogashira coupling of 1, 1-dibromo-1-alkene. J. Organomet. Chem. 2002, 653, 141–149. [Google Scholar] [CrossRef]
- Huang, A.; Ma, C. Recent progress in biological activities and synthetic methodologies of pyrroloquinoxalines. Mini Rev. Med. Chem. 2013, 13, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Fakharian, M.; Keivanloo, A.; Nabid, M.R. Rapid synthesis of 2-alkanol-substituted pyrrolo[2, 3-b] quinoxalines from propargylic alcohols via copper-free Sonogashira coupling reaction at room temperature. J. Heterocycl. Chem. 2018, 55, 1331–1338. [Google Scholar] [CrossRef]
- Keivanloo, A.; Bakherad, M.; Rahimi, A.; Taheri, S.A.N. One-pot synthesis of 1, 2-disubstituted pyrrolo[2, 3-b] quinoxalines via palladium-catalyzed heteroannulation in water. Tetrahedron Lett. 2010, 51, 2409–2412. [Google Scholar] [CrossRef]
- Keivanloo, A.; Bakherad, M.; Rahimi, A. Synthesis of unexpected pyrrolo[2, 3-b]quinoxaline-2-carbaldehydes via Sonogashira coupling reaction. Synthesis 2010, 10, 1599–1602. [Google Scholar] [CrossRef]
- Shelly, W.; Draper, M.W.; Krishnan, V.; Wong, M.; Jaffe, R.B. Selective estrogen receptor modulators: An update on recent clinical findings. Obstet. Gynecol. Surv. 2008, 63, 163–181. [Google Scholar] [CrossRef]
- Keri, R.S.; Chand, K.; Budagumpi, S.; Somappa, S.B.; Patil, S.A.; Nagaraja, B.M. An overview of benzo[b] thiophene-based medicinal chemistry. Eur. J. Med. Chem. 2017, 138, 1002–1033. [Google Scholar] [CrossRef]
- Konus, M.; Algso, M.A.; Kavak, E.; Kurt-Kızıldoğan, A.; Yılmaz, C.; Kivrak, A. Design, synthesis, and in vitro evaluation of thieno[a]dibenzothiophene derivatives. ChemistrySelect 2020, 5, 3700–3709. [Google Scholar] [CrossRef]
- Marston, H.D.; Dixon, D.M.; Knisely, J.M.; Palmore, T.N.; Fauci, A.S. Antimicrobial resistance. JAMA 2016, 316, 1193–1204. [Google Scholar] [CrossRef] [PubMed]
- Rossiter, S.E.; Fletcher, M.H.; Wuest, W.M. Natural products as platforms to overcome antibiotic resistance. Chem. Rev. 2017, 117, 12415–12474. [Google Scholar] [CrossRef] [PubMed]
- Kukla, D.L.; Canchola, J.; Rosenthal, J.D.; Mills, J.J. Design, synthesis, and structure-activity relationship studies of the anaephene antibiotics. Chem. Biol. Drug Des. 2021, 98, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Drachuk, I.; Shchepelina, O.; Harbaugh, S.; Kelley-Loughnane, N.; Stone, M.; Tsukruk, V.V. Cell surface engineering with edible protein nanoshells. Small 2013, 9, 3128–3137. [Google Scholar] [CrossRef]
- Simon, C.; Mathilde, D.; Thibaut, J.; Claude, N.; Mike, R.; Jean-Pierre, L.P.; Françoise, S.S. Synthesis, solubility and optical properties of π-conjugated oligoelectrolytes derived from bis-thiophene-dialkoxyphenylene derivatives. New J. Chem. 2023, 47, 1479–1487. [Google Scholar] [CrossRef]
- Sakimoto, K.K.; Wong, A.B.; Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 2016, 351, 74–77. [Google Scholar] [CrossRef]
- Meunier, C.F.; Rooke, J.C.; Léonard, A.; Van Cutsem, P.; Su, B.L. Design of photochemical materials for carbohydrate production via the immobilisation of whole plant cells into a porous silica matrix. J. Mater. Chem. 2010, 20, 929–936. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, X.; Tang, R. Improvement of biological organisms using functional material shells. Adv. Funct. Mater. 2016, 26, 1862–1880. [Google Scholar] [CrossRef]
- Bian, R.; Jiang, Y.; Wang, Y.; Sun, J.K.; Hu, J.; Jiang, L.; Liu, H. Highly boosted microbial extracellular electron transfer by semiconductor nanowire array with suitable energy level. Adv. Funct. Mater. 2018, 28, 1707408. [Google Scholar] [CrossRef]
- Wilson, J.T.; Krishnamurthy, V.R.; Cui, W.; Qu, Z.; Chaikof, E.L. Noncovalent cell surface engineering with cationic graft copolymers. J. Am. Chem. Soc. 2009, 131, 18228–18229. [Google Scholar] [CrossRef]
- Yang, S.H.; Kang, S.M.; Lee, K.B.; Chung, T.D.; Lee, H.; Choi, I.S. Mussel-inspired encapsulation and functionalization of individual yeast cells. J. Am. Chem. Soc. 2011, 133, 2795–2797. [Google Scholar] [CrossRef] [PubMed]
- Riccò, R.; Liang, W.; Li, S.; Gassensmith, J.J.; Caruso, F.; Doonan, C.; Falcaro, P. Metal-organic frameworks for cell and virus biology: A perspective. ACS Nano 2018, 12, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Qi, R.; Zhao, H.; Zhou, X.; Liu, J.; Dai, N.; Zeng, Y.; Zhang, E.; Lv, F.; Huang, Y.; Liu, L. In situ synthesis of photoactive polymers on a living cell surface via bio-palladium catalysis for modulating biological functions. Angew. Chem. 2021, 133, 5823–5829. [Google Scholar] [CrossRef]
- Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 1975, 16, 4467–4470. [Google Scholar] [CrossRef]
- Hundertmark, T.; Littke, A.F.; Buchwald, S.L.; Fu, G.C. Pd(PhCN)2Cl2/P(t-Bu)3: A versatile catalyst for Sonogashira reactions of aryl bromides at room temperature. Org. Lett. 2000, 2, 1729–1731. [Google Scholar] [CrossRef]
- De Kort, M.; Correa, V.; Valentijn, A.R.P.; Van Der Marel, G.A.; Potter, B.V.; Taylor, C.W.; Van Boom, J.H. Synthesis of Potent Agonists of the d-m yo-inositol 1, 4, 5-trisphosphate receptor based on clustered disaccharide polyphosphate analogues of adenophostin A. J. Med. Chem. 2000, 43, 3295–3303. [Google Scholar] [CrossRef]
- Keivanloo, A.; Lashkari, S.; Sepehri, S.; Bakherad, M.; Abbaspour, S. Synthesis of hydantoin alkynes through palladium-catalyzed reaction, antibacterial evaluation, and molecular docking studies. J. Chin. Chem. Soc. 2021, 68, 1317–1327. [Google Scholar] [CrossRef]
- Zora, M.; Kivrak, A.; Yazici, C. Synthesis of pyrazoles via electrophilic cyclization. J. Org. Chem. 2011, 76, 6726–6742. [Google Scholar] [CrossRef]
- Singh, N.P.; Singh, U.P.; Rouse, M.; Zhang, J.; Chatterjee, S.; Nagarkatti, P.S.; Nagarkatti, M. Dietary indoles suppress delayed-type hypersensitivity by inducing a switch from proinflammatory Th17 cells to anti-inflammatory regulatory T cells through regulation of microRNA. J. Immunol. 2016, 196, 1108–1122. [Google Scholar] [CrossRef]
- Cihan-Üstündağ, G.; Gürsoy, E.; Naesens, L.; Ulusoy-Güzeldemirci, N.; Çapan, G.J.B.; Chemistry, M. Synthesis and antiviral properties of novel indole-based thiosemicarbazides and 4-thiazolidinones. Bioorg. Med. Chem. 2016, 24, 240–246. [Google Scholar] [CrossRef]
- Yan, J.; Chen, J.; Zhang, S.; Hu, J.; Huang, L.; Li, X. Synthesis, evaluation, and mechanism study of novel indole-chalcone derivatives exerting effective antitumor activity through microtubule destabilization in vitro and in vivo. J. Med. Chem. 2016, 59, 5264–5283. [Google Scholar] [CrossRef] [PubMed]
- Rajaraman, D.; Sundararajan, G.; Loganath, N.; Krishnasamy, K. Synthesis, molecular structure, DFT studies and antimicrobial activities of some novel 3-(1-(3, 4-dimethoxyphenethyl)-4, 5-diphenyl-1H-imidazol-2-yl)-1H-indole derivatives and its molecular docking studies. J. Mol. Struct. 2017, 1127, 597–610. [Google Scholar] [CrossRef]
- Bao, X.L.; Zhu, W.B.; Shan, T.L.; Wu, Z.; Zhang, R.J.; Liao, P.Y.; Zheng, M.Z.; Tang, H.S.; Yan, Y.J.; Chen, Z.L. Design, synthesis and evaluation of novel angiotensin II receptor 1 antagonists with antihypertensive activities. RSC Adv. 2017, 7, 26401–26410. [Google Scholar] [CrossRef]
- ElBordiny, H.S.; El-Miligy, M.M.; Kassab, S.E.; Daabees, H.; Ali, W.A.M.; El-Hawash, S.A.M. Design, synthesis, biological evaluation and docking studies of new 3-(4, 5-dihydro-1H-pyrazol/isoxazol-5-yl)-2-phenyl-1H-indole derivatives as potent antioxidants and 15-lipoxygenase inhibitors. Eur. J. Med. Chem. 2018, 145, 594–605. [Google Scholar] [CrossRef] [PubMed]
- Konus, M.; Çetin, D.; Yılmaz, C.; Arslan, S.; Mutlu, D.; Kurt-Kızıldoğan, A.; Otur, Ç.; Ozok, O.; As Algso, M.; Kivrak, A.J.C. Synthesis, biological evaluation and molecular docking of novel thiophene-based indole derivatives as potential antibacterial, GST inhibitor and apoptotic anticancer agents. ChemistrySelect 2020, 5, 5809–5814. [Google Scholar] [CrossRef]
- Carbas, B.B.; Kivrak, A.; Kavak, E. Electrosynthesis of a new indole based donor-acceptor-donor type polymer and investigation of its electrochromic properties. Mater. Chem. Phys. 2017, 188, 68–74. [Google Scholar] [CrossRef]
- Gao, Y.; Shan, D.; Jia, Y. Intramolecular larock indole synthesis for the preparation of tricyclic indoles and its application in the synthesis of tetrahydropyrroloquinoline and fargesine. Tetrahedron 2014, 70, 5136–5141. [Google Scholar] [CrossRef]
- Lal, S.; Snape, T.J. 2-Arylindoles: A privileged molecular scaffold with potent, broad-ranging pharmacological activity. Curr. Med. Chem. 2012, 19, 4828–4837. [Google Scholar] [CrossRef]
- Konus, M.; Çetin, D.; Kızılkan, N.D.; Yılmaz, C.; Fidan, C.; Algso, M.; Kavak, E.; Kivrak, A.; Kurt-Kızıldoğan, A.; Otur, Ç. Synthesis and biological activity of new indole based derivatives as potent anticancer, antioxidant and antimicrobial agents. J. Mol. Struct. 2022, 1263, 133168. [Google Scholar] [CrossRef]
- Al-Haiza, M.A.; Mostafa, M.; El-Kady, M.J.M. Synthesis and biological evaluation of some new coumarin derivatives. Molecules 2003, 8, 275–286. [Google Scholar] [CrossRef]
- Symeonidis, T.; Fylaktakidou, K.C.; Hadjipavlou-Litina, D.J.; Litinas, K.E. Synthesis and anti-inflammatory evaluation of novel angularly or linearly fused coumarins. Eur. J. Med. Chem. 2009, 44, 5012–5017. [Google Scholar] [CrossRef] [PubMed]
- Lall, N.; Hussein, A.; Meyer, J.J.M. Antiviral and antituberculous activity of helichrysum melanacme constituents. Fitoterapia 2006, 77, 230–232. [Google Scholar] [CrossRef] [PubMed]
- Hinman, J.W.; Hoeksema, H.; Caron, E.L.; Jackson, W.G. The partial structure of novobiocin (streptonivicin). 1 II. J. Am. Chem. Soc. 1956, 78, 1072–1074. [Google Scholar] [CrossRef]
- Joy, M.N.; Bodke, Y.D.; Telkar, S. 4-Methyl-7-amino/amido coumarin derivatives as potential antimicrobials and antioxidants. Chem. Nat. Compd. 2020, 56, 614–620. [Google Scholar] [CrossRef]
- Clatworthy, A.E.; Pierson, E.; Hung, D.T. Targeting virulence: A new paradigm for antimicrobial therapy. Nat. Chem. Biol. 2007, 3, 541–548. [Google Scholar] [CrossRef]
- Garrison, A.T.; Abouelhassan, Y.; Kallifidas, D.; Tan, H.; Kim, Y.S.; Jin, S.; Luesch, H.; Huigens, R.W., III. An efficient Buchwald-Hartwig/reductive cyclization for the scaffold diversification of halogenated phenazines: Potent antibacterial targeting, biofilm eradication, and prodrug exploration. J. Med. Chem. 2018, 61, 3962–3983. [Google Scholar] [CrossRef]
- Chrysant, S.G. The impact of coffee consumption on blood pressure, cardiovascular disease and diabetes mellitus. Expert Rev. Cardiovasc. Ther. 2017, 15, 151–156. [Google Scholar] [CrossRef]
- Monteiro, J.; Alves, M.G.; Oliveira, P.F.; Silva, B.M. Pharmacological potential of methylxanthines: Retrospective analysis and future expectations. Crit. Rev. Food Sci. Nutr. 2019, 59, 2597–2625. [Google Scholar] [CrossRef]
- Rao, F.V.; Andersen, O.A.; Vora, K.A.; DeMartino, J.A.; Van Aalten, D.M. Methylxanthine drugs are chitinase inhibitors: Investigation of inhibition and binding modes. Chem. Biol. 2005, 12, 973–980. [Google Scholar] [CrossRef]
- Schuttelkopf, A.W.; Andersen, O.A.; Rao, F.V.; Allwood, M.; Lloyd, C.; Eggleston, I.M.; Van Aalten, D.M. Screening-based discovery and structural dissection of a novel family 18 chitinase inhibitor. J. Biol. Chem. 2006, 281, 27278–27285. [Google Scholar] [CrossRef]
- Kadi, A.A.; El-Tahir, K.E.; Jahng, Y.; Rahman, A.M. Synthesis, biological evaluation and structure activity relationships (SARs) study of 8-(substituted) aryloxycaffeine. Arab. J. Chem. 2019, 12, 2356–2364. [Google Scholar] [CrossRef]
- Reshetnikov, D.; Burova, L.; Rybalova, T.; Bondareva, E.; Patrushev, S.; Evstropov, A.; Shults, E. Synthesis and antibacterial activity of caffeine derivatives containing amino-acid fragments. Chem. Nat. Compd. 2022, 58, 908–915. [Google Scholar] [CrossRef]
- Harmenberg, J.; Åkesson-Johansson, A.; Gräslund, A.; Malmfors, T.; Bergman, J.; Wahren, B.; Åkerfeldt, S.; Lundblad, L.; Cox, S. The mechanism of action of the anti-herpes virus compound 2, 3-dimethyl-6 (2-dimethylaminoethyl)-6H-indolo-(2, 3-b)quinoxaline. Antivir. Res. 1991, 15, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Naylor, M.; Stephens, M.; Nolan, J.; Sutton, B.; Tocher, J.; Fielden, E.; Adams, G.; Stratford, I. Heterocyclic mono-N-oxides with potential applications as bioreductive anti-tumour drugs: Part 1. 8-Alkylamino-substituted phenylimidazo [1, 2-a]quinoxalines. Anti-Cancer Drug Des. 1993, 8, 439–461. [Google Scholar]
- Selvakumar, K.; Zapf, A.; Beller, M. New palladium carbene catalysts for the Heck reaction of aryl chlorides in ionic liquids. Org. Lett. 2002, 4, 3031–3033. [Google Scholar] [CrossRef]
- Besharati-Seidani, T.; Keivanloo, A.; Kaboudin, B.; Yoshida, A.; Yokomatsu, T. Regioselective synthesis of 2, 3-disubstituted 1-alkyl pyrrolo[2, 3-b]quinoxalines through palladium-catalyzed Heck reaction of chalcones and evaluation of their anti-bacterial activities. Tetrahedron 2018, 74, 2350–2358. [Google Scholar] [CrossRef]
- Tellier, F.; Acher, F.; Brabet, I.; Pin, J.P.; Azerad, R. Aminobicyclo [2.2.1.] heptane dicarboxylic acids (ABHD), rigid analogs of ACPD and glutamic acid: Synthesis and pharmacological activity on metabotropic receptors mGluR1 and mGluR2. Biorg. Med. Chem. 1998, 6, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Elz, S.; Zimmermann, H.; Rehse, K. Selectivity of sterically fixed tryptamine and 5-methoxytryptamine derivatives for serotonin receptor subtypes, ii: Structure-activity relationships and in vitro pharmacology of N-alkyl- and N, N-dialkyl-3-indolylbicyclo-[2.2.1]-heptane-2-amines. Arch. Pharm. 1993, 326, 893–899. [Google Scholar] [CrossRef]
- Bagdatli, E.; Cil, E. Sulfa drugs-based norbornenyl imides and reductive Heck reactions: Synthesis and antimicrobial screening. J. Heterocycl. Chem. 2022, 59, 264–274. [Google Scholar] [CrossRef]
- Bangalore, P.K.; Vagolu, S.K.; Bollikanda, R.K.; Veeragoni, D.K.; Choudante, P.C.; Misra, S.; Sriram, D.; Sridhar, B.; Kantevari, S. Usnic acid enaminone-coupled 1, 2, 3-triazoles as antibacterial and antitubercular agents. J. Nat. Prod. 2019, 83, 26–35. [Google Scholar] [CrossRef]
- Shi, J.; Luo, N.; Ding, M.; Bao, X. Synthesis, in vitro antibacterial and antifungal evaluation of novel 1, 3, 4-oxadiazole thioether derivatives bearing the 6-fluoroquinazolinylpiperidinyl moiety. Chin. Chem. Lett. 2020, 31, 434–438. [Google Scholar] [CrossRef]
- Teng, Y.; Qin, Y.; Song, D.; Liu, X.; Ma, Y.; Zhang, P.; Ma, S. A novel series of 11-o-carbamoyl-3-o-descladinosyl clarithromycin derivatives bearing 1, 2, 3-triazole group: Design, synthesis and antibacterial evaluation. Bioorg. Med. Chem. Lett. 2020, 30, 126850. [Google Scholar] [CrossRef] [PubMed]
- Hao, M.; Lv, M.; Li, T.; Xu, H. Construction and agrochemical efficacy of novel indolo [2, 3-b] andrographolide derivatives. Adv. Agrochem. 2023, 2, 349–355. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Z.S.; Shao, J.; Fu, C.; Xiong, L.T.; Li, Z.D.; Cui, Z.N. Photoinduced palladium-catalyzed 1, 3-diene-selective fluoroalkylamination compounds as potential bactericidal agent against Xanthomonas oryzae pv. oryzae. Chin. Chem. Lett. 2024, 35, 108794. [Google Scholar] [CrossRef]
- Negishi, E.i.; Hu, Q.; Huang, Z.; Qian, M.; Wang, G.; Brown, H. Palladium-catalyzed alkenylation by the Negishi coupling. Aldrichim. Acta 2005, 38, 71–78. [Google Scholar] [CrossRef]
- Rouhi, A.M. Fine chemicals. Chem. Eng. News 2004, 82, 49–58. [Google Scholar] [CrossRef]
- Jana, R.; Pathak, T.P.; Sigman, M.S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 2011, 111, 1417–1492. [Google Scholar] [CrossRef]
- Beletskaya, I.P.; Cheprakov, A.V. Copper in cross-coupling reactions: The post-Ullmann chemistry. Coord. Chem. Rev. 2004, 248, 2337–2364. [Google Scholar] [CrossRef]
- Salih, K.S. Modern Development in Copper- and Nickel-catalyzed cross-coupling reactions: Formation of carbon-carbon and carbon-heteroatom bonds under microwave irradiation conditions. Asian J. Org. Chem. 2022, 11, e202200023. [Google Scholar] [CrossRef]
- Sangshetti, J.N.; Nagawade, R.R.; Shinde, D.B. Synthesis of novel 3-(1-(1-substituted piperidin-4-yl)-1H-1, 2, 3-triazol-4-yl)-1, 2, 4-oxadiazol-5 (4H)-one as antifungal agents. Bioorg. Med. Chem. Lett. 2009, 19, 3564–3567. [Google Scholar] [CrossRef]
- Tron, G.C.; Pirali, T.; Billington, R.A.; Canonico, P.L.; Sorba, G.; Genazzani, A.A. Click chemistry reactions in medicinal chemistry: Applications of the 1, 3-dipolar cycloaddition between azides and alkynes. Med. Res. Rev. 2008, 28, 278–308. [Google Scholar] [CrossRef] [PubMed]
- Harkala, K.J.; Eppakayala, L.; Maringanti, T.C. Synthesis and biological evaluation of benzimidazole-linked 1, 2, 3-triazole congeners as agents. Org. Med. Chem. Lett. 2014, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Hussaini, S.M.A.; Yedla, P.; Babu, K.S.; Shaik, T.B.; Chityal, G.K.; Kamal, A. Synthesis and biological evaluation of 1, 2, 3-triazole tethered pyrazoline and chalcone derivatives. Chem. Biol. Drug Des. 2016, 88, 97–109. [Google Scholar] [CrossRef]
- Kumar, K.K.; Seenivasan, S.P.; Kumar, V.; Das, T.M. Synthesis of quinoline coupled [1, 2, 3]-triazoles as a promising class of anti-tuberculosis agents. Carbohydr. Res. 2011, 346, 2084–2090. [Google Scholar] [CrossRef]
- Canali, L.; Sherrington, D.C. Utilisation of homogeneous and supported chiral metal (salen) complexes in asymmetric catalysis. Chem. Soc. Rev. 1999, 28, 85–93. [Google Scholar] [CrossRef]
- Katsuki, T. Catalytic asymmetric oxidations using optically active (salen) manganese (III) complexes as catalysts. Coord. Chem. Rev. 1995, 140, 189–214. [Google Scholar] [CrossRef]
- Keivanloo, A.; Fakharian, M.; Sepehri, S. 1, 2, 3-triazoles based 3-substituted 2-thioquinoxalines: Synthesis, anti-bacterial activities, and molecular docking studies. J. Mol. Struct. 2020, 1202, 127262. [Google Scholar] [CrossRef]
- Zhang, H.Z.; He, S.C.; Peng, Y.J.; Zhang, H.J.; Gopala, L.; Tangadanchu, V.K.R.; Gan, L.L.; Zhou, C.H. Design, synthesis and antimicrobial evaluation of novel benzimidazole-incorporated sulfonamide analogues. Eur. J. Med. Chem. 2017, 136, 165–183. [Google Scholar] [CrossRef] [PubMed]
- Hoemann, M.Z.; Kumaravel, G.; Xie, R.L.; Rossi, R.F.; Meyer, S.; Sidhu, A.; Cuny, G.D.; Hauske, J.R. Potent in vitro methicillin-resistant Staphylococcus aureus activity of 2-(1H-indol-3-yl) quinoline derivatives. Bioorg. Med. Chem. Lett. 2000, 10, 2675–2678. [Google Scholar] [CrossRef]
- Kung, P.P.; Casper, M.D.; Cook, K.L.; Wilson-Lingardo, L.; Risen, L.M.; Vickers, T.A.; Ranken, R.; Blyn, L.B.; Wyatt, J.R.; Cook, P.D. Structure-activity relationships of novel 2-substituted quinazoline antibacterial agents. J. Med. Chem. 1999, 42, 4705–4713. [Google Scholar] [CrossRef]
- Nandwana, N.K.; Singh, R.P.; Patel, O.P.; Dhiman, S.; Saini, H.K.; Jha, P.N.; Kumar, A. Design and synthesis of imidazo/benzimidazo [1, 2-c]quinazoline derivatives and evaluation of their antimicrobial activity. ACS Omega 2018, 3, 16338–16346. [Google Scholar] [CrossRef] [PubMed]
- Özyanik, M.; Demirci, S.; Bektaş, H.; Demirbaş, N.; Demirbaş, A.; Karaoğlu, Ş.A. Preparation and antimicrobial activity evaluation of some quinoline derivatives containing an azole nucleus. Turk. J. Chem. 2012, 36, 233–246. [Google Scholar] [CrossRef]
- Arshad, M.; Rasool, N.; Qamar, M.U.; Shah, S.A.A.; Zakaria, Z.A. Facile Synthesis of functionalized phenoxy quinolines: Antibacterial activities against ESBL producing Escherichia coli and MRSA, docking studies, and structural features determination through computational approach. Molecules 2022, 27, 3732. [Google Scholar] [CrossRef] [PubMed]
- Saint Geme, J., Jr.; Martin, H.; Davis, C. Paramyxovirus-avian cell relationship: Discrepant impact of 6-azauridine on virus production by susceptible and less susceptible cells. Infect. Immun. 1975, 11, 915–918. [Google Scholar] [CrossRef] [PubMed]
- Steffenhagen, K.; Easterday, B.; Galasso, G. (Eds.) Evaluation of 6-azauridine and S-iododeoxyuridine in the treatment of experimental viral infections. J. Infect. Dis. 1976, 133, 603–612. [Google Scholar] [CrossRef]
- Li, J.J.; Mitchell, L.H.; Dow, R.L. Thyroid receptor agonists for the treatment of androgenetic alopecia. Bioorg. Med. Chem. Lett. 2010, 20, 306–308. [Google Scholar] [CrossRef]
- Vanparijs, O.; Hermans, L.; Van der Flaes, L.; Vlaminck, K.; Marsboom, R. Clazuril: A new anticoccidial agent for pigeons. Tijdschr. Diergeneeskd. 1988, 113, 190–194. [Google Scholar]
- Slouka, J. 1-Aryl-6-azauracile, 3. Mitt.: Die synthese von 1-phenyl-6-azauracil und einiger seiner derivate. Monatsh. Chem. Verw. Teile. Anderer. Wiss. 1965, 96, 134–137. [Google Scholar] [CrossRef]
- Gulipalli, K.C.; Bodige, S.; Ravula, P.; Bolla, R.S.; Endoori, S.; Cherukumalli, P.; Seelam, N. A mild and efficient copper-mediated N-arylation of 6-azauracil with corresponding boronic acids and their antibacterial activity. Asian J. Chem 2018, 30, 2495–2501. [Google Scholar] [CrossRef]
- Beaumier, E.P.; Pearce, A.J.; See, X.Y.; Tonks, I.A. Modern applications of low-valent early transition metals in synthesis and catalysis. Nat. Rev. Chem. 2019, 3, 15–34. [Google Scholar] [CrossRef]
- Quach, T.D.; Batey, R.A. Ligand-and base-free copper(II)-catalyzed C-N bond formation: Cross-coupling reactions of organoboron compounds with aliphatic amines and anilines. Org. Lett. 2003, 5, 4397–4400. [Google Scholar] [CrossRef] [PubMed]
- Molaei, H.; Ghanbari, M.M. Practical copper-catalyzed N-arylation of amines with 20% aqueous solution of n-Bu4NOH. Chin. Chem. Lett. 2012, 23, 301–304. [Google Scholar] [CrossRef]
- Sharghi, H.; Sepehri, S.; Aberi, M. Cu(II) complex of pyridine-based polydentate as a novel, efficient, and highly reusable catalyst in C-N bond forming reaction. Mol. Divers. 2017, 21, 855–864. [Google Scholar] [CrossRef]
- Nasseri, M.A.; Rezazadeh, Z.; Kazemnejadi, M.; Allahresani, A. A Co-Cu bimetallic magnetic nanocatalyst with synergistic and bifunctional performance for the base-free Suzuki, Sonogashira, and C-N cross-coupling reactions in water. Dalton Trans. 2020, 49, 10645–10660. [Google Scholar] [CrossRef] [PubMed]
- Raju, S.; Sheridan, P.E.; Hauer, A.K.; Garrett, A.E.; McConnell, D.E.; Thornton, J.A.; Stokes, S.L.; Emerson, J.P. Cu-catalyzed Chan-Evans-Lam coupling reactions of 2-nitroimidazole with aryl boronic acids: An Effort toward new bioactive agents against S. pneumoniae. Chem. Biodivers. 2022, 19, e202200327. [Google Scholar] [CrossRef] [PubMed]
- Eid, F.A.; Abd El-Wahab, A.H.; El-Hag Ali, G.A.; Khafagy, M.M. Synthesis and antimicrobial evaluation of naphtho [2, 1-b] pyrano [2, 3-d]pyrimidine and pyrano[3, 2-e][1, 2, 4] triazolo [1, 5-c]pyrimidine derivatives. Acta pharmaceutica 2004, 54, 13–26. [Google Scholar]
- Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Kamdar, N.R.; Haveliwala, D.D.; Mistry, P.T.; Patel, S.K. Synthesis and evaluation of in vitro antitubercular activity and antimicrobial activity of some novel 4 H-chromeno [2, 3-d]pyrimidine via 2-amino-4-phenyl-4H-chromene-3-carbonitriles. Med. Chem. Res. 2011, 20, 854–864. [Google Scholar] [CrossRef]
- Mohamed, N.R.; El-Saidi, M.M.T.; Ali, Y.M.; Elnagdi, M.H. Utility of 6-amino-2-thiouracil as a precursor for the synthesis of bioactive pyrimidine derivatives. Biorg. Med. Chem. 2007, 15, 6227–6235. [Google Scholar] [CrossRef]
- Poola, S.; Shaik, M.S.; Sudileti, M.; Yakkate, S.; Nalluri, V.; Chippada, A.; Cirandur, S.R. Nano CuO-Ag-catalyzed synthesis of some novel pyrano [2, 3-d]pyrimidine derivatives and evaluation of their bioactivity. J. Chin. Chem. Soc. 2020, 67, 805–820. [Google Scholar] [CrossRef]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.; Wertheim, H.F.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- López-Rojas, P.; Janeczko, M.; Kubiński, K.; Amesty, Á.; Masłyk, M.; Estévez-Braun, A. Synthesis and antimicrobial activity of 4-substituted 1, 2, 3-triazole-coumarin derivatives. Molecules 2018, 23, 199. [Google Scholar] [CrossRef] [PubMed]
- Sacchettini, J.C.; Rubin, E.J.; Freundlich, J.S. Drugs versus bugs: In pursuit of the persistent predator Mycobacterium tuberculosis. Nat. Rev. Microbiol. 2008, 6, 41–52. [Google Scholar] [CrossRef]
- Libardo, M.D.J.; de la Fuente-Nuñez, C.; Anand, K.; Krishnamoorthy, G.; Kaiser, P.; Pringle, S.C.; Dietz, C.; Pierce, S.; Smith, M.B.; Barczak, A. Phagosomal copper-promoted oxidative attack on intracellular Mycobacterium tuberculosis. ACS Infect. Dis. 2018, 4, 1623–1634. [Google Scholar] [CrossRef]
- Kashyap, S.J.; Garg, V.K.; Sharma, P.K.; Kumar, N.; Dudhe, R.; Gupta, J.K. Thiazoles having diverse biological activities. Med. Chem. Res. 2012, 21, 2123–2132. [Google Scholar] [CrossRef]
- Badshah, S.L.; Naeem, A. Bioactive thiazine and benzothiazine derivatives: Green synthesis methods and their medicinal importance. Molecules 2016, 21, 1054. [Google Scholar] [CrossRef]
- Afrough, T.; Bakavoli, M.; Eshghi, H.; Tajabadi, J.; Mague, J. Regioselective synthesis of new 5 H, 10 H-dipyrimido [2, 1-b: 4’, 5’-d][1, 3] thiazine: A combined experimental and computational study. J. Sulfur Chem. 2019, 40, 265–276. [Google Scholar] [CrossRef]
- Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1, 2, 3-triazoles: Current developments. Bioorg. Chem. 2017, 71, 30–54. [Google Scholar] [CrossRef]
- Sucharitha, E.R.; Krishna, T.M.; Manchal, R.; Ramesh, G.; Narsimha, S. Fused benzo[1, 3]thiazine-1, 2, 3-triazole hybrids: Microwave-assisted one-pot synthesis, in vitro antibacterial, antibiofilm, and in silico ADME studies. Bioorg. Med. Chem. Lett. 2021, 47, 128201. [Google Scholar] [CrossRef]
- Agalave, S.G.; Maujan, S.R.; Pore, V.S. Click chemistry: 1, 2, 3-triazoles as pharmacophores. Chem. Asian J. 2011, 6, 2696–2718. [Google Scholar] [CrossRef]
- Meldal, M.; Tornøe, C.W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev. 2008, 108, 2952–3015. [Google Scholar] [CrossRef]
- Hashimoto, T.; Maruoka, K. Recent advances of catalytic asymmetric 1, 3-dipolar cycloadditions. Chem. Rev. 2015, 115, 5366–5412. [Google Scholar] [CrossRef] [PubMed]
- Liégeois, J.F.; Deville, M.; Dilly, S.; Lamy, C.; Mangin, F.; Résimont, M.; Tarazi, F.I. New pyridobenzoxazepine derivatives derived from 5-(4-methylpiperazin-1-yl)-8-chloro-pyrido [2, 3-b][1, 5] benzoxazepine (JL13): Chemical synthesis and pharmacological evaluation. J. Med. Chem. 2012, 55, 1572–1582. [Google Scholar] [CrossRef] [PubMed]
- Gandham, S.K.; Kudale, A.A.; Rao Allaka, T.; Jha, A. Design and synthesis of benzoxepine-based 1, 2, 3-triazoles: Molecular docking and in vitro antimicrobial activity evaluation. ChemistrySelect 2022, 7, e202200683. [Google Scholar] [CrossRef]
- Burley, K.H.; Cuthbert, B.J.; Basu, P.; Newcombe, J.; Irimpan, E.M.; Quechol, R.; Foik, I.P.; Mobley, D.L.; Beste, D.J.; Goulding, C.W. Structural and molecular dynamics of Mycobacterium tuberculosis malic enzyme, a potential anti-TB drug target. ACS Infect. Dis. 2020, 7, 174–188. [Google Scholar] [CrossRef]
- Turkmen, Y.; Yagiz Erdemir, G.; Yuksel Mayda, P.; Akdemir, A.; Gunaydin Akyildiz, A.; Altundas, A. Synthesis, anti-TB activities, and molecular docking studies of 4-(1, 2, 3-triazoyl)arylmethanone derivatives. J. Biochem. Mol. Toxicol. 2022, 36, e22998. [Google Scholar] [CrossRef]
- Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd. 2012, 48, 7–10. [Google Scholar] [CrossRef]
- Cheng, Y.; Peng, Q.; Fan, W.; Li, P. Room-temperature ligand-free Pd/C-catalyzed C-S bond formation: Synthesis of 2-substituted benzothiazoles. J. Org. Chem. 2014, 79, 5812–5819. [Google Scholar] [CrossRef]
- Banerjee, A.; Santra, S.K.; Rout, S.K.; Patel, B.K. A ligand free copper(II) catalyst is as effective as a ligand assisted Pd(II) catalyst towards intramolecular C-S bond formation via C-H functionalization. Tetrahedron 2013, 69, 9096–9104. [Google Scholar] [CrossRef]
- Sharma, S.; Pathare, R.S.; Maurya, A.K.; Gopal, K.; Roy, T.K.; Sawant, D.M.; Pardasani, R.T. Ruthenium catalyzed intramolecular C-S coupling reactions: Synthetic scope and mechanistic insight. Org. Lett. 2016, 18, 356–359. [Google Scholar] [CrossRef]
- Doğan, Ş.D.; Gündüz, M.G.; Uğur, S.B.; Doğan, H.; Özkul, C.; Çetinkaya, Y. Copper-oxone promoted oxidative C-H functionalization: Synthesis of 2-aminobenzothiazoles and evaluation of their antimicrobial activities. ChemistrySelect 2021, 6, 4382–4389. [Google Scholar] [CrossRef]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Abe, N.; Sugimoto, O.; Tanji, K.i.; Hirota, A. Identification of the quinol metabolite “sorbicillinol”, a key intermediate postulated in bisorbicillinoid biosynthesis. J. Am. Chem. Soc. 2000, 122, 12606–12607. [Google Scholar] [CrossRef]
- Urban, S.; Blunt, J.W.; Munro, M.H. Coproverdine, a novel, cytotoxic marine alkaloid from a New Zealand ascidian. J. Nat. Prod. 2002, 65, 1371–1373. [Google Scholar] [CrossRef]
- Chan, H.H.; Hwang, T.L.; Thang, T.D.; Leu, Y.L.; Kuo, P.C.; Nguyet, B.T.M.; Do Ngoc Dai, T.-S.W. Isolation and Synthesis of melodamide A, a new anti-inflammatory phenolic amide from the leaves. Planta Med. 2013, 79, 288–294. [Google Scholar]
- Li, H.X.; Xiao, C.J.; Wang, M.; Cui, S.J.; Li, H.F.; Wang, K.L.; Dong, X.; Jiang, B. Four new phenylethanoid glycosides from ternstroemia gymnanthera and their analgesic activities. Phytochem. Lett. 2019, 34, 25–29. [Google Scholar] [CrossRef]
- Yakura, T.; Omoto, M. Efficient synthesis of p-quinols using catalytic hypervalent iodine oxidation of 4-arylphenols with 4-iodophenoxyacetic acid and oxone. Chem. Pharm. Bull. 2009, 57, 643–645. [Google Scholar] [CrossRef] [PubMed]
- Koszelewski, D.; Kowalczyk, P.; Samsonowicz-Górski, J.; Hrunyk, A.; Brodzka, A.; Łęcka, J.; Kramkowski, K.; Ostaszewski, R. Synthesis and antimicrobial activity of the pathogenic E. coli strains of p-quinols: Additive effects of copper-catalyzed addition of arylboronic acid to benzouinones. Int. J. Mol. Sci. 2023, 24, 1623. [Google Scholar] [CrossRef] [PubMed]
- Lehn, J.M. Towards complex matter: Supramolecular chemistry and self-organization. Eur. Rev. 2009, 17, 263–280. [Google Scholar] [CrossRef]
- Rosen, B.M.; Wilson, C.J.; Wilson, D.A.; Peterca, M.; Imam, M.R.; Percec, V. Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem. Rev. 2009, 109, 6275–6540. [Google Scholar]
- Grimsdale, A.C.; Leok Chan, K.; Martin, R.E.; Jokisz, P.G.; Holmes, A.B. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev. 2009, 109, 897–1091. [Google Scholar] [PubMed]
- Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev. 2002, 102, 1359–1470. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, J.F. Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc. Chem. Res. 2008, 41, 1534–1544. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.C. The development of versatile methods for palladium-catalyzed coupling reactions of aryl electrophiles through the use of P(t-Bu)3 and PCy3 as ligands. Acc. Chem. Res. 2008, 41, 1555–1564. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Hartwig, J.F. Highly reactive, single-component nickel catalyst precursor for Suzuk-Miyuara cross-coupling of heteroarylboronic acids with heteroaryl halides. Angew. Chem. 2012, 124, 13009–13013. [Google Scholar] [CrossRef]
- Ruiz-Castillo, P.; Buchwald, S.L. Applications of palladium-catalyzed C-N cross-coupling reactions. Chem. Rev. 2016, 116, 12564–12649. [Google Scholar] [CrossRef]
- Magano, J.; Dunetz, J.R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. Chem. Rev. 2011, 111, 2177–2250. [Google Scholar] [CrossRef]
- Parhi, A.K.; Zhang, Y.; Saionz, K.W.; Pradhan, P.; Kaul, M.; Trivedi, K.; Pilch, D.S.; LaVoie, E.J. Antibacterial activity of quinoxalines, quinazolines, and 1, 5-naphthyridines. Bioorg. Med. Chem. Lett. 2013, 23, 4968–4974. [Google Scholar] [CrossRef]
- Chevalier, J.; Mahamoud, A.; Baitiche, M.; Adam, E.; Viveiros, M.; Smarandache, A.; Militaru, A.; Pascu, M.L.; Amaral, L.; Pagès, J.M. Quinazoline derivatives are efficient chemosensitizers of antibiotic activity in enterobacter aerogenes, Klebsiella pneumoniae and Pseudomonas aeruginosa resistant strains. Int. J. Antimicrob. Agents 2010, 36, 164–168. [Google Scholar] [CrossRef]
- Rojas-Aguirre, Y.; Hernández-Luis, F.; Mendoza-Martínez, C.; Sotomayor, C.P.; Aguilar, L.F.; Villena, F.; Castillo, I.; Hernández, D.J.; Suwalsky, M. Effects of an antimalarial quinazoline derivative on human erythrocytes and on cell membrane molecular models. Biochim. Biophys. Acta Biomembr. 2012, 1818, 738–746. [Google Scholar] [CrossRef]
- Noolvi, M.N.; Patel, H.M.; Singh, N.; Gadad, A.K.; Cameotra, S.S.; Badiger, A. Synthesis and anticancer evaluation of novel 2-cyclopropylimidazo [2, 1-b][1, 3, 4]-thiadiazole derivatives. Eur. J. Med. Chem. 2011, 46, 4411–4418. [Google Scholar] [CrossRef] [PubMed]
- Ryu, C.K.; Kim, Y.H.; Im, H.A.; Kim, J.Y.; Yoon, J.H.; Kim, A. Synthesis and antifungal activity of 6, 7-bis(arylthio)-quinazoline-5, 8-diones and furo [2, 3-f] quinazolin-5-ols. Bioorg. Med. Chem. Lett. 2012, 22, 500–503. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.S.; Ganguly, S.; Veerasamy, R.; De Clercq, E. Synthesis, antiviral activity and cytotoxicity evaluation of schiff bases of some 2-phenyl quinazoline-4(3)H-ones. Eur. J. Med. Chem. 2010, 45, 5474–5479. [Google Scholar] [CrossRef] [PubMed]
- Chandrika, P.M.; Yakaiah, T.; Rao, A.R.R.; Narsaiah, B.; Reddy, N.C.; Sridhar, V.; Rao, J.V. Synthesis of novel 4, 6-disubstituted quinazoline derivatives, their anti-inflammatory and anti-cancer activity (cytotoxic) against U937 leukemia cell lines. Eur. J. Med. Chem. 2008, 43, 846–852. [Google Scholar] [CrossRef]
- Wang, H.J.; Wei, C.X.; Deng, X.Q.; Li, F.L.; Quan, Z.S. Synthesis and evaluation on anticonvulsant and antidepressant activities of 5-alkoxy-tetrazolo [1, 5-a]quinazolines. Int. J. Pharm. Med. Chem. 2009, 342, 671–675. [Google Scholar] [CrossRef]
- Jatav, V.; Mishra, P.; Kashaw, S.; Stables, J. CNS depressant and anticonvulsant activities of some novel 3-[5-substituted 1, 3, 4-thiadiazole-2-yl]-2-styryl quinazoline-4 (3H)-ones. Eur. J. Med. Chem. 2008, 43, 1945–1954. [Google Scholar] [CrossRef]
- Jatav, V.; Kashaw, S.; Mishra, P. Synthesis, antibacterial and antifungal activity of some novel 3-[5-(4-substituted phenyl)1, 3, 4-thiadiazole-2-yl]-2-styryl quinazoline-4 (3H)-ones. Med. Chem. Res. 2008, 17, 169–181. [Google Scholar] [CrossRef]
- Veerapandian, M.; Marimuthu, M.; Ilangovan, P.; Ganguly, S.; Yun, K.S.; Kim, S.; An, J. Analytical and biological characterization of quinazoline semicarbazone derivatives. Med. Chem. Res. 2010, 19, 283–298. [Google Scholar] [CrossRef]
- Ji, Q.G.; Yang, D.; Deng, Q.; Ge, Z.Q.; Yuan, L.J. Design, synthesis, and evaluation of novel 1-methyl-3-substituted quinazoline-2, 4-dione derivatives as antimicrobial agents. Med. Chem. Res. 2014, 23, 2169–2177. [Google Scholar] [CrossRef]
- Patel, A.B.; Chikhalia, K.H.; Kumari, P. Synthesis and biological evaluation of novel quinazoline derivatives obtained by Suzuki C-C coupling. Med. Chem. Res. 2014, 23, 2338–2346. [Google Scholar] [CrossRef]
- Sriram, D.; Bal, T.R.; Yogeeswari, P. Aminopyrimidinimino isatin analogues: Design and synthesis of novel non-nucleoside HIV-1 reverse transcriptase inhibitors with broad-spectrum anti-microbial properties. Med. Chem. Res. 2005, 1, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Hong, W.D.; Cui, X.; Gao, H.; Wu, P.; Chen, Y.; Shen, D.; Yang, Y.; Zhang, B.; Taylor, M.J.; et al. Synthesis and structure-activity relationship of N 4-benzylamine-N 2-isopropyl-quinazoline-2, 4-diamines derivatives as potential antibacterial agents. RSC Adv. 2017, 7, 52227–52237. [Google Scholar] [CrossRef]
- Ankireddy, A.; Syed, R.; Gundla, R.; Manasa, K.; Reddy, C.; Yatam, S.; Paidikondala, K. Kumada cross coupling reaction for the synthesis of quinazoline derivatives, evaluation of their antibacterial activity and docking studies. Russ. J. Gen. Chem. 2019, 89, 2544–2557. [Google Scholar] [CrossRef]
- Ankireddy, A.R.; Paidikondala, K.; Gundla, R.; Balaraju, T.; Pagadala, R.; Banothu, V. Synthesis of new chiral (R)-binol derivatives under microwave irradiation and evaluation of their antibacterial and glucosidase inhibitory activity. ChemistrySelect 2019, 4, 5563–5569. [Google Scholar] [CrossRef]
- Ankireddy, A.R.; Paidikondala, K.; Syed, R.; Gundla, R.; Reddy, C.V.R.; Ganapathi, T. Synthesis of chiral 3, 3ʹ-disubstituted (S)-BINOL derivatives via the Kumada and Suzuki coupling and their antibacterial activity. Russ. J. Gen. Chem. 2020, 90, 1507–1517. [Google Scholar] [CrossRef]
- Wipf, P.; Jung, J.K. Formal total synthesis of (+)-diepoxin σ. J. Org. Chem. 2000, 65, 6319–6337. [Google Scholar] [CrossRef]
- Huang, J.; Nolan, S. Efficient cross-coupling of aryl chlorides with aryl grignard reagents (Kumada reaction) mediated by a palladium/imidazolium chloride system. J. Am. Chem. Soc. 1999, 121, 9889–9890. [Google Scholar] [CrossRef]
- Perez Garcia, P.M.; Di Franco, T.; Orsino, A.; Ren, P.; Hu, X. Nickel-catalyzed diastereoselective alkyl-alkyl Kumada coupling reactions. Org. Lett. 2012, 14, 4286–4289. [Google Scholar] [CrossRef]
- Lee, C.Y.; Cheon, C.H. Diastereomeric resolution of rac-1, 1,-bi-2-naphthol boronic acid with a chiral boron ligand and its application to simultaneous synthesis of (R)-and (S)-3, 3,-disubstituted 1, 1,-bi-2-naphthol derivatives. J. Org. Chem. 2013, 78, 7086–7092. [Google Scholar] [CrossRef]
- Battula, K.; Narsimha, S.; Nagavelli, V.R.; Srinivasa, R.M. Synthesis and biological evaluation of (3-arylisoxazol-5-yl) methyl 6-fluoro-4-oxo-4H-chromene-2-carboxylates as antioxidant and antimicrobial agents. J. Serb. Chem. Soc. 2017, 82, 1–12. [Google Scholar] [CrossRef]
- Bhat, M.; Imran, M.; Khan, S.; Siddiqui, N. Biological activities of sulfonamides. Indian J. Pharm. Sci. 2005, 67, 151–159. [Google Scholar]
- Izuchukwu, U.D.; Chris, O.U.; Izuchukwu, U.D. Synthesis of N-aryl substituted p-toluenesulphonamides via nickel catalyzed amidation reaction and their antibacterial, antifungal and antioxidant activities evaluation. Pak. J. Pharm. Sci. 2018, 31, 1209–1216. [Google Scholar]
- Wafford, K.; Van Niel, M.; Ma, Q.; Horridge, E.; Herd, M.; Peden, D.; Belelli, D.; Lambert, J. Novel compounds selectively enhance δ subunit containing GABAA receptors and increase tonic currents in thalamus. Neuropharmacology 2009, 56, 182–189. [Google Scholar] [CrossRef]
- Uemura, Y.; Tanaka, S.; Ida, S.; Yuzuriha, T. Pharmacokinetic study of loprinone hydrochloride, a new cardiotonic agent, in beagle dogs. J. Pharm. Pharmacol. 1993, 45, 1077–1081. [Google Scholar] [CrossRef]
- Hranjec, M.; Lučić, B.; Ratkaj, I.; Pavelić, S.K.; Piantanida, I.; Pavelić, K.; Karminski-Zamola, G. Novel imidazo [4, 5-b]pyridine and triaza-benzo[c] fluorene derivatives: Synthesis, antiproliferative activity and DNA binding studies. Eur. J. Med. Chem. 2011, 46, 2748–2758. [Google Scholar] [CrossRef]
- Temple, C., Jr.; Rose, J.D.; Comber, R.N.; Rener, G.A. Synthesis of potential anticancer agents: Imidazo[4, 5-c] pyridines and imidazo[4, 5-b]pyridines. J. Med. Chem. 1987, 30, 1746–1751. [Google Scholar] [CrossRef]
- Jebamani, J.; Jayachamarajapura Praneshm, S.; Shivalingappa, J.; Narayanarao, M.; Pasha, M.; Pawar, C. Synthesis and biological activities of novel 1H-Imidazo[4, 5-b]pyridine derivatives. ChemistrySelect 2023, 8, e202301239. [Google Scholar] [CrossRef]
- Blaser, H.U.; Federsel, H.J. Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Buchwald, S.L.; Mauger, C.; Mignani, G.; Scholz, U. Industrial-scale palladium-catalyzed coupling of aryl halides and amines-a personal account. Adv. Synth. Catal. 2006, 348, 23–39. [Google Scholar] [CrossRef]
- Blaser, H.U.; Indolese, A.; Naud, F.; Nettekoven, U.; Schnyder, A. Industrial R&D on catalytic C-C and C-N coupling reactions: A personal account on goals, approaches and results. Adv. Synth. Catal. 2004, 346, 1583–1598. [Google Scholar]
- Torborg, C.; Beller, M. Recent applications of palladium-catalyzed coupling reactions in the pharmaceutical, agrochemical, and fine chemical industries. Adv. Synth. Catal. 2009, 351, 3027–3043. [Google Scholar] [CrossRef]
- Naso, F.; Babudri, F.; Farinola, G.M. Organometallic chemistry directed towards the synthesis of electroactive materials: Stereoselective routes to extended polyconjugated systems. Pure Appl. Chem. 1999, 71, 1485–1492. [Google Scholar] [CrossRef]
Scheme Number | Synthetic Method | Compounds | Activity Against |
---|---|---|---|
Pd-Catalyzed Synthesis | |||
Scheme 1 | Suzuki-Miyaura cross-coupling produces moderate to acceptable yields | 5, 6, 3 | E. coli |
Scheme 2 | Suzuki-Miyaura coupling | 9, 11 | Gram-positive bacteria |
Scheme 3 | Masuda borylation-Suzuki coupling | 14, 17 | MRSA, gram-positive bacteria |
Scheme 4 | Suzuki cross-coupling and cyclization | 24b | S. aureus |
Scheme 5 | Microwave-assisted Suzuki coupling | 30a, 30b, 30c, 30d | Various bacterial strains |
Scheme 6 | Pd-catalyzed Suzuki coupling | 34a, 34b, 34c | Various bacterial strains |
Scheme 7 | Metal-catalyzed Suzuki coupling | 40, 40a, 40b | NDM-1-positive A. baumannii, K. pneumoniae |
Scheme 8 | Pd-catalyzed Suzuki coupling | 47 | Gram-positive and negative bacteria |
Scheme 9 | Suzuki-Miyaura reaction by using 100 °C temperature | 51, 52, 53, 54 | Various bacterial strains |
Scheme 10 | Cyclization and Suzuki-Miyaura process | 59, 61 | P. aeruginosa, S. aureus |
Scheme 11 | Suzuki-Miyaura reaction in inert atmosphere | 65, 65a, 65b | ESBL-producing E. coli |
Scheme 12 | Suzuki-Miyuara coupling | 68, 69, 69a, 69b | XDR pathogens |
Scheme 13 | Pd-catalyzed Suzuki coupling reaction | 71a, 71e, 71g | P. aeruginosa, E. coli |
Scheme 14 | Pd-catalyzed Suzuki cross-coupling | 79a, 79b, 79c, 79d, 79e | E. coli, S. agalactiae |
Scheme 15 | Pd-catalyzed Suzuki cross-coupling | 84, 86 | M. luteus |
Scheme 16 | Suzuki-Miyaura coupling | 90 | P. aeruginosa |
Scheme 17 | Suzuki cross-coupling | 94, 95 | E. coli |
Scheme 18 | Pd-catalyzed Suzuki cross-coupling | 100, 102, 104, 106 | Gram-positive and negative bacteria |
Scheme 19 | Suzuki cross-coupling using Pd (PPh3)4 catalyst | 113, 114 | S. Typhimurium, S. aureus |
Scheme 20 | Suzuki-Miyaura coupling | 116, 117, 117a, 117b, 117c, 117d | MRSA, E. coli |
Scheme 21 | Suzuki-Miyaura cross-coupling | 120a, 121a, 122 | Gram (+) bacteria |
Scheme 22 | Suzuki-Miyaura cross-coupling | 126, 126c, 126f, 126e | S. typhaes, Bacillus subtilis, Pseudomonas aeruginosa, and E. coli |
Scheme 23 | Suzuki cross-coupling | 134 | S. aureus, E. coli |
Scheme 24 | Suzuki-Miyaura coupling | 137, 138 | ESBL E. coli ST405, MRSA |
Scheme 25 | Suzuki cross-coupling | 141 | B. subtilis |
Scheme 26 | Suzuki-Miyaura cross-coupling | 144 | B. subtilis, S. aureus |
Scheme 27 | Pd-catalyzed Suzuki cross-coupling | 151 | Gram-positive and negative bacteria |
Scheme 28 | SMC process | 155 | Gram-positive and negative pathogens |
Scheme 29 | Suzuki cross-coupling with Pd(dppf)Cl2 | 161 | P. aeruginosa, E. coli |
Scheme 30 | Suzuki cross-coupling in the presence of K3PO4, Pd catalyst, and dioxane | 164, 165 | E. coli, S. aureus |
Scheme 31 | Pd-catalyzed Suzuki cross-coupling | 173 | MRSA, S. aureus, MSSA |
Scheme 32 | Sonogashira cross-coupling (copper-free) | 177a–g | Micrococcus luteus, Pseudomonas aeruginosa |
Scheme 33 | Multi-component Sonogashira cross-coupling (copper-free) | 181a–g | M. luteus, P. aeruginosa |
Scheme 34 | Sonogashira cross-coupling (copper-free) | 185a–b | B. subtilis, P. aeruginosa |
Scheme 35 | Sonogashira cross-coupling | 191a, 189a | S. aureus, P. aeruginosa |
Scheme 36 | Sonogashira cross-coupling followed by TBAF deprotection | 199a–c | MRSA, P. aeruginosa |
Scheme 37 | PPE derivatives using Sonogashira polymerization | 202 | E. coli |
Scheme 38 | Dione derivatives using Sonogashira cross-coupling | 207a–d | M. luteus, P. aeruginosa |
Scheme 39 | Pd-catalyzed Stille coupling | 212 | E. faecalis ATCC 29,212 |
Scheme 40 | Stille coupling and Sonogashira coupling | 215, 219 | S. aureus ATCC 25923, P. aeruginosa ATCC 27853 |
Scheme 41 | Buchwald-Hartwig coupling | 224 | S. aureus, B. subtilis, E. coli |
Scheme 42 | Buchwald-Hartwig reaction | 229 | Various gram-positive bacteria |
Scheme 43 | Buchwald-Hartwig reaction | 232 | B. cereus, S. aureus |
Scheme 44 | Pd-catalyzed Heck reaction | 235 | M. luteus, P. aeruginosa |
Scheme 45 | Reductive Heck reaction | 241 | M. luteus, M. abscessus, and S. murinus |
Scheme 46 | Pd-catalyzed 1,4-addition to dienes | 245E1–E5 | Xanthomonas oryzae pv. Oryzae (Xoo) |
Cu-Catalyzed Synthesis | |||
Scheme 47 | Cu (II) salen complex-catalyzed click reaction | 252a, 252b, 252c | B. subtilis, M. luteus |
Scheme 48 | Cu-catalyzed Ullmann cross-coupling | 256a, 256b, 256c | S. aureus (resistant to methicillin) |
Scheme 49 | Chan-Evans-Lam cross-coupling | 258a | MRSA, ESBL E. coli |
Scheme 50 | Chan-Lam cross-coupling | 260 | Gram-positive and gram-negative strains |
Scheme 51 | Cu-catalyzed Chan-Evans-Lam cross-coupling | 262 | S. pneumoniae |
Scheme 52 | CuO–Ag-catalyzed Knoevenagel and Michael’s addition | 267 | Gram-positive and gram-negative bacteria |
Scheme 53 | Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition | 271, 275 | E. faecalis |
Scheme 54 | Cu-catalyzed 1,3-dipolar cycloaddition | 284 | Mycobacterium tuberculosis, B. subtilis |
Scheme 55 | Cu-catalyzed 1,3-dipolar cycloaddition | 287, 288 | Various gram-positive and gram-negative strains |
Scheme 56 | Cu-catalyzed azide-alkyne cycloaddition (CuAAC) | 293, 295 | E. coli, other bacteria |
Scheme 58 | Cu-catalyzed oxidative cross-dehydrogenative coupling | 306a, 306c, 306d | Mycobacterium tuberculosis |
Scheme 59 | CuI/oxone-catalyzed cyclization of thioureas | 310 | Various bacteria |
Scheme 60 | Cu-catalyzed 1,2-addition | 312a, 312b, 312c | E. coli |
Nickel-catalyzed synthesis | |||
Scheme 61 | Ni-catalyzed Kumada cross-coupling | 315 | Gram-positive and gram-negative bacteria |
Scheme 62 | Kumada and Suzuki cross-coupling | 320 | Gram-positive and gram-negative bacteria |
Scheme 63 | Ni-catalyzed Buchwald-Hartwig reaction | 324 | Gram-positive and gram-negative bacteria |
Scheme 64 | Photocatalytic cross-coupling | 328 | S. faecalis, B. subtilis, K. pneumonia, E. coli, and P. aeruginosa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zia, A.; Khalid, S.; Rasool, N.; Mohsin, N.; Imran, M.; Toma, S.I.; Misarca, C.; Andreescu, O. Pd-, Cu-, and Ni-Catalyzed Reactions: A Comprehensive Review of the Efficient Approaches towards the Synthesis of Antibacterial Molecules. Pharmaceuticals 2024, 17, 1370. https://doi.org/10.3390/ph17101370
Zia A, Khalid S, Rasool N, Mohsin N, Imran M, Toma SI, Misarca C, Andreescu O. Pd-, Cu-, and Ni-Catalyzed Reactions: A Comprehensive Review of the Efficient Approaches towards the Synthesis of Antibacterial Molecules. Pharmaceuticals. 2024; 17(10):1370. https://doi.org/10.3390/ph17101370
Chicago/Turabian StyleZia, Almeera, Shehla Khalid, Nasir Rasool, Nayab Mohsin, Muhammad Imran, Sebastian Ionut Toma, Catalin Misarca, and Oana Andreescu. 2024. "Pd-, Cu-, and Ni-Catalyzed Reactions: A Comprehensive Review of the Efficient Approaches towards the Synthesis of Antibacterial Molecules" Pharmaceuticals 17, no. 10: 1370. https://doi.org/10.3390/ph17101370
APA StyleZia, A., Khalid, S., Rasool, N., Mohsin, N., Imran, M., Toma, S. I., Misarca, C., & Andreescu, O. (2024). Pd-, Cu-, and Ni-Catalyzed Reactions: A Comprehensive Review of the Efficient Approaches towards the Synthesis of Antibacterial Molecules. Pharmaceuticals, 17(10), 1370. https://doi.org/10.3390/ph17101370