Antiarthritic and Anti-Inflammatory Properties of Cannabis sativa Essential Oil in an Animal Model
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of CSEO
2.2. Anti-Inflammatory Activity
2.2.1. Xylene-Induced Ear Oedema
2.2.2. Histological Examination
2.2.3. Carrageenan-Induced Rat-Paw Edema
2.3. Adjuvant-Induced Chronic Arthritis
2.3.1. Body-Weight Changes in CFA-Induced Arthritic Rats
2.3.2. Anti-Inflammatory Activity of EOCS in CFA-Induced Arthritic Rats
2.3.3. Effect of EOCS on % Inhibition of Arthritis in CFA-Induced Arthritic Rats
2.3.4. Effect of EOCS on the Arthritis Score in CFA-Induced Arthritic Rats
2.3.5. Effect of EOCS on Plasma CRP Levels in CFA-Induced Arthritic Rats
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Gas Chromatography–Mass Spectrometry (GC/MS) Analysis
4.3. Animals
4.4. Drugs and Treatments
4.5. Xylene-Induced Ear Oedema
4.6. Carrageenan-Induced Rat-Paw Edema
4.7. CFA-Induced Arthritis Model
4.8. Body-Weight Assessment
4.9. Hind-Paw Volume Assessment
4.10. Percentage Inhibition of Paw Edema
4.11. Arthritis Score
4.12. CRP Analysis
4.13. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2017, 9, 7204–7218. [Google Scholar] [CrossRef] [PubMed]
- Liehn, E.A.; Cabrera-Fuentes, H.A. Inflammation between defense and disease: Impact on tissue repair and chronic sickness. Discoveries 2015, 3, e42. [Google Scholar] [CrossRef] [PubMed]
- Varela, M.L.; Mogildea, M.; Moreno, I.; Lopes, A. Acute Inflammation and Metabolism. Inflammation 2018, 41, 1115–1127. [Google Scholar] [CrossRef] [PubMed]
- Tasneem, S.; Liu, B.; Li, B.; Choudhary, M.I.; Wang, W. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacol. Res. 2019, 139, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, Z.; Xia, N.; Zhang, W.; Wei, Y.; Huang, J.; Ren, Z.; Meng, F.; Yang, L. Anti-arthritic activity of ferulic acid in complete Freund’s adjuvant (CFA)-induced arthritis in rats: JAK2 inhibition. Inflammopharmacology 2020, 28, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Calabresi, E.; Monti, S.; Governato, G.; Carli, L. One year in review 2018: Psoriatic arthritis. Clin. Exp. Rheumatol. 2019, 37, 167–178. [Google Scholar] [PubMed]
- Markenson, J.A. Worldwide Trends in the Socioeconomic Impact and Long-Term Prognosis of Rheumatoid Arthritis. Semin. Arthritis Rheum. 1991, 21, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Houssiau, F.A.; Mascart-Lemone, F.; Stevens, M.; Libin, M.; Devogelaer, J.-P.; Goldman, M.; Renauld, J.-C. IL-12 inhibits in vitro immunoglobulin production by human lupus peripheral blood mononuclear cells (PBMC). J. Clin. Exp. Immunol. 1997, 108, 375–380. [Google Scholar] [CrossRef]
- Idborg, H.; Oke, V. Cytokines as Biomarkers in Systemic Lupus Erythematosus: Value for Diagnosis and Drug Therapy. Int. J. Mol. Sci. 2021, 22, 11327. [Google Scholar] [CrossRef]
- Paquet, J.; Goebel, J.-C.; Delaunay, C.; Pinzano, A.; Grossin, L.; Cournil-Henrionnet, C.; Gillet, P.; Netter, P.; Jouzeau, J.-Y.; Moulin, D. Cytokines profiling by multiplex analysis in experimental arthritis: Which pathophysiological relevance for articular versus systemic mediators? Arthritis Res. Ther. 2012, 14, R60. [Google Scholar] [CrossRef]
- Manel, K.A.C.B.A.; Maha, O. Etude Bibliographique sur la Toxicité des Anti Inflammatoires. Ph.D. Thesis, University of Bordj Bou Arreridj, El Anceur, Algeria, 10 December 2023. Available online: https://dspace.univ-bba.dz/handle/123456789/4649 (accessed on 15 December 2023). (In English).
- Baslam, A.; Aitbaba, A.; Aboufatima, R.; Agouram, F.; Boussaa, S.; Chait, A.; Baslam, M. Phytochemistry, Antioxidant Potential, and An-tibacterial Activities of Anacyclus pyrethrum: Promising Bioactive Compounds. Horticulturae 2023, 9, 1196. [Google Scholar] [CrossRef]
- Heymonet, C. Les Plantes à Visée Anti-Inflammatoire Utilisées en Phytothérapie. Université de Lorraine, Metz, France, 3 October 2023. Available online: https://hal.univ-lorraine.fr/hal-01733269 (accessed on 15 December 2023).
- Pattnaik, F.; Nanda, S.; Mohanty, S.; Dalai, A.K.; Kumar, V.; Ponnusamy, S.K.; Naik, S. Cannabis: Chemistry, extraction and therapeutic applications. Chemosphere 2022, 289, 133012. [Google Scholar] [CrossRef] [PubMed]
- Nuutinen, T. Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus. Eur. J. Med. Chem. 2018, 157, 198–228. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine, specifically the Division of Health and Medicine, Board on Population Health and Public Health Practice, Committee on the Health and Medicine of an Ageing Society, and Roundtable on Population Health Improvement. Therapeutic Effects of Cannabis and Cannabinoids. In The Health Effects of Cannabis and Cannabinoids: The Current State of Evidence and Recommendations for Research; National Academies Press: Washington, DC, USA, 2017. Available online: https://www.ncbi.nlm.nih.gov/books/NBK425767/ (accessed on 15 December 2023).
- Pryimak, N.; Zaiachuk, M.; Kovalchuk, O.; Kovalchuk, I. The potential use of cannabis in tissue fibrosis. Front. Cell Dev. Biol. 2021, 9, 715380. [Google Scholar] [CrossRef] [PubMed]
- Del Río, C.; Ruiz-Pino, F.; Prados, M.E.; Fiebich, B.L.; Tena-Sempere, M.; Muñoz, E. Cannabidiol markedly alleviates skin and liver fibrosis. Front. Pharmacol. 2022, 13, 981817. [Google Scholar] [CrossRef] [PubMed]
- Liktor-Busa, E.; Keresztes, A.; LaVigne, J.; Streicher, J.M.; Largent-Milnes, T.M. Analgesic potential of terpenes derived from Cannabis sativa. Pharmacol. Rev. 2021, 73, 1269–1297. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yan, P.; Ding, W.; Zhou, C.; Xu, Q.; Li, M.; Ye, L.; Chen, W. α-Pinene inhibits the growth of cervical cancer cells through its proapoptotic activity by regulating the miR-34a-5p/Bcl-2 signaling axis. Drug Dev. Res. 2022, 83, 1766–1776. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Avila, D.S.; Flores-Soto, M.E.; Tapia-Vázquez, C.; Pastor-Zarandona, O.A.; López-Roa, R.I.; Viveros-Paredes, J.M. β-Caryophyllene, a natural sesquiterpene, attenuates neuropathic pain and depressive-like behavior in experimental diabetic mice. J. Med. Food 2019, 22, 460–468. [Google Scholar] [CrossRef]
- Bertolini, M. Caracterização Anatomopatológica e Etiológica de Achados em Abatedouros Frigoríficos de Suínos do Brasil. 2023. Available online: https://www.lume.ufrgs.br/handle/10183/257983 (accessed on 15 December 2023).
- Baslam, A.; Aitbaba, A.; Lamrani Hanchi, A.; Tazart, Z.; Aboufatima, R.; Soraa, N.; Ait-El-Mokhtar, M.; Boussaa, S.; Baslam, M.; Chait, A. Modulation of Gut Microbiome in Ecstasy/MDMA-Induced Behavioral and Biochemical Impairment in Rats and Potential of Post-Treatment with Anacyclus pyrethrum L. Aqueous Extract to Mitigate Adverse Effects. Int. J. Mol. Sci. 2023, 24, 9086. [Google Scholar] [CrossRef]
- Tazeze, H.; Mequanente, S.; Nigussie, D.; Legesse, B.; Makonnen, E.; Mengie, T. Investigation of wound healing and anti-inflammatory activities of leaf gel of Aloe trigonantha LC leach in Rats. J. Inflamm. Res. 2021, 14, 5567. [Google Scholar] [CrossRef]
- Guo, D.; Xu, L.; Cao, X.; Guo, Y.; Ye, Y.; Chan, C.-O.; Mok, D.K.W.; Yu, Z.; Chen, S. Anti-inflammatory activities and mechanisms of action of the petroleum ether fraction of Rosa multiflora Thunb. Hips. J. Ethnopharmacol. 2011, 138, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Bradley, P.P.; Priebat, D.A.; Christensen, R.D.; Rothstein, G. Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. J. Investig. Dermatol. 1982, 78, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Malik, S.; Singla, S.; Verma, S. A probabilistic approach to performance analysis of various subsystems in an Indian sugar plant. Int. J. Syst. Assur. Eng. Manag. 2023, 14, 2410–2422. [Google Scholar] [CrossRef]
- Agbaje, E.O.; Fageyinbo, M.S. Evaluating Anti-Inflammatory activity of aqueous root extract of Strophanthus hispidus DC. (Apocynaceae. Int. J. Appl. Res. Nat. Prod. 2012, 4, 7–14. [Google Scholar]
- Nasuti, C.; Fedeli, D.; Bordoni, L.; Piangerelli, M.; Servili, M.; Selvaggini, R.; Gabbianelli, R. Anti-inflammatory, anti-arthritic and anti-nociceptive activities of Nigella sativa oil in a rat model of arthritis. Antioxidants 2018, 8, 342. [Google Scholar] [CrossRef] [PubMed]
- Meotti, F.C.; Missau, F.C.; Ferreira, J.; Pizzolatti, M.G.; Mizuzaki, C.; Nogueira, C.W.; Santos, A.R. Anti-allodynic property of flavonoid myricitrin in models of persistent inflammatory and neuropathic pain in mice. Biochem. Pharmacol. 2006, 72, 1707–1713. [Google Scholar] [CrossRef]
- Gallily, R.; Yekhtin, Z.; Hanuš, L.O. The Anti-Inflammatory Properties of Terpenoids from Cannabis. Cannabis Cannabinoid Res. 2018, 3, 282–290. [Google Scholar] [CrossRef]
- Shebaby, W.; Saliba, J.; Faour, W.H.; Ismail, J.; El Hage, M.; Daher, C.F.; Taleb, R.I.; Nehmeh, B.; Dagher, C.; Chrabieh, E.; et al. In vivo and in vitro anti-inflammatory activity evaluation of Lebanese Cannabis sativa L. ssp. Indica Lam. J. Ethnopharmacol. 2021, 270, 113743. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, L.; Wang, S.; Gao, Y.; Jin, F. Molecular mechanism of the anti-inflammatory effects of plant essential oils: A systematic review. J. Ethnopharmacol. 2023, 301, 115829. [Google Scholar] [CrossRef]
- Winrow, V.R.; Winyard, P.G.; Morris, C.J.; Blake, D.R. Free radicals in inflammation: Second messengers and mediators of tissue destruction. Br. Med. Bull. 1993, 49, 506–522. [Google Scholar] [CrossRef]
- Cantele, C.; Bertolino, M.; Bakro, F.; Giordano, M.; Jędryczka, M.; Cardenia, V. Antioxidant effects of hemp (Cannabis sativa L.) inflorescence extract in stripped linseed oil. Antioxidants 2020, 9, 1131. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Pop, A.; Iordache, F.; Stanca, L.; Predoi, G.; Serban, A.I. Oxidative stress mitigation by antioxi-dants-an overview on their chemistry and influences on health status. Eur. J. Med. Chem. 2021, 209, 112891. [Google Scholar] [CrossRef] [PubMed]
- Navegantes, K.C.; de Souza Gomes, R.; Pereira, P.A.T.; Czaikoski, P.G.; Azevedo, C.H.M.; Monteiro, M.C. Immune modulation of some autoimmune diseases: The critical role of macrophages and neutrophils in the innate and adaptive immunity. J. Transl. Med 2017, 15, 36. [Google Scholar] [CrossRef] [PubMed]
- Yong, Y.K.; Sulaiman, N.; Hakim, M.N.; Lian, G.E.C.; Zakaria, Z.A.; Othman, F.; Ahmad, Z. Suppressions of serotonin-induced increased vascular permeability and leukocyte infiltration by Bixa orellana leaf extract. BioMed Res. Int. 2013, 2013, 463145. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R.; Horng, T. Transcriptional control of the inflammatory response. Nat. Rev. Immunol. 2009, 9, 692–703. [Google Scholar] [CrossRef] [PubMed]
- Hata, A.N.; Breyer, R.M. Pharmacology and signaling of prostaglandin receptors: Multiple roles in inflammation and immune modulation. Pharmacol. Ther. 2004, 103, 147–166. [Google Scholar] [CrossRef]
- Solmi, M.; Veronese, N.; Favaro, A.; Santonastaso, P.; Manzato, E.; Sergi, G.; Correll, C.U. Inflammatory cytokines and anorexia nervosa: A meta-analysis of cross-sectional and longitudinal studies. Psychoneuroendocrinology 2015, 51, 237–252. [Google Scholar] [CrossRef]
- Deffaud, J.; Kirchmeyer, M.; Domagala, F.; Ficheux, H.; Netter, P.; Bianchi, A.; Jouzeau, J.Y. Modulatory effect of rhein on IL-1α-induced responses in human chondrocytes: A comparative study between antibody microarrays and specific ELISAs. Biorheology 2008, 45, 439–455. [Google Scholar] [CrossRef]
- Sohn, D.H.; Sokolove, J.; Sharpe, O.; Erhart, J.C.; Chandra, P.E.; Lahey, L.J.; Lindrostom, T.M.; Hwang, I.; Boyer, K.A.; Andriacchi, T.P.; et al. Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via Toll-like receptor 4. Arthritis Res. Ther. 2012, 14, R7. [Google Scholar] [CrossRef]
N˚ | Compounds a | RI Exp b | RI Lit c | % |
---|---|---|---|---|
1 | α-Pinene | 926 | 926 | 0.99 |
2 | Borneol | 941 | 939 | 0.11 |
3 | L-α-Terpineol | 971 | 968 | 0.17 |
4 | Cubebol | 999 | 992 | 1.82 |
5 | Isocaryophyllene | 1020 | 1012 | 0.69 |
6 | α-Longipinene | 1031 | 1027 | 0.27 |
7 | (E)-Caryophyllene | 1040 | 1032 | 41.59 |
8 | 2-Norpinene | 1061 | 1053 | 0.99 |
9 | Guaia-1(10),11-diene | 1074 | 1065 | 0.31 |
10 | α-Humulene | 1103 | 1094 | 14.93 |
11 | Epi-β-Caryophyllene | 1132 | 1123 | 2.25 |
12 | β-Patchoulene | 1157 | 1148 | 0.21 |
13 | α-Guaiene | 1161 | 1152 | 0.52 |
14 | Selina-3,7(11)-diene | 1330 | 1320 | 0.40 |
15 | β-Selinene | 1344 | 1334 | 1.71 |
16 | α-Selinene | 1391 | 1382 | 1.41 |
17 | 1H-Benzocycloheptene | 1418 | 1408 | 0.19 |
18 | Farnesyl bromide | 1425 | 1415 | 0.07 |
19 | Patchoulene | 1439 | 1429 | 0.10 |
20 | δ-Cadinene | 1450 | 1439 | 0.46 |
21 | Selina-3,7(11)-diene | 1466 | 1456 | 2.83 |
22 | Caryophylladienol II | 1482 | 1470 | 3.87 |
23 | Cholecalciferol | 1490 | 1478 | 0.10 |
24 | Isolongifolol | 1500 | 1483 | 0.27 |
25 | Caryophyllene oxide | 1507 | 1495 | 11.40 |
26 | Ledol | 1513 | 1501 | 0.69 |
27 | Humulene oxide II | 1527 | 1514 | 3.78 |
28 | Costol | 1537 | 1524 | 0.08 |
29 | γ-costol | 1550 | 1536 | 0.13 |
30 | Aristol-1(10)-en-9-ol | 1558 | 1543 | 0.31 |
31 | Germacra-4(15),5,10(14)-trien-1α-ol | 1581 | 1581.89 | 3.65 |
32 | α-Bisabolol | 1597 | 1597.64 | 0.64 |
Total | 96.94 | |||
Oil yeld (%, w/w) | 1.20 | |||
Hydrocarbons Monoterpene (H.M.) | 0.99 | |||
Oxygenated Monoterpenes (O.M.) | 0.47 | |||
Hydrocarbon Sesquiterpenes (H.S.) | 67.63 | |||
Oxygenated Sesquiterpenes (O.S.) | 25.91 |
Mean Paw Volume ± SD (mL) (% Inhibition) | ||||||
---|---|---|---|---|---|---|
Treatment | 0 h | 1 h | 2 h | 3 h | 4 h | |
Control | Paw volume | 1.64 ± 0.05 | 1.74 ± 0.04 | 2.16 ± 0.07 | 0.1 ± 0.04 | 3.62 ± 0.04 |
Inhibition | - | - | - | - | - | |
Indomethacin 10 mg/kg bw | Paw volume | 1.56 ± 0.05 | 1.43 ± 0.03 | 1.62 ± 0.01 | 1.67 ± 0,02 | 1.84 ± 0.04 |
Inhibition | 4.87804878 | 17.81609195 | 25.00 | 46.12903226 | 49.1713 * | |
EOCS 2.5 mg/kg bw | Paw volume | 1.45 ± 0.10 | 1.92 ± 0.02 | 2.06 ± 0.03 | 2.93 ± 0.07 | 3.12 ± 0.07 |
Inhibition | 11.58536585 | −10.34482759 | 4.62962963 | 5.483870968 ns | 13.8122 ** | |
EOCS 5 mg/kg bw | Paw volume | 1.50 ± 0.07 | 1.93 ± 0.01 | 2.13 ± 0.01 | 2.64 ± 0.06 | 2.93 ± 0.01 |
Inhibition | 8.536585366 | −10.91954023 | 1.388888889 | 14.83870968 | 19.0608 ** | |
EOCS 10 mg/kg bw | Paw volume | 1.51 ± 0.06 | 1.85 ± 0.03 | 1.98 ± 0.09 | 2.35 ± 0.10 | 2.55 ± 0.10 |
Inhibition | 7.926829268 | −1.724137931 | 8.333333333 | 24.19354839 | 29.558 *** |
Day | Control | CFA | CFA + Indomethacin 3 mg/kg | CFA + EOCS 2.5 mg/kg | CFA + EOCS 5 mg/kg | CFA + EOCS 10 mg/kg | |
---|---|---|---|---|---|---|---|
CRP (mg/mL) | Day 15 | 2.43 ± 0.14 | 4.2 ± 0.75 ** | 2.45 ±0.27 | 3.5 ± 0.37 * | 3.2 ± 0.53 | 2.50 ± 0.12 |
Day 25 | 2.55 ± 0.21 | 5.1 ± 0.68 *** | 2.30 ± 0.83 | 2.70 ± 0.30 | 2.57 ± 0.37 | 2.33 ± 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabdy, H.; Azraida, H.; Agouram, F.; Oufquir, S.; Laadraoui, J.; Baslam, A.; Aitbaba, A.; Ouazzani, M.E.; Elyazouli, L.; Aboufatima, R.; et al. Antiarthritic and Anti-Inflammatory Properties of Cannabis sativa Essential Oil in an Animal Model. Pharmaceuticals 2024, 17, 20. https://doi.org/10.3390/ph17010020
Kabdy H, Azraida H, Agouram F, Oufquir S, Laadraoui J, Baslam A, Aitbaba A, Ouazzani ME, Elyazouli L, Aboufatima R, et al. Antiarthritic and Anti-Inflammatory Properties of Cannabis sativa Essential Oil in an Animal Model. Pharmaceuticals. 2024; 17(1):20. https://doi.org/10.3390/ph17010020
Chicago/Turabian StyleKabdy, Hamid, Hajar Azraida, Fatimzahra Agouram, Sara Oufquir, Jawad Laadraoui, Abdelmounaim Baslam, Abdelfatah Aitbaba, Meryem El Ouazzani, Loubna Elyazouli, Rachida Aboufatima, and et al. 2024. "Antiarthritic and Anti-Inflammatory Properties of Cannabis sativa Essential Oil in an Animal Model" Pharmaceuticals 17, no. 1: 20. https://doi.org/10.3390/ph17010020
APA StyleKabdy, H., Azraida, H., Agouram, F., Oufquir, S., Laadraoui, J., Baslam, A., Aitbaba, A., Ouazzani, M. E., Elyazouli, L., Aboufatima, R., Garzoli, S., & Chait, A. (2024). Antiarthritic and Anti-Inflammatory Properties of Cannabis sativa Essential Oil in an Animal Model. Pharmaceuticals, 17(1), 20. https://doi.org/10.3390/ph17010020