Metabolomic Profiling and Network Toxicology: Mechanistic Insights into Effect of Gossypol Acetate Isomers in Uterine Fibroids and Liver Injury
Abstract
:1. Introduction
2. Results
2.1. Untargeted Serum Metabolomics
2.1.1. Analysis and Attribution of Rat Serum’s 1H-NMR Metabolite Profiles
2.1.2. Analysis of Rat Serum OPLS-DA Results
2.1.3. Statistics and Analysis of Serum Metabolic Differentiators in All Groups of Rats
Serial Number | Metabolites | Comparison of Normal Control and Model Groups | Comparison of (+)-Gossypol Acetate and Model Groups | Comparison of (−)-Gossypol Acetate and Model Groups | Comparison of Positive Control and Model Groups |
---|---|---|---|---|---|
1 | Cholesterol | −0.60 | 0.41 | −0.78 | −0.69 |
2 | Isoleucine | −0.54 | — | — | −0.38 |
3 | Leucine | — | 0.55 | — | — |
4 | Lipid | −0.61 | 0.69 | −0.80 | −0.52 |
5 | Lactic acid | −0.69 | −0.84 | −0.74 | −0.88 |
6 | Alanine | −0.49 | −0.23 | 0.40 | — |
7 | Acetic acid | — | — | — | −0.47 |
8 | Lysine | −0.78 | — | — | — |
9 | Glutamic acid | −0.74 | −0.65 | −0.76 | −0.63 |
10 | Methionine | — | — | — | −0.37 |
11 | Acetoacetate | −0.59 | 0.43 | −0.52 | −0.38 |
12 | Glutamine | — | 0.49 | 0.67 | — |
13 | Pyruvic acid | −0.42 | −0.45 | — | −0.67 |
14 | Citrate | — | −0.52 | — | — |
15 | γ-aminobutyric Acid | −0.77 | — | 0.56 | — |
16 | Choline | −0.48 | −0.60 | — | −0.57 |
17 | Arginine | 0.73 | — | 0.62 | 0.81 |
18 | Proline | −0.77 | 0.78 | 0.75 | 0.92 |
19 | β-glucose | 0.90 | 0.98 | 0.99 | 0.96 |
20 | α-glucose | 0.84 | 0.71 | 0.90 | 0.95 |
21 | Glycine | −0.67 | 0.60 | — | — |
22 | Citrulline | 0.84 | 0.61 | 0.90 | 0.86 |
23 | Glycerin | 0.74 | 0.47 | 0.89 | 0.89 |
24 | Creatine | −0.38 | — | — | — |
25 | Unsaturated Fatty acids | −0.70 | −0.33 | −0.87 | −0.71 |
26 | Urea | — | −0.77 | — | — |
27 | Formic acid | — | −0.35 | — | — |
2.2. Network Toxicology Analysis
2.2.1. Prediction of Targets
2.2.2. Construction and Analysis of Protein Interaction Networks
2.2.3. GO Gene Function and KEGG Pathway Analyses
3. Discussion
3.1. Analysis of the Mechanism of Action of Gossypol Optical Isomers on Serum Metabolomics in Rats with Uterine Fibroids
3.2. Network Toxicology Prediction of Gossypol Optical Isomers
3.3. The Significance of This Study
4. Materials and Methods
4.1. Drugs and Reagents
4.2. Laboratory Animals
4.3. Animal Grouping, Modeling, and Drug Administration
4.4. Sample Collection
4.5. Untargeted Serum Metabolomics Studies
4.5.1. Sample Preparation
4.5.2. 1H-NMR Test of Serum
4.5.3. 1H-NMR Pattern Processing
4.5.4. Statistical Processing
4.6. Network Toxicology Studies
4.6.1. Obtaining Information about the Gossypol Acetate Compound
4.6.2. Drug Target Acquisition
4.6.3. Hepatotoxicity Target Acquisition
4.6.4. Common Target Acquisition
4.6.5. Protein Interaction Network Construction and Analysis
4.6.6. GO Bioprocess and KEGG Pathway Enrichment Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Simon, A.; Robinson, F.; Anzivino, A.; Boyer, M.; Hendricks-Wenger, A.; Guilliams, D.; Casey, J.; Grider, D.; Valea, F.; Vlaisavljevich, E. Histotripsy for the Treatment of Uterine Leiomyomas: A Feasibility Study in Ex Vivo Uterine Fibroids. Ultrasound Med. Biol. 2022, 48, 1652–1662. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, E.; As-Sanie, S.; Marsh, E.E. Epidemiology and management of uterine fibroids. Int. J. Gynecol. Obstet. 2020, 149, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Moroni, R.M.; Vieira, C.S.; Ferriani, R.A.; dos Reis, R.M.; Nogueira, A.A.; Oliveira Brito, L.G. Presentation and treatment of uterine leiomyoma in adolescence: A systematic review. Bmc Womens Health 2015, 15, 4. [Google Scholar] [CrossRef] [PubMed]
- Reis, F.M.; Bloise, E.; Ortiga-Carvalho, T.M. Hormones and pathogenesis of uterine fibroids. Best Pract. Res. Clin. Obstet. Gynaecol. 2016, 34, 13–24. [Google Scholar] [CrossRef]
- Commandeur, A.E.; Styer, A.K.; Teixeira, J.M. Epidemiological and genetic clues for molecular mechanisms involved in uterine leiomyoma development and growth. Hum. Reprod. Update 2015, 21, 593–615. [Google Scholar] [CrossRef]
- Smith, J.S.; Backes, D.M.; Hoots, B.E.; Kurman, R.J.; Pimenta, J.M. Human Papillomavirus Type-Distribution in Vulvar and Vaginal Cancers and Their Associated Precursors. Obstet. Gynecol. 2009, 113, 917–924. [Google Scholar] [CrossRef]
- El-Sharaky, A.S.; Newairy, A.A.; Elguindy, N.M.; Elwafa, A.A. Spermatotoxicity, biochemical changes and histological alteration induced by gossypol in testicular and hepatic tissues of male rats. Food Chem. Toxicol. 2010, 48, 3354–3361. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, H.P. Hepatotoxicity of gossypol in rats. J. Ethnopharmacol. 1987, 20, 53–64. [Google Scholar] [CrossRef]
- Chen, C.W.; Hu, S.; Tsui, K.H.; Hwang, G.S.; Chen, S.T.; Tang, T.K.; Cheng, H.T.; Yu, J.W.; Wang, H.C.; Juang, H.H.; et al. Anti-inflammatory Effects of Gossypol on Human Lymphocytic Jurkat Cells via Regulation of MAPK Signaling and Cell Cycle. Inflammation 2018, 41, 2265–2274. [Google Scholar] [CrossRef]
- Liu, S.; Kulp, S.K.; Sugimoto, Y.; Jiang, J.; Chang, H.-L.; Dowd, M.K.; Wan, P.; Lin, Y.C. The (−)-enantiomer of gossypol possesses higher anticancer potency than racemic gossypol in human breast cancer. Anticancer Res. 2002, 22, 33–38. [Google Scholar]
- Kaushal, N.A.; Kaushal, D.C. Production and characterization of monoclonal antibodies against substrate specific loop region of Plasmodium falciparum lactate dehydrogenase. Immunol. Investig. 2014, 43, 556–571. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Tai, W.; Wang, N.; Li, X.; Jiang, S.; Debnath, A.K.; Du, L.; Chen, S. Identification of Novel Natural Products as Effective and Broad-Spectrum Anti-Zika Virus Inhibitors. Viruses 2019, 11, 1019. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, Y.; Li, Z.; Yang, Y.; Yu, B.; Zhang, Z.; Wang, G. Investigation of Inhibition Effect of Gossypol-Acetic Acid on Gastric Cancer Cells Based on a Network Pharmacology Approach and Experimental Validation. Drug Des. Dev. Ther. 2020, 14, 3615–3623. [Google Scholar] [CrossRef] [PubMed]
- Beyazit, N.; Çakran, H.S.; Cabir, A.; Akışcan, Y.; Demetgül, C. Synthesis, characterization and antioxidant activity of chitosan Schiff base derivatives bearing (−)-gossypol. Carbohydr. Polym. 2020, 240, 116333. [Google Scholar] [CrossRef] [PubMed]
- Mallick, D.J.; Eastman, A. AT101 [(−)-Gossypol] Selectively Inhibits MCL1 and Sensitizes Carcinoma to BH3 Mimetics by Inducing and Stabilizing NOXA. Cancers 2020, 12, 2298. [Google Scholar] [CrossRef]
- Chen, Y.; Sten, M.; Nordenskjold, M.; Lambert, B.; Matlin, S.A.; Zhou, R.H. The effect of gossypol on the frequency of DNA-strand breaks in human leukocytes in vitro. Mutat. Res. 1986, 164, 71–78. [Google Scholar] [CrossRef]
- Keshmiri-Neghab, H.; Goliaei, B. Therapeutic potential of gossypol: An overview. Pharm. Biol. 2014, 52, 124–128. [Google Scholar] [CrossRef]
- Baggstrom, M.Q.; Qi, Y.; Koczywas, M.; Argiris, A.; Johnson, E.A.; Millward, M.J.; Murphy, S.C.; Erlichman, C.; Rudin, C.M.; Govindan, R.; et al. A Phase II Study of AT-101 (Gossypol) in Chemotherapy-Sensitive Recurrent Extensive-Stage Small Cell Lung Cancer. J. Thorac. Oncol. 2011, 6, 1757–1760. [Google Scholar] [CrossRef]
- Sonpavde, G.; Matveev, V.; Burke, J.M.; Caton, J.R.; Fleming, M.T.; Hutson, T.E.; Galsky, M.D.; Berry, W.R.; Karlov, P.; Holmlund, J.T.; et al. Randomized phase II trial of docetaxel plus prednisone in combination with placebo or AT-101, an oral small molecule Bcl-2 family antagonist, as first-line therapy for metastatic castration-resistant prostate cancer. Ann. Oncol. 2012, 23, 1803–1808. [Google Scholar] [CrossRef]
- Mehner, M.; Kubelt, C.; Adamski, V.; Schmitt, C.; Synowitz, M.; Held-Feindt, J. Combined treatment of AT101 and demethoxycurcumin yields an enhanced anti-proliferative effect in human primary glioblastoma cells. J. Cancer Res. Clin. Oncol. 2020, 146, 117–126. [Google Scholar] [CrossRef]
- Yuan, J.; Zhou, M.; Xin, X.; Yao, J.; Chang, J. Comparison of the efficacy of gossypol acetate enantiomers in rats with uterine leiomyoma. J. Nat. Med. 2023, 77, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, Y.; Shikata, N.; Furuhata, Y.; Kimura, T.; Takahashi, M. Characterization of dietary protein-dependent amino acid metabolism by linking free amino acids with transcriptional profiles through analysis of correlation. Physiol. Genom. 2008, 34, 315–326. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzo, A.; Petroni, M.L.; Masala, S.; Melchiorri, G.; Pietrantuono, M.; Perriello, G.; Andreoli, A. Effect of acute and chronic branched-chain amino acids on energy metabolism and muscle performance. Diabetes Nutr. Metab. 2003, 16, 291–297. [Google Scholar] [PubMed]
- Miyashita, Y.; Dolferus, R.; Ismond, K.P.; Good, A.G. Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. Plant J. Cell Mol. Biol. 2007, 49, 1108–1121. [Google Scholar] [CrossRef]
- Jiang, J.; Zheng, T.; Zhou, X.Q.; Liu, Y.; Feng, L. Influence of glutamine and vitamin E on growth and antioxidant capacity of fish enterocytes. Aquac. Nutr. 2009, 15, 409–414. [Google Scholar] [CrossRef]
- Zhang, S.; Nagana Gowda, G.A.; Asiago, V.; Shanaiah, N.; Barbas, C.; Raftery, D. Correlative and quantitative 1H NMR-based metabolomics reveals specific metabolic pathway disturbances in diabetic rats. Anal. Biochem. 2008, 383, 76–84. [Google Scholar] [CrossRef]
- Shao, W.-H.; Cohen, P.L. The role of tyrosine kinases in systemic lupus erythematosus and their potential as therapeutic targets. Expert Rev. Clin. Immunol. 2014, 10, 573–582. [Google Scholar] [CrossRef]
- Taniguchi, K.; Xia, L.; Goldberg, H.J.; Lee, K.W.K.; Shah, A.; Stavar, L.; Masson, E.A.Y.; Momen, A.; Shikatani, E.A.; John, R.; et al. Inhibition of Src Kinase Blocks High Glucose-Induced EGFR Transactivation and Collagen Synthesis in Mesangial Cells and Prevents Diabetic Nephropathy in Mice. Diabetes 2013, 62, 3874–3886. [Google Scholar] [CrossRef]
- Görtzen, J.; Schierwagen, R.; Bierwolf, J.; Klein, S.; Uschner, F.E.; van der Ven, P.F.; Fürst, D.O.; Strassburg, C.P.; Laleman, W.; Pollok, J.M.; et al. Interplay of Matrix Stiffness and c-SRC in Hepatic Fibrosis. Front. Physiol. 2015, 6, 359. [Google Scholar] [CrossRef]
- Seo, H.Y.; Lee, S.H.; Lee, J.H.; Kang, Y.N.; Hwang, J.S.; Park, K.G.; Kim, M.K.; Jang, B.K. Src Inhibition Attenuates Liver Fibrosis by Preventing Hepatic Stellate Cell Activation and Decreasing Connetive Tissue Growth Factor. Cells 2020, 9, 558. [Google Scholar] [CrossRef]
- Reyes-Gordillo, K.; Shah, R.; Arellanes-Robledo, J.; Cheng, Y.; Ibrahim, J.; Tuma, P.L. Akt1 and Akt2 Isoforms Play Distinct Roles in Regulating the Development of Inflammation and Fibrosis Associated with Alcoholic Liver Disease. Cells 2019, 8, 1337. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Gordillo, K.; Shah, R.; Popratiloff, A.; Fu, S.; Hindle, A.; Brody, F.; Rojkind, M. Thymosin-β4 (Tβ4) Blunts PDGF-Dependent Phosphorylation and Binding of AKT to Actin in Hepatic Stellate Cells. Am. J. Pathol. 2011, 178, 2100–2108. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Rajendran, V.; Sethumadhavan, R.; Purohit, R. AKT kinase pathway: A leading target in cancer research. Sci. World J. 2013, 2013, 756134. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Placzek, W.J. Post-Transcriptional Regulation of Anti-Apoptotic BCL2 Family Members. Int. J. Mol. Sci. 2018, 19, 308. [Google Scholar] [CrossRef]
- Maes, M.E.; Schlamp, C.L.; Nickells, R.W. BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells. Prog. Retin. Eye Res. 2017, 57, 1–25. [Google Scholar] [CrossRef]
- Nanji, A.A. Apoptosis and alcoholic liver disease. Semin. Liver Dis. 1998, 18, 187–190. [Google Scholar] [CrossRef]
- Feoktistova, M.; Leverkus, M. Programmed necrosis and necroptosis signalling. FEBS J. 2015, 282, 19–31. [Google Scholar] [CrossRef]
- Dasse, E.; Bridoux, L.; Baranek, T.; Lambert, E.; Salesse, S.; Sowa, M.L.; Martiny, L.; Trentesaux, C.; Petitfrere, E. Tissue inhibitor of metalloproteinase-1 promotes hematopoietic differentiation via caspase-3 upstream the MEKK1/MEK6/p38α pathway. Leukemia 2007, 21, 595–603. [Google Scholar] [CrossRef]
- Liu, W.; Wang, X.; Liu, Y.; Fang, S.; Wu, Z.; Han, C.; Shi, W.; Bao, Y. Effects of early florfenicol exposure on glutathione signaling pathway and PPAR signaling pathway in chick liver. Ecotoxicol. Environ. Saf. 2022, 237, 113529. [Google Scholar] [CrossRef]
- Moran-Salvador, E.; Lopez-Parra, M.; Garcia-Alonso, V.; Titos, E.; Martinez-Clemente, M.; Gonzalez-Periz, A.; Lopez-Vicario, C.; Barak, Y.; Arroyo, V.; Claria, J. Role for PPARγ in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts. FASEB J. 2011, 25, 2538–2550. [Google Scholar] [CrossRef]
- Gavrilova, O.; Haluzik, M.; Matsusue, K.; Cutson, J.J.; Johnson, L.; Dietz, K.R.; Nicol, C.J.; Vinson, C.; Gonzalez, F.J.; Reitman, M.L. Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J. Biol. Chem. 2003, 278, 34268–34276. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, S.; Xu, K. IL-17 expression is correlated with hepatitis B-related liver diseases and fibrosis. Int. J. Mol. Med. 2011, 27, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.Q.; Zhang, J.Y.; Zhang, H.; Zou, Z.S.; Wang, F.S.; Jia, J.H. Increased Th17 cells contribute to disease progression in patients with HBV-associated liver cirrhosis. J. Viral Hepat. 2012, 19, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.-F.; Gu, L.; Deng, W.-S.; Xu, Q. Impaired balance of T helper 17/T regulatory cells in carbon tetrachloride-induced liver fibrosis in mice. World J. Gastroenterol. 2014, 20, 2062–2070. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, B.; Shen, R.W.; Liu, J.B.; Gao, M.H.; Geng, X.; Li, Y.; Li, Y.Y.; Zhang, W. The Effect of Antifibrotic Drug Halofugine on Th17 Cells in Concanavalin A-Induced Liver Fibrosis. Scand. J. Immunol. 2014, 79, 163–172. [Google Scholar] [CrossRef]
- Rui, L. Energy metabolism in the liver. Compr. Physiol. 2014, 4, 177. [Google Scholar] [CrossRef]
- Bonis, P.A.; Friedman, S.L.; Kaplan, M.M. Is liver fibrosis reversible? N. Engl. J. Med. 2001, 344, 452–454. [Google Scholar] [CrossRef]
Serial Number | Metabolites | Chemical Shift | Ascription |
---|---|---|---|
1 | Cholesterol | 0.84 (m) | C26, C27 |
2 | Isoleucine | 0.94 (t) | δ-CH3 |
3 | Leucine | 0.98 (d) | δ-CH3 |
4 | Lipid | 1.26 (m), 1.57 (m), 2.23 (m) | CH3CH2(CH2)n, CH2CH2CO, CH2CO |
5 | Lactic acid | 1.33 (d), 4.10 (q) | CH3, CH |
6 | Alanine | 1.46 (d) | CH3 |
7 | Acetic acid | 1.91 (s) | CH3 |
8 | Lysine | 1.91 (m) | β-CH2 |
9 | Glutamic acid | 2.00 (m), 2.12 (m) | half β-CH2 |
10 | Methionine | 2.12 (s) | S-CH3 |
11 | Acetoacetate | 2.22 (s) | CH3 |
12 | Glutamine | 2.42 (m) | half γ-CH2 |
13 | Pyruvic acid | 2.35 (s) | CH3 |
14 | Citrate | 2.52 (d) | half CH2 |
15 | γ-aminobutyric acid | 3.02 (t) | γ-CH2 |
16 | Choline | 3.66 (m), 4.29 (m) | NCH2, OCH2 |
17 | Arginine | 3.24 (t) | δ-CH2 |
18 | Proline | 3.45 (m) | half δ-CH2 |
19 | β-glucose | 3.48 (t), 4.64 (d) | H3, H1 |
20 | α-glucose | 3.53 (dd), 3.82 (m), 3.76 (dd), 5.22 (d) | H2, half CH2-C6, H1 |
21 | Glycine | 3.54 (s) | CH3 |
22 | Citrulline | 3.71 (m) | δ-CH |
23 | Glycerin | 3.89 (m) | C2-H |
24 | Creatine | 3.92 (s) | CH2 |
25 | Unsaturated fatty acids | 5.28 (m) | CH=CHCH2CH=CH |
26 | Urea | 5.77 (s) | NH2 |
27 | Formic acid | 8.44 (s) | CH |
Groups | (–)-GA | (+)-GA | VB1 | VB6 | KCL |
---|---|---|---|---|---|
(–)-GA-L | 25 | — | 12 | 12 | 312 |
(–)-GA-M | 50 | — | 25 | 25 | 625 |
(–)-GA-H | 100 | — | 50 | 50 | 1250 |
(+)-GA-L | — | 25 | 12 | 12 | 312 |
(+)-GA-M | — | 50 | 25 | 25 | 625 |
(+)-GA-H | — | 100 | 50 | 50 | 1250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zhang, H.; Yao, J. Metabolomic Profiling and Network Toxicology: Mechanistic Insights into Effect of Gossypol Acetate Isomers in Uterine Fibroids and Liver Injury. Pharmaceuticals 2024, 17, 1363. https://doi.org/10.3390/ph17101363
Liu Z, Zhang H, Yao J. Metabolomic Profiling and Network Toxicology: Mechanistic Insights into Effect of Gossypol Acetate Isomers in Uterine Fibroids and Liver Injury. Pharmaceuticals. 2024; 17(10):1363. https://doi.org/10.3390/ph17101363
Chicago/Turabian StyleLiu, Zishuo, Hui Zhang, and Jun Yao. 2024. "Metabolomic Profiling and Network Toxicology: Mechanistic Insights into Effect of Gossypol Acetate Isomers in Uterine Fibroids and Liver Injury" Pharmaceuticals 17, no. 10: 1363. https://doi.org/10.3390/ph17101363
APA StyleLiu, Z., Zhang, H., & Yao, J. (2024). Metabolomic Profiling and Network Toxicology: Mechanistic Insights into Effect of Gossypol Acetate Isomers in Uterine Fibroids and Liver Injury. Pharmaceuticals, 17(10), 1363. https://doi.org/10.3390/ph17101363