Nanoemulsion Improves the Anti-Inflammatory Effect of Intraperitoneal and Oral Administration of Carvacryl Acetate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spectroscopic Data of CA
2.2. Effect of HLB Values
2.3. Preparation and Characterization of CA Oil-Loaded Nanoemulsion
2.4. Anti-Inflammatory Activity
2.4.1. Anti-Inflammatory Profile of Intraperitoneally Administered CANE
2.4.2. Anti-Inflammatory Profile of Orally Administered CANE
2.4.3. Effect of CANE on the Local Production of the Pro-Inflammatory Cytokine IL-1β
2.5. Systemic Toxicity
3. Materials and Methods
3.1. Materials
3.2. Synthesis and Characterization of CA
3.3. Hydrophilic–Lipophilic Balance (HLB) Assay
3.3.1. Preparation of Nanoemulsions for HLB Analysis
3.3.2. Micro-Emultocrit Technique
3.3.3. CI
3.4. CANE Formulation
3.5. Stability Study
3.6. Carvacryl Acetate Content
3.7. pH Measurement
3.8. Animals
3.9. Inflammatory Model
3.10. Plethysmometer Test
3.11. Cytokine Measurement by ELISA
3.12. Toxicity Assessment
3.13. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; Abegaz, K.H.; Abolhassani, H.; Aboyans, V.; et al. Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Tai, F.W.D.; McAlindon, M.E. Non-Steroidal Anti-Inflammatory Drugs and the Gastrointestinal Tract. Clin. Med. J. R. Coll. Physicians Lond. 2021, 21, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Zur, D.; Iglicki, M.; Loewenstein, A. The Role of Steroids in the Management of Diabetic Macular Edema. Ophthalmic Res. 2019, 62, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Van Der Velden, V.H. Glucocorticoids: Mechanisms of Action and Anti-Inflammatory. Mediat. Inflamm. 1998, 237, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Chi, T.Y.; Zhu, H.M.; Zhang, M. Risk Factors Associated with Nonsteroidal Anti-Inflammatory Drugs (NSAIDs)-Induced Gastrointestinal Bleeding Resulting on People over 60 Years Old in Beijing. Medicine 2018, 97, e0665. [Google Scholar] [CrossRef]
- Nawaz, H.; Ali, A.; Rehman, T.; Aslam, A. Chronological Effects of Non-Steroidal Anti-Inflammatory Drug Therapy on Oxidative Stress and Antioxidant Status in Patients with Rheumatoid Arthritis. Clin. Rheumatol. 2021, 40, 1767–1778. [Google Scholar] [CrossRef]
- Plowright, A.T.; Ottmann, C.; Arkin, M.; Auberson, Y.P.; Timmerman, H.; Waldmann, H. Joining Forces: The Chemical Biology–Medicinal Chemistry Continuum. Cell Chem. Biol. 2017, 24, 1058–1065. [Google Scholar] [CrossRef]
- Faudone, G.; Arifi, S.; Merk, D. The Medicinal Chemistry of Caffeine. J. Med. Chem. 2021, 64, 7156–7178. [Google Scholar] [CrossRef]
- Elmaaty, A.A.; Hamed, M.I.A.; Ismail, M.I.; Elkaeed, E.B.; Abulkhair, H.S.; Khattab, M.; Al-Karmalawy, A.A. Computational Insights on the Potential of Some Nsaids for Treating COVID-19: Priority Set and Lead Optimization. Molecules 2021, 26, 3772. [Google Scholar] [CrossRef]
- Dantas, A.G.B.; de Souza, R.L.; de Almeida, A.R.; Xavier, F.H., Jr.; Pitta, M.G.d.R.; Rêgo, M.J.B.d.M.; Oliveira, E.E. Development, Characterization, and Immunomodulatory Evaluation of Carvacrol-loaded Nanoemulsion. Molecules 2021, 26, 3899. [Google Scholar] [CrossRef]
- Tian, Z.; Chinnathambi, A.; Alahmadi, T.A.; Mohan, S.K.; Veeraraghavan, V.P.; Jaganathan, S.K. Anti-Arthritic Activity of Tin Oxide-Chitosan-Polyethylene Glycol Carvacrol Nanoparticles against Freund’s Adjuvant Induced Arthritic Rat Model via the Inhibition of Cyclooxygenase-2 and Prostaglandin E2. Arab. J. Chem. 2021, 14, 103293. [Google Scholar] [CrossRef]
- Kara, M.; Uslu, S.; Demirci, F.; Temel, H.E.; Baydemir, C. Supplemental Carvacrol Can Reduce the Severity of Inflammation by Influencing the Production of Mediators of Inflammation. Inflammation 2015, 38, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, E.M.; Sousa, N.A.; de Araújo, S.; Júnior, J.L.P.; Araújo, A.R.; Iles, B.; Pacífico, D.M.; Brito, G.A.C.; Souza, E.P.; Sousa, D.P.; et al. Carvacryl Acetate, a Novel Semisynthetic Monoterpene Ester, Binds to the TRPA1 Receptor and Is Effective in Attenuating Irinotecan-Induced Intestinal Mucositis in Mice. J. Pharm. Pharmacol. 2017, 69, 1773–1785. [Google Scholar] [CrossRef] [PubMed]
- Damasceno, S.R.B.; Oliveira, F.R.A.M.; Carvalho, N.S.; Brito, C.F.C.; Silva, I.S.; Sousa, F.B.M.; Silva, R.O.; Sousa, D.P.; Barbosa, A.L.R.; Freitas, R.M.; et al. Carvacryl Acetate, a Derivative of Carvacrol, Reduces Nociceptive and Inflammatory Response in Mice. Life Sci. 2014, 94, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Andre, W.P.P.; Ribeiro, W.L.C.; Cavalcante, G.S.; dos Santos, J.M.L.; Macedo, I.T.F.; Paula, H.C.B.d.; de Freitas, R.M.; de Morais, S.M.; Melo, J.V.d.; Bevilaqua, C.M.L. Comparative Efficacy and Toxic Effects of Carvacryl Acetate and Carvacrol on Sheep Gastrointestinal Nematodes and Mice. Vet. Parasitol. 2016, 218, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.L.D.S.; De Oliveira, F.R.D.A.M.; De Sousa, A.A.C.; Moura, A.K.S.; De Lima, S.G.; Freire, J.A.P.; Citó, A.M.D.G.L. Carvacryl Acetate: Synthesis and Toxicological and Pharmacological Activities. Rev. Virtual De Quim. 2020, 12, 554–568. [Google Scholar] [CrossRef]
- McClements, D.J. Advances in Edible Nanoemulsions: Digestion, Bioavailability, and Potential Toxicity. Prog. Lipid Res. 2021, 81, 101081. [Google Scholar] [CrossRef]
- Souza, R.L.d.; Dantas, A.G.B.; Melo, C.d.O.; Felício, I.M.; Oliveira, E.E. Nanotechnology as a Tool to Improve the Biological Activity of Carvacrol: A Review. J. Drug Deliv. Sci. Technol. 2022, 76, 103834. [Google Scholar] [CrossRef]
- Lou, Z.; Chen, J.; Yu, F.; Wang, H.; Kou, X.; Ma, C.; Zhu, S. The Antioxidant, Antibacterial, Antibiofilm Activity of Essential Oil from Citrus medica L. Var. Sarcodactylis and Its Nanoemulsion. LWT 2017, 80, 371–377. [Google Scholar] [CrossRef]
- Moazeni, M.; Davari, A.; Shabanzadeh, S.; Akhtari, J. In Vitro Antifungal Activity of Thymus Vulgaris Essential Oil Nanoemulsion. J. Herb. Med. 2021, 28, 100452. [Google Scholar] [CrossRef]
- Abdelhameed, M.F.; Asaad, G.F.; Ragab, T.I.M.; Ahmed, R.F.; El Gendy, A.E.N.G.; Abd El-Rahman, S.S.; Elgamal, A.M.; Elshamy, A.I. Oral and Topical Anti-Inflammatory and Antipyretic Potentialities of Araucaria Bidiwillii Shoot Essential Oil and Its Nanoemulsion in Relation to Chemical Composition. Molecules 2021, 26, 5833. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; McClements, D.J. Overview of Nanoemulsion Properties: Stability, Rheology, and Appearance; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Felício, I.M.; Souza, R.L.; Melo, C.O.; Lima, K.Y.G.; Vasconcelos, U.; Moura, R.O.; Oliveira, E.E. Development and Characterization of a Carvacrol Nanoemulsion and Evaluation of Its Antimicrobial Activity against Selected Food-Related Pathogens. Lett. Appl. Microbiol. 2021, 72, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, Development and Applications in Drug Delivery. J. Control. Release 2017, 252, 28–49. [Google Scholar] [CrossRef] [PubMed]
- Malode, G.P.; Ande, S.N.; Chavhan, S.A.; Bartare, S.A.; Malode, L.L.; Manwar, J.V.; Bakal, R.L. A Critical Reveiw on Nanoemulsion: Advantages, Techniques and Characterization. World J. Adv. Res. Rev. 2021, 11, 462–473. [Google Scholar] [CrossRef]
- Spinozzi, E.; Pavela, R.; Bonacucina, G.; Perinelli, D.R.; Cespi, M.; Petrelli, R.; Cappellacci, L.; Fiorini, D.; Scortichini, S.; Garzoli, S.; et al. Spilanthol-Rich Essential Oil Obtained by Microwave-Assisted Extraction from Acmella oleracea (L.) R.K. Jansen and Its Nanoemulsion: Insecticidal, Cytotoxic and Anti-Inflammatory Activities. Ind. Crops Prod. 2021, 172, 114027. [Google Scholar] [CrossRef]
- Souza, R.L.; Mengarda, A.C.; Roquini, D.B.; Melo, C.O.; Morais, M.C.; C Espírito-Santo, M.C.; De Sousa, D.P.; Moraes, J.; Oliveira, E.E. Enhancing the Antischistosomal Activity of Carvacryl Acetate Using Nanoemulsion. Nanomedicine 2023, 18, 331–342. [Google Scholar] [CrossRef]
- Mathela, C.S.; Singh, K.K.; Gupta, V. Synthesis and in Vitro Antibacterial Activity of New Oxoethylthio-1,3,4-Oxadiazole Derivatives. Acta Pol. Pharm. Ñ Drug Res. 2010, 67, 375–380. [Google Scholar] [CrossRef]
- Lopes, P.; Carneiro, F.; Sousa, A.; Santos, S.; Oliveira, E.; Soares, L. Technological Evaluation of Emulsions Containing the Volatile Oil from Leaves of Plectranthus Amboinicus Lour. Pharmacogn. Mag. 2017, 13, 159–167. [Google Scholar] [CrossRef]
- Macedo, J.P.F.; Fernandes, L.L.; Formiga, F.R.; Reis, M.F.; Nagashima, T.; Soares, L.A.L.; Egito, E.S.T. Micro-Emultocrit Technique: A Valuable Tool for Determination of Critical HLB Value of Emulsions. AAPS PharmSciTech 2006, 7, E146–E152. [Google Scholar] [CrossRef]
- Chong, W.T.; Tan, C.P.; Cheah, Y.K.; Lajis, A.F.B.; Dian, N.L.H.M.; Kanagaratnam, S.; Lai, O.M. Optimization of Process Parameters in Preparation of Tocotrienol-Rich Red Palm Oil-Based Nanoemulsion Stabilized by Tween80-Span 80 Using Response Surface Methodology. PLoS ONE 2018, 13, e0202771. [Google Scholar] [CrossRef]
- Schmidts, T.; Dobler, D.; Guldan, A.C.; Paulus, N.; Runkel, F. Multiple W/O/W Emulsions-Using the Required HLB for Emulsifier Evaluation. Colloids Surf. A Physicochem. Eng. Asp. 2010, 372, 48–54. [Google Scholar] [CrossRef]
- Yun, G.Y.; Yahya, N.A.; Wahab, R.A.; Hamid, M.A. Formulation and Characterization of a Kinetically Stable Topical Nanoemulsion Containing the Whitening Agent Kojic Acid. Indones. J. Chem. 2021, 21, 400–410. [Google Scholar] [CrossRef]
- McClements, D.J.; Jafari, S.M. General Aspects of Nanoemulsions and Their Formulation; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Pavoni, L.; Perinelli, D.R.; Ciacciarelli, A.; Quassinti, L.; Bramucci, M.; Miano, A.; Casettari, L.; Cespi, M.; Bonacucina, G.; Palmieri, G.F. Properties and Stability of Nanoemulsions: How Relevant Is the Type of Surfactant? J. Drug Deliv. Sci. Technol. 2020, 58, 101772. [Google Scholar] [CrossRef]
- Pratap-Singh, A.; Guo, Y.; Ochoa, S.L.; Fathordoobady, F.; Singh, A. Optimal Ultrasonication Process Time Remains Constant for a Specific Nanoemulsion Size Reduction System. Sci. Rep. 2021, 11, 9241. [Google Scholar] [CrossRef]
- Ryu, V.; McClements, D.J.; Corradini, M.G.; Yang, J.S.; McLandsborough, L. Natural Antimicrobial Delivery Systems: Formulation, Antimicrobial Activity, and Mechanism of Action of Quillaja Saponin-Stabilized Carvacrol Nanoemulsions. Food Hydrocoll. 2018, 82, 442–450. [Google Scholar] [CrossRef]
- Khan, I.; Bhardwaj, M.; Shukla, S.; Lee, H.; Oh, M.W.; Bajpai, V.K.; Huh, Y.S.; Kang, S.C. Carvacrol Encapsulated Nanocarrier/Nanoemulsion Abrogates Angiogenesis by Downregulating COX-2, VEGF and CD31 in Vitro and in Vivo in a Lung Adenocarcinoma Model. Colloids Surf. B Biointerfaces 2019, 181, 612–622. [Google Scholar] [CrossRef]
- Mazarei, Z.; Rafati, H. Nanoemulsification of Satureja Khuzestanica Essential Oil and Pure Carvacrol; Comparison of Physicochemical Properties and Antimicrobial Activity against Food Pathogens. LWT 2019, 100, 328–334. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef]
- Deghiedy, N.M.; Elkenawy, N.M.; El-Rehim, H.A.A. Gamma Radiation-Assisted Fabrication of Bioactive-Coated Thyme Nanoemulsion: A Novel Approach to Improve Stability, Antimicrobial and Antibiofilm Efficacy. J. Food Eng. 2021, 304, 110600. [Google Scholar] [CrossRef]
- Araújo, F.A.; Kelmann, R.G.; Araújo, B.V.; Finatto, R.B.; Teixeira, H.F.; Koester, L.S. Development and Characterization of Parenteral Nanoemulsions Containing Thalidomide. Eur. J. Pharm. Sci. 2011, 42, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Li, P.H.; Lu, W.C. Effects of Storage Conditions on the Physical Stability of D-Limonene Nanoemulsion. Food Hydrocoll. 2016, 53, 218–224. [Google Scholar] [CrossRef]
- Zaichik, S.; Steinbring, C.; Jelkmann, M.; Bernkop-Schnürch, A. Zeta Potential Changing Nanoemulsions: Impact of PEG-Corona on Phosphate Cleavage. Int. J. Pharm. 2020, 581, 119299. [Google Scholar] [CrossRef]
- Guerra-Rosas, M.I.; Morales-Castro, J.; Ochoa-Martínez, L.A.; Salvia-Trujillo, L.; Martín-Belloso, O. Long-Term Stability of Food-Grade Nanoemulsions from High Methoxyl Pectin Containing Essential Oils. Food Hydrocoll. 2016, 52, 438–446. [Google Scholar] [CrossRef]
- André, W.P.P.; Paiva, J.R.; Cavalcante, G.S.; Ribeiro, W.L.C.; Filho, J.V.D.A.; Filho, A.; Cavalcanti, B.C.; De Morais, S.M.; De Oliveira, L.M.B.; Bevilaqua, C.M.L.; et al. Chitosan Nanoparticles Loaded with Carvacrol and Carvacryl Acetate for Improved Anthelmintic Activity. Artic. J. Braz. Chem. Soc. 1614, 31, 1614–1622. [Google Scholar] [CrossRef]
- André, W.P.P.; Paiva Junior, J.R.; Cavalcante, G.S.; Ribeiro, W.L.C.; Filho, J.V.d.A.; Santos, J.M.L.; Alves, A.P.N.N.; Monteiro, J.P.; Morais, S.M.; Silva, I.N.G.; et al. Anthelmintic Activity of Nanoencapsulated Carvacryl Acetate against Gastrointestinal Nematodes of Sheep and Its Toxicity in Rodents. Rev. Bras. Parasitol. Vet. 2020, 29, e013119. [Google Scholar] [CrossRef] [PubMed]
- Adriany, A.; Jéssica, S.; Ana, O.; Raimunda, S.; Andreanne, V.; Luan, S.; Thiago, A.; Wanessa, C.; Maria, S.; Ana, M.; et al. Anti-Inflammatory and Antioxidant Activity Improvement of Lycopene from Guava on Nanoemulsifying System. J. Dispers. Sci. Technol. 2020, 42, 760–770. [Google Scholar] [CrossRef]
- Alyamani, S.A.; Alkhatib, M.H.; Abdu, F. Coconut Oil Nanoemulsion Attenuates Methotrexate-Induced Hepatotoxicity and Nephrotoxicity in Ehrlich Ascites Carcinoma-Bearing Mice. Asian Pac. J. Trop. Biomed. 2020, 10, 540–546. [Google Scholar] [CrossRef]
- Leonel, A.J.; Silva, E.L.; Aguilar, E.C.; Teixeira, L.G.; Oliveira, R.P.; Faria, A.M.C.; Cara, D.C.; Ferreira, L.A.M.; Alvarez-Leite, J.I. Systemic Administration of a Nanoemulsion with Tributyrin Reduces Inflammation in Experimental Colitis. Eur. J. Lipid Sci. Technol. 2016, 118, 157–164. [Google Scholar] [CrossRef]
- Homayun, B.; Lin, X.; Choi, H.J. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics 2019, 11, 129. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.; Qi, J.; Wu, W. An Update on Oral Drug Delivery via Intestinal Lymphatic Transport. Acta Pharm. Sin. B 2021, 11, 2449–2468. [Google Scholar] [CrossRef]
- Choudhury, H.; Gorain, B.; Chatterjee, B.; Mandal, U.K.; Sengupta, P.; Tekade, R.K. Pharmacokinetic and Pharmacodynamic Features of Nanoemulsion Following Oral, Intravenous, Topical and Nasal Route. Curr. Pharm. Des. 2017, 23, 2504–2531. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.S.; Morais, J.A.V.; Vanderlei, Í.A.C.; Santos, A.S.; Azevedo, R.B.; Muehlmann, L.A.; Júnior, O.R.P.; Mortari, M.R.; da Silva, J.R.; da Silva, S.W.; et al. Oral Delivery of Fish Oil in Oil-in-Water Nanoemulsion: Development, Colloidal Stability and Modulatory Effect on in Vivo Inflammatory Induction in Mice. Biomed. Pharmacother. 2021, 133, 110980. [Google Scholar] [CrossRef] [PubMed]
- Ren, K.; Torres, R. Role of Interleukin-1β during Pain and Inflammation. Brain Res. Rev. 2009, 60, 57–64. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, C.; Chow, A.H.L.; Ren, K.; Gong, T.; Zhang, Z.; Zheng, Y. Self-Nanoemulsifying Drug Delivery System (SNEDDS) for Oral Delivery of Zedoary Essential Oil: Formulation and Bioavailability Studies. Int. J. Pharm. 2010, 383, 170–177. [Google Scholar] [CrossRef]
- Safieh-Garabedian, B.; Poole, S.; Allchorne, A.; Winter, J.; Woolf, C.J. Contribution of Interleukin-1β to the Inflammation-induced Increase in Nerve Growth Factor Levels and Inflammatory Hyperalgesia. Br. J. Pharmacol. 1995, 115, 1265–1275. [Google Scholar] [CrossRef]
- Li, M.; Shi, J.; Tang, J.R.; Chen, D.; Ai, B.; Chen, J.; Wang, L.N.; Cao, F.Y.; Li, L.L.; Lin, C.Y.; et al. Effects of Complete Freund’s Adjuvant on Immunohistochemical Distribution of IL-1β and IL-1R I in Neurons and Glia Cells of Dorsal Root Ganglion. Acta Pharmacol. Sin. 2005, 26, 192–198. [Google Scholar] [CrossRef]
- Lee, J.K.; Kim, S.H.; Lewis, E.C.; Azam, T.; Reznikov, L.L.; Dinarello, C.A. Differences in Signaling Pathways by IL-1β and IL-18. Proc. Natl. Acad. Sci. USA 2004, 101, 8815–8820. [Google Scholar] [CrossRef]
- Crofford, L.J.; Wilder, R.L.; Ristimaki, A.P.; Sano, H.; Remmers, E.F.; Epps, H.R.; Hla, T. Cyclooxygenase-1 and -2 Expression in Rheumatoid Synovial Tissues. Effects of Interleukin-1β, Phorbol Ester, and Corticosteroids. J. Clin. Investig. 1994, 93, 1095–1101. [Google Scholar] [CrossRef]
- Lima, M.D.S.; Quintans-Júnior, L.J.; De Santana, W.A.; Martins Kaneto, C.; Pereira Soares, M.B.; Villarreal, C.F. Anti-Inflammatory Effects of Carvacrol: Evidence for a Key Role of Interleukin-10. Eur. J. Pharmacol. 2013, 699, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. The IL-1 Family and Inflammatory Diseases. Clin. Exp. Rheumatol. 2002, 20, S1–S13. [Google Scholar]
- Opretzka, L.C.F.; do Espírito-Santo, R.F.; Nascimento, O.A.; Abreu, L.S.; Alves, I.M.; Döring, E.; Soares, M.B.P.; da Silva Velozo, E.; Laufer, S.A.; Villarreal, C.F. Natural Chromones as Potential Anti-Inflammatory Agents: Pharmacological Properties and Related Mechanisms. Int. Immunopharmacol. 2019, 72, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Oray, M.; Abu Samra, K.; Ebrahimiadib, N.; Meese, H.; Foster, C.S. Long-Term Side Effects of Glucocorticoids. Expert. Opin. Drug Saf. 2016, 15, 457–465. [Google Scholar] [CrossRef]
- Devarbhavi, H. An Update on Drug-Induced Liver Injury. J. Clin. Exp. Hepatol. 2012, 2, 247–259. [Google Scholar] [CrossRef]
- Gowda, S.; Desai, P.B.; Kulkarni, S.S.; Hull, V.V.; Math, A.A.K.; Vernekar, S.N. Markers of Renal Function Tests. N. Am. J. Med. Sci. 2010, 2, 170. [Google Scholar]
- Moraes, J.; Carvalho, A.A.L.; Nakano, E.; De Almeida, A.A.C.; Marques, T.H.D.C.; Andrade, L.N.; De Freitas, R.M.; De Sousa, D.P. Anthelmintic Activity of Carvacryl Acetate against Schistosoma Mansoni. Parasitol. Res. 2013, 112, 603–610. [Google Scholar] [CrossRef]
Formulation | HLB Value | Creaming Index (%) | Macroscopic Aspect | |
---|---|---|---|---|
D1 | D35 | |||
F1 | 15 | 0.90 | 2.17 | M + CR |
F2 | 14 | 0.83 | 1.56 | M + CR |
F3 | 13 | 0.92 | 1.21 | M + CR |
F4 | 12 | 1.13 | 1.02 | M + CR |
F5 | 11 | 2.00 | 1.78 | M + CR |
F6 | 10 | 0.86 | 2.00 | M + CR |
F7 | 9 | 0.00 | 0.00 | M |
F8 | 8 | 0.89 | 2.38 | M + CR |
Parameters of Stability/Day of Analysis | Mean Droplet Diameter (nm) | Polydispersity Index | Zeta Potential (mV) | pH |
---|---|---|---|---|
D1 | 93.39 ± 1.10 | 0.30 ± 0.03 | −28.06 ± 0.96 | 4.17 ± 0.02 |
D7 | 98.88 ± 0.48 | 0.27 ± 0.01 | −51.53 ± 1.67 | 4.16 ± 0.01 |
D15 | 99.83 ± 1.04 | 0.27 ± 0.01 | −50.06 ± 1.55 | 4.19 ± 0.02 |
D30 | 98.99 ± 0.53 | 0.27 ± 0.03 | −49.50 ± 2.35 | 4.01 ± 0.04 |
D60 | 105.90 ± 3.31 | 0.30 ± 0.04 | −44.90 ± 3.06 | 4.00 ± 0.03 |
D90 | 101.50 ± 0.75 | 0.28 ± 0.01 | −55.70 ± 1.28 | 4.05 ± 0.01 |
Parameters | Naïve | BNE | CA | CANE |
---|---|---|---|---|
ALT (UI/L) | 71.66 ± 11.21 | 70.50 ± 11.41 | 69.66 ± 8.23 | 68.00 ± 7.43 |
AST (UI/L) | 98.33 ± 10.52 | 99.00 ± 12.53 | 102.16 ± 8.42 | 101.50 ± 8.32 |
Urea (mg/dL) | 52.33 ± 5.16 | 50.00 ± 3.22 | 50.33 ± 5.27 | 49.33 ± 4.55 |
Creatinine (mg/dL) | 0.38 ± 0.07 | 0.38 ± 0.05 | 0.37 ± 0.03 | 0.37 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, R.L.d.; Opretzka, L.C.F.; Morais, M.C.d.; Melo, C.d.O.; Oliveira, B.E.G.d.; Sousa, D.P.d.; Villarreal, C.F.; Oliveira, E.E. Nanoemulsion Improves the Anti-Inflammatory Effect of Intraperitoneal and Oral Administration of Carvacryl Acetate. Pharmaceuticals 2024, 17, 17. https://doi.org/10.3390/ph17010017
Souza RLd, Opretzka LCF, Morais MCd, Melo CdO, Oliveira BEGd, Sousa DPd, Villarreal CF, Oliveira EE. Nanoemulsion Improves the Anti-Inflammatory Effect of Intraperitoneal and Oral Administration of Carvacryl Acetate. Pharmaceuticals. 2024; 17(1):17. https://doi.org/10.3390/ph17010017
Chicago/Turabian StyleSouza, Rafael Limongi de, Luíza Carolina França Opretzka, Mayara Castro de Morais, Camila de Oliveira Melo, Brunna Emanuelly Guedes de Oliveira, Damião Pergentino de Sousa, Cristiane Flora Villarreal, and Elquio Eleamen Oliveira. 2024. "Nanoemulsion Improves the Anti-Inflammatory Effect of Intraperitoneal and Oral Administration of Carvacryl Acetate" Pharmaceuticals 17, no. 1: 17. https://doi.org/10.3390/ph17010017
APA StyleSouza, R. L. d., Opretzka, L. C. F., Morais, M. C. d., Melo, C. d. O., Oliveira, B. E. G. d., Sousa, D. P. d., Villarreal, C. F., & Oliveira, E. E. (2024). Nanoemulsion Improves the Anti-Inflammatory Effect of Intraperitoneal and Oral Administration of Carvacryl Acetate. Pharmaceuticals, 17(1), 17. https://doi.org/10.3390/ph17010017